1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
|
import EDU.oswego.cs.dl.util.concurrent.*;
/**
* LU matrix decomposition demo
* Based on those in Cilk and Hood
**/
public class LU {
// granularity is hard-wired as compile-time constant here
static final int BLOCK_SIZE = 16;
static final boolean CHECK = false; // set true to check answer
public static void main(String[] args) {
final String usage = "Usage: java LU <threads> <matrix size (must be a power of two)> [runs] \n For example, try java LU 2 512";
try {
int procs;
int n;
int runs = 1;
try {
procs = Integer.parseInt(args[0]);
n = Integer.parseInt(args[1]);
if (args.length > 2) runs = Integer.parseInt(args[2]);
}
catch (Exception e) {
System.out.println(usage);
return;
}
if ( ((n & (n - 1)) != 0)) {
System.out.println(usage);
return;
}
for (int run = 0; run < runs; ++run) {
double[][] m = new double[n][n];
randomInit(m, n);
double[][] copy = null;
if (CHECK) {
copy = new double[n][n];
for (int i = 0; i < n; ++i) {
for (int j = 0; j < n; ++j) {
copy[i][j] = m[i][j];
}
}
}
Block M = new Block(m, 0, 0);
FJTaskRunnerGroup g = new FJTaskRunnerGroup(procs);
g.invoke(new LowerUpper(n, M));
g.stats();
g.interruptAll();
if (CHECK) check(m, copy, n);
}
}
catch (InterruptedException ex) {}
}
static void randomInit(double[][] M, int n) {
java.util.Random rng = new java.util.Random();
for (int i = 0; i < n; ++i)
for (int j = 0; j < n; ++j)
M[i][j] = rng.nextDouble();
// for compatibility with hood demo, force larger diagonals
for (int k = 0; k < n; ++k)
M[k][k] *= 10.0;
}
static void check(double[][] LU, double[][] M, int n) {
double maxDiff = 0.0; // track max difference
for (int i = 0; i < n; ++i) {
for (int j = 0; j < n; ++j) {
double v = 0.0;
int k;
for (k = 0; k < i && k <= j; k++ ) v += LU[i][k] * LU[k][j];
if (k == i && k <= j ) v += LU[k][j];
double diff = M[i][j] - v;
if (diff < 0) diff = -diff;
if (diff > 0.001) {
System.out.println("large diff at[" + i + "," + j + "]: " + M[i][j] + " vs " + v);
}
if (diff > maxDiff) maxDiff = diff;
}
}
System.out.println("Max difference = " + maxDiff);
}
// Blocks record underlying matrix, and offsets into current block
static class Block {
final double[][] m;
final int loRow;
final int loCol;
Block(double[][] mat, int lr, int lc) {
m = mat; loRow = lr; loCol = lc;
}
}
static class Schur extends FJTask {
final int size;
final Block V;
final Block W;
final Block M;
Schur(int size, Block V, Block W, Block M) {
this.size = size; this.V = V; this.W = W; this.M = M;
}
void schur() { // base case
for (int j = 0; j < BLOCK_SIZE; ++j) {
for (int i = 0; i < BLOCK_SIZE; ++i) {
double s = M.m[i+M.loRow][j+M.loCol];
for (int k = 0; k < BLOCK_SIZE; ++k) {
s -= V.m[i+V.loRow][k+V.loCol] * W.m[k+W.loRow][j+W.loCol];
}
M.m[i+M.loRow][j+M.loCol] = s;
}
}
}
public void run() {
if (size == BLOCK_SIZE) {
schur();
}
else {
int h = size / 2;
Block M00 = new Block(M.m, M.loRow, M.loCol);
Block M01 = new Block(M.m, M.loRow, M.loCol+h);
Block M10 = new Block(M.m, M.loRow+h, M.loCol);
Block M11 = new Block(M.m, M.loRow+h, M.loCol+h);
Block V00 = new Block(V.m, V.loRow, V.loCol);
Block V01 = new Block(V.m, V.loRow, V.loCol+h);
Block V10 = new Block(V.m, V.loRow+h, V.loCol);
Block V11 = new Block(V.m, V.loRow+h, V.loCol+h);
Block W00 = new Block(W.m, W.loRow, W.loCol);
Block W01 = new Block(W.m, W.loRow, W.loCol+h);
Block W10 = new Block(W.m, W.loRow+h, W.loCol);
Block W11 = new Block(W.m, W.loRow+h, W.loCol+h);
coInvoke(new FJTask[] {
seq(new Schur(h, V00, W00, M00),
new Schur(h, V01, W10, M00)),
seq(new Schur(h, V00, W01, M01),
new Schur(h, V01, W11, M01)),
seq(new Schur(h, V10, W00, M10),
new Schur(h, V11, W10, M10)),
seq(new Schur(h, V10, W01, M11),
new Schur(h, V11, W11, M11))
});
}
}
}
static class Lower extends FJTask {
final int size;
final Block L;
final Block M;
Lower(int size, Block L, Block M) {
this.size = size; this.L = L; this.M = M;
}
void lower() { // base case
for (int i = 1; i < BLOCK_SIZE; ++i) {
for (int k = 0; k < i; ++k) {
double a = L.m[i+L.loRow][k+L.loCol];
double[] x = M.m[k+M.loRow];
double[] y = M.m[i+M.loRow];
int n = BLOCK_SIZE;
for (int p = n-1; p >= 0; --p) {
y[p+M.loCol] -= a * x[p+M.loCol];
}
}
}
}
public void run() {
if (size == BLOCK_SIZE) {
lower();
}
else {
int h = size / 2;
Block M00 = new Block(M.m, M.loRow, M.loCol);
Block M01 = new Block(M.m, M.loRow, M.loCol+h);
Block M10 = new Block(M.m, M.loRow+h, M.loCol);
Block M11 = new Block(M.m, M.loRow+h, M.loCol+h);
Block L00 = new Block(L.m, L.loRow, L.loCol);
Block L01 = new Block(L.m, L.loRow, L.loCol+h);
Block L10 = new Block(L.m, L.loRow+h, L.loCol);
Block L11 = new Block(L.m, L.loRow+h, L.loCol+h);
coInvoke(
new Seq(new FJTask[] {
new Lower(h, L00, M00),
new Schur(h, L10, M00, M10),
new Lower(h, L11, M10)
}),
new Seq(new FJTask[] {
new Lower(h, L00, M01),
new Schur(h, L10, M01, M11),
new Lower(h, L11, M11)
})
);
}
}
}
static class Upper extends FJTask {
final int size;
final Block U;
final Block M;
Upper(int size, Block U, Block M) {
this.size = size; this.U = U; this.M = M;
}
void upper() { // base case
for (int i = 0; i < BLOCK_SIZE; ++i) {
for (int k = 0; k < BLOCK_SIZE; ++k) {
double a = M.m[i+M.loRow][k+M.loCol] / U.m[k+U.loRow][k+U.loCol];
M.m[i+M.loRow][k+M.loCol] = a;
double[] x = U.m[k+U.loRow];
double[] y = M.m[i+M.loRow];
int n = BLOCK_SIZE - k - 1;
for (int p = n - 1; p >= 0; --p) {
y[p+k+1+M.loCol] -= a * x[p+k+1+U.loCol];
}
}
}
}
public void run() {
if (size == BLOCK_SIZE) {
upper();
}
else {
int h = size / 2;
Block M00 = new Block(M.m, M.loRow, M.loCol);
Block M01 = new Block(M.m, M.loRow, M.loCol+h);
Block M10 = new Block(M.m, M.loRow+h, M.loCol);
Block M11 = new Block(M.m, M.loRow+h, M.loCol+h);
Block U00 = new Block(U.m, U.loRow, U.loCol);
Block U01 = new Block(U.m, U.loRow, U.loCol+h);
Block U10 = new Block(U.m, U.loRow+h, U.loCol);
Block U11 = new Block(U.m, U.loRow+h, U.loCol+h);
coInvoke(
new Seq(new FJTask[] {
new Upper(h, U00, M00),
new Schur(h, M00, U01, M01),
new Upper(h, U11, M01)
}),
new Seq(new FJTask[] {
new Upper(h, U00, M10),
new Schur(h, M10, U01, M11),
new Upper(h, U11, M11)
})
);
}
}
}
static class LowerUpper extends FJTask {
final int size;
final Block M;
LowerUpper(int size, Block M) {
this.size = size; this.M = M;
}
void lu() { // base case
for (int k = 0; k < BLOCK_SIZE; ++k) {
for (int i = k+1; i < BLOCK_SIZE; ++i) {
double b = M.m[k+M.loRow][k+M.loCol];
double a = M.m[i+M.loRow][k+M.loCol] / b;
M.m[i+M.loRow][k+M.loCol] = a;
double[] x = M.m[k+M.loRow];
double[] y = M.m[i+M.loRow];
int n = BLOCK_SIZE-k-1;
for (int p = n-1; p >= 0; --p) {
y[k+1+p+M.loCol] -= a * x[k+1+p+M.loCol];
}
}
}
}
public void run() {
if (size == BLOCK_SIZE) {
lu();
}
else {
int h = size / 2;
Block M00 = new Block(M.m, M.loRow, M.loCol);
Block M01 = new Block(M.m, M.loRow, M.loCol+h);
Block M10 = new Block(M.m, M.loRow+h, M.loCol);
Block M11 = new Block(M.m, M.loRow+h, M.loCol+h);
invoke(new LowerUpper(h, M00));
coInvoke(new Lower(h, M00, M01),
new Upper(h, M00, M10));
invoke(new Schur(h, M10, M01, M11));
invoke(new LowerUpper(h, M11));
}
}
}
}
|