1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
|
import EDU.oswego.cs.dl.util.concurrent.*;
/**
* Recursive task-based version of Fibonacci. Computes:
* <pre>
* Computes fibonacci(n) = fibonacci(n-1) + fibonacci(n-2); for n> 1
* fibonacci(0) = 0;
* fibonacci(1) = 1.
* </pre>
**/
public class Fib extends FJTask {
// Performance-tuning constant:
static int sequentialThreshold = 0;
public static void main(String[] args) {
try {
int procs;
int num;
try {
procs = Integer.parseInt(args[0]);
num = Integer.parseInt(args[1]);
if (args.length > 2) sequentialThreshold = Integer.parseInt(args[2]);
}
catch (Exception e) {
System.out.println("Usage: java Fib <threads> <number> [<sequntialThreshold>]");
return;
}
FJTaskRunnerGroup g = new FJTaskRunnerGroup(procs);
Fib f = new Fib(num);
g.invoke(f);
g.stats();
long result = f.getAnswer();
System.out.println("Fib: Size: " + num + " Answer: " + result);
}
catch (InterruptedException ex) {}
}
// Initialized with argument; replaced with result
volatile int number;
Fib(int n) { number = n; }
int getAnswer() {
if (!isDone()) throw new Error("Not yet computed");
return number;
}
public void run() {
int n = number;
// Handle base cases:
if (n <= 1) {
// Do nothing: fib(0) = 0; fib(1) = 1
}
// Use sequential code for small problems:
else if (n <= sequentialThreshold) {
number = seqFib(n);
}
// Otherwise use recursive parallel decomposition:
else {
// Construct subtasks:
Fib f1 = new Fib(n - 1);
Fib f2 = new Fib(n - 2);
// Run them in parallel:
coInvoke(f1, f2);
// Combine results:
number = f1.number + f2.number;
// (We know numbers are ready, so directly access them.)
}
}
// Sequential version for arguments less than threshold
static int seqFib(int n) {
if (n <= 1)
return n;
else
return seqFib(n-1) + seqFib(n-2);
}
}
|