1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
|
import EDU.oswego.cs.dl.util.concurrent.*;
import java.util.Random;
/**
* Sample sort program adapted from a demo in
* <A href="http://supertech.lcs.mit.edu/cilk/"> Cilk</A> and
* <A href="http://www.cs.utexas.edu/users/hood/"> Hood</A>.
*
**/
class MSort {
public static void main (String[] args) {
try {
int n = 262144;
int p = 2;
try {
p = Integer.parseInt(args[0]);
n = Integer.parseInt(args[1]);
}
catch (Exception e) {
System.out.println("Usage: java MSort <threads> <array size>");
return;
}
int[] A = new int[n];
// Fill in array A with random values.
Random rng = new Random();
for (int i = 0; i < n; i++) A[i] = rng.nextInt();
int[] workSpace = new int[n];
FJTaskRunnerGroup g = new FJTaskRunnerGroup(p);
Sorter t = new Sorter(A, 0, workSpace, 0, n);
g.invoke(t);
g.stats();
// checkSorted(A, n);
}
catch (InterruptedException ex) {}
}
static void checkSorted (int[] A, int n) {
for (int i = 0; i < n - 1; i++) {
if (A[i] > A[i+1]) {
throw new Error("Unsorted at " + i + ": " + A[i] + " / " + A[i+1]);
}
}
}
/* Threshold values */
// Cutoff for when to do sequential versus parallel merges
static final int MERGE_SIZE = 2048;
// Cutoff for when to do sequential quicksort versus parallel mergesort
static final int QUICK_SIZE = 2048;
// Cutoff for when to use insertion-sort instead of quicksort
static final int INSERTION_SIZE = 20;
static class Sorter extends FJTask {
final int[] A; // Input array.
final int aLo; // offset into the part of array we deal with
final int[] W; // workspace for merge
final int wLo;
final int n; // Number of elements in (sub)arrays.
Sorter (int[] A, int aLo, int[] W, int wLo, int n) {
this.A = A;
this.aLo = aLo;
this.W = W;
this.wLo = wLo;
this.n = n;
}
public void run() {
/*
Algorithm:
IF array size is small, just use a sequential quicksort
Otherwise:
Break array in half.
For each half,
break the half in half (i.e., quarters),
sort the quarters
merge them together
Finally, merge together the two halves.
*/
if (n <= QUICK_SIZE) {
qs();
}
else {
int q = n/4;
coInvoke(new Seq(new Par(new Sorter(A, aLo,
W, wLo,
q),
new Sorter(A, aLo+q,
W, wLo+q,
q)
),
new Merger(A, aLo, q,
A, aLo+q, q,
W, wLo)
),
new Seq(new Par(new Sorter(A, aLo+q*2,
W, wLo+q*2,
q),
new Sorter(A, aLo+q*3,
W, wLo+q*3,
n-q*3)
),
new Merger(A, aLo+q*2, q,
A, aLo+q*3, n-q*3,
W, wLo+q*2)
)
);
invoke(new Merger(W, wLo, q*2,
W, wLo+q*2, n-q*2,
A, aLo));
}
}
/** Relay to quicksort within sync method to ensure memory barriers **/
synchronized void qs() {
quickSort(aLo, aLo+n-1);
}
/** A standard sequential quicksort **/
void quickSort(int lo, int hi) {
// If under threshold, use insertion sort
if (hi-lo+1l <= INSERTION_SIZE) {
for (int i = lo + 1; i <= hi; i++) {
int t = A[i];
int j = i - 1;
while (j >= lo && A[j] > t) {
A[j+1] = A[j];
--j;
}
A[j+1] = t;
}
return;
}
// Use median-of-three(lo, mid, hi) to pick a partition.
// Also swap them into relative order while we are at it.
int mid = (lo + hi) / 2;
if (A[lo] > A[mid]) {
int t = A[lo]; A[lo] = A[mid]; A[mid] = t;
}
if (A[mid]> A[hi]) {
int t = A[mid]; A[mid] = A[hi]; A[hi] = t;
if (A[lo]> A[mid]) {
t = A[lo]; A[lo] = A[mid]; A[mid] = t;
}
}
int left = lo+1; // start one past lo since already handled lo
int right = hi-1; // similarly
int partition = A[mid];
for (;;) {
while (A[right] > partition)
--right;
while (left < right && A[left] <= partition)
++left;
if (left < right) {
int t = A[left]; A[left] = A[right]; A[right] = t;
--right;
}
else break;
}
quickSort(lo, left);
quickSort(left+1, hi);
}
}
static class Merger extends FJTask {
final int[] A; // First sorted array.
final int aLo; // first index of A
final int aSize; // number of elements
final int[] B; // Second sorted array.
final int bLo;
final int bSize;
final int[] out; // Output array.
final int outLo;
Merger (int[] A, int aLo, int aSize,
int[] B, int bLo, int bSize,
int[] out, int outLo) {
this.out = out;
this.outLo = outLo;
// A must be largest of the two for split. Might as well swap now.
if (aSize >= bSize) {
this.A = A; this.aLo = aLo; this.aSize = aSize;
this.B = B; this.bLo = bLo; this.bSize = bSize;
}
else {
this.A = B; this.aLo = bLo; this.aSize = bSize;
this.B = A; this.bLo = aLo; this.bSize = aSize;
}
}
public void run() {
/*
Algorithm:
If the arrays are small, then just sequentially merge.
Otherwise:
Split A in half.
Find the greatest point in B less than the beginning
of the second half of A.
In parallel:
merge the left half of A with elements of B up to split point
merge the right half of A with elements of B past split point
*/
if (aSize <= MERGE_SIZE) {
merge();
}
else {
int aHalf = aSize / 2;
int bSplit = findSplit(A[aLo + aHalf]);
coInvoke(new Merger(A, aLo, aHalf,
B, bLo, bSplit,
out, outLo),
new Merger(A, aLo+aHalf, aSize-aHalf,
B, bLo+bSplit, bSize-bSplit,
out, outLo+aHalf+bSplit));
}
}
/** find greatest point in B less than value. return 0-based offset **/
synchronized int findSplit(int value) {
int low = 0;
int high = bSize;
while (low < high) {
int middle = low + (high - low) / 2;
if (value <= B[bLo+middle])
high = middle;
else
low = middle + 1;
}
return high;
}
/** A standard sequential merge **/
synchronized void merge() {
int a = aLo;
int aFence = aLo+aSize;
int b = bLo;
int bFence = bLo+bSize;
int k = outLo;
while (a < aFence && b < bFence) {
if (A[a] < B[b])
out[k++] = A[a++];
else
out[k++] = B[b++];
}
while (a < aFence) out[k++] = A[a++];
while (b < bFence) out[k++] = B[b++];
}
}
}
|