1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
|
/*
File: Fraction.java
Originally written by Doug Lea and released into the public domain.
This may be used for any purposes whatsoever without acknowledgment.
Thanks for the assistance and support of Sun Microsystems Labs,
and everyone contributing, testing, and using this code.
History:
Date Who What
7Jul1998 dl Create public version
11Oct1999 dl add hashCode
*/
package EDU.oswego.cs.dl.util.concurrent.misc;
/**
* An immutable class representing fractions as pairs of longs.
* Fractions are always maintained in reduced form.
**/
public class Fraction implements Cloneable, Comparable, java.io.Serializable {
protected final long numerator_;
protected final long denominator_;
/** Return the numerator **/
public final long numerator() { return numerator_; }
/** Return the denominator **/
public final long denominator() { return denominator_; }
/** Create a Fraction equal in value to num / den **/
public Fraction(long num, long den) {
// normalize while constructing
boolean numNonnegative = (num >= 0);
boolean denNonnegative = (den >= 0);
long a = numNonnegative? num : -num;
long b = denNonnegative? den : -den;
long g = gcd(a, b);
numerator_ = (numNonnegative == denNonnegative)? (a / g) : (-a / g);
denominator_ = b / g;
}
/** Create a fraction with the same value as Fraction f **/
public Fraction(Fraction f) {
numerator_ = f.numerator();
denominator_ = f.denominator();
}
public String toString() {
if (denominator() == 1)
return "" + numerator();
else
return numerator() + "/" + denominator();
}
public Object clone() { return new Fraction(this); }
/** Return the value of the Fraction as a double **/
public double asDouble() {
return ((double)(numerator())) / ((double)(denominator()));
}
/**
* Compute the nonnegative greatest common divisor of a and b.
* (This is needed for normalizing Fractions, but can be
* useful on its own.)
**/
public static long gcd(long a, long b) {
long x;
long y;
if (a < 0) a = -a;
if (b < 0) b = -b;
if (a >= b) { x = a; y = b; }
else { x = b; y = a; }
while (y != 0) {
long t = x % y;
x = y;
y = t;
}
return x;
}
/** return a Fraction representing the negated value of this Fraction **/
public Fraction negative() {
long an = numerator();
long ad = denominator();
return new Fraction(-an, ad);
}
/** return a Fraction representing 1 / this Fraction **/
public Fraction inverse() {
long an = numerator();
long ad = denominator();
return new Fraction(ad, an);
}
/** return a Fraction representing this Fraction plus b **/
public Fraction plus(Fraction b) {
long an = numerator();
long ad = denominator();
long bn = b.numerator();
long bd = b.denominator();
return new Fraction(an*bd+bn*ad, ad*bd);
}
/** return a Fraction representing this Fraction plus n **/
public Fraction plus(long n) {
long an = numerator();
long ad = denominator();
long bn = n;
long bd = 1;
return new Fraction(an*bd+bn*ad, ad*bd);
}
/** return a Fraction representing this Fraction minus b **/
public Fraction minus(Fraction b) {
long an = numerator();
long ad = denominator();
long bn = b.numerator();
long bd = b.denominator();
return new Fraction(an*bd-bn*ad, ad*bd);
}
/** return a Fraction representing this Fraction minus n **/
public Fraction minus(long n) {
long an = numerator();
long ad = denominator();
long bn = n;
long bd = 1;
return new Fraction(an*bd-bn*ad, ad*bd);
}
/** return a Fraction representing this Fraction times b **/
public Fraction times(Fraction b) {
long an = numerator();
long ad = denominator();
long bn = b.numerator();
long bd = b.denominator();
return new Fraction(an*bn, ad*bd);
}
/** return a Fraction representing this Fraction times n **/
public Fraction times(long n) {
long an = numerator();
long ad = denominator();
long bn = n;
long bd = 1;
return new Fraction(an*bn, ad*bd);
}
/** return a Fraction representing this Fraction divided by b **/
public Fraction dividedBy(Fraction b) {
long an = numerator();
long ad = denominator();
long bn = b.numerator();
long bd = b.denominator();
return new Fraction(an*bd, ad*bn);
}
/** return a Fraction representing this Fraction divided by n **/
public Fraction dividedBy(long n) {
long an = numerator();
long ad = denominator();
long bn = n;
long bd = 1;
return new Fraction(an*bd, ad*bn);
}
/** return a number less, equal, or greater than zero
* reflecting whether this Fraction is less, equal or greater than
* the value of Fraction other.
**/
public int compareTo(Object other) {
Fraction b = (Fraction)(other);
long an = numerator();
long ad = denominator();
long bn = b.numerator();
long bd = b.denominator();
long l = an*bd;
long r = bn*ad;
return (l < r)? -1 : ((l == r)? 0: 1);
}
/** return a number less, equal, or greater than zero
* reflecting whether this Fraction is less, equal or greater than n.
**/
public int compareTo(long n) {
long an = numerator();
long ad = denominator();
long bn = n;
long bd = 1;
long l = an*bd;
long r = bn*ad;
return (l < r)? -1 : ((l == r)? 0: 1);
}
public boolean equals(Object other) {
return compareTo((Fraction)other) == 0;
}
public boolean equals(long n) {
return compareTo(n) == 0;
}
public int hashCode() {
return (int) (numerator_ ^ denominator_);
}
}
|