1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
|
import numpy as np
import time
import md_simple
import md_nnps
from compyle.config import get_config
def solve(n, backend, solver_algo, tf=0.5, dt=0.02, use_count_sort=False):
solver = solver_algo(n, backend=backend.replace("_omp", ""))
start = time.time()
solver.solve(tf, dt)
end = time.time()
print("Time taken for backend = %s, N = %i is %g secs" %
(backend, n, (end - start)))
return end - start
def compare(backends, n_list, solver_algo, niter=3):
t_list = {b: [] for b in backends}
speedups = {b: [] for b in backends}
for n in n_list:
print("Running for N = %i" % n)
for backend in backends:
if "omp" in backend:
get_config().use_openmp = True
t = 1e9
for it in range(niter):
t = min(t, solve(n, backend, solver_algo))
t_list[backend].append(t)
if "omp" in backend:
get_config().use_openmp = False
if 'cython' in backends:
for backend in backends:
for i, n in enumerate(n_list):
speedups[backend].append(
t_list["cython"][i] / t_list[backend][i])
else:
speedups = None
return speedups, t_list
def compare_implementations(backend, n_list, niter=3):
import matplotlib.pyplot as plt
sp, nnps_tlist = compare([backend], n_list,
md_nnps.MDSolver, niter=niter)
sp, simple_tlist = compare([backend], n_list,
md_simple.MDSolver, niter=niter)
speedup = [simple_tlist[backend][i] / nnps_tlist[backend][i]
for i in range(len(n_list))]
plt.loglog(n_list, nnps_tlist[backend], 'x-', label="Linear")
plt.loglog(n_list, simple_tlist[backend], 'x-', label="Simple")
plt.xlabel("Number of particles")
plt.ylabel("Time (secs)")
plt.legend()
plt.grid(True)
plt.savefig("time_comp_impl.png", dpi=300)
plt.clf()
plt.loglog(n_list, speedup, 'x-')
plt.xlabel("Number of particles")
plt.ylabel("Speedup")
plt.grid(True)
plt.savefig("speedup_comp_impl.png", dpi=300)
def plot(n_list, speedups, t_list, label):
backend_label_map = {'cython': 'Cython', 'cython_omp': 'OpenMP',
'opencl': 'OpenCL', 'cuda': 'CUDA'}
import matplotlib.pyplot as plt
plt.figure()
if speedups:
for backend, arr in speedups.items():
if backend == "cython":
continue
plt.semilogx(n_list, arr, 'x-', label=backend_label_map[backend])
plt.xlabel("Number of particles")
plt.ylabel("Speedup")
plt.legend()
plt.grid(True)
plt.savefig("%s_speedup_%s.png" %
(label, "_".join(speedups.keys())), dpi=300)
plt.clf()
for backend, arr in t_list.items():
plt.loglog(n_list, arr, 'x-', label=backend_label_map[backend])
plt.xlabel("Number of particles")
plt.ylabel("Time (secs)")
plt.legend()
plt.grid(True)
plt.savefig("%s_time_%s.png" % (label, "_".join(t_list.keys())), dpi=300)
if __name__ == "__main__":
from argparse import ArgumentParser
p = ArgumentParser()
p.add_argument(
'-c', '--comparison', action='store', dest='comp', default='gpu_comp',
choices=['gpu_comp', 'omp_comp', 'comp_algo'],
help='Choose the comparison.'
)
p.add_argument(
'--nnps', action='store', dest='nnps', default='linear',
choices=['linear', 'simple'],
help='Choose algorithm.'
)
p.add_argument(
'--use-double', action='store_true', dest='use_double',
default=False, help='Use double precision on the GPU.'
)
o = p.parse_args()
get_config().use_double = o.use_double
solver_algo = (md_nnps.MDNNPSSolver if o.nnps == 'linear'
else md_simple.MDSolver)
n_list = [10000 * (2 ** i) for i in range(10)] if o.nnps == 'linear' else \
[500 * (2 ** i) for i in range(8)]
if o.comp == "gpu_comp":
backends = ["opencl", "cuda", "cython"]
print("Running for", n_list)
speedups, t_list = compare(backends, n_list, solver_algo)
plot(n_list, speedups, t_list, o.nnps)
elif o.comp == "omp_comp":
backends = ["cython_omp", "cython"]
print("Running for", n_list)
speedups, t_list = compare(backends, n_list, solver_algo)
plot(n_list, speedups, t_list, o.nnps)
elif o.comp == "comp_algo":
backend = "cython"
n_list = [500, 1000, 2000, 4000, 8000, 16000, 32000]
print("Running for", n_list)
compare_implementations(backend, n_list)
|