1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
|
#include <cstdint>
#include <cstring>
#include <cstdio>
#include <cstdlib>
#include "cpuid.h"
#ifdef _WIN32
#define WIN32_LEAN_AND_MEAN
#include <windows.h>
// See http://msdn.microsoft.com/en-us/library/windows/desktop/ms683194(v=vs.85).aspx
typedef BOOL (WINAPI *LPFN_GLPI)(PSYSTEM_LOGICAL_PROCESSOR_INFORMATION, PDWORD);
// Helper function to count set bits in the processor mask.
int countBitsSet(ULONG_PTR bitMask)
{
int result = 0;
while (bitMask != 0) {
result += (int)(bitMask & 1);
bitMask >>= 1;
}
return result;
}
bool getProcessorInfoFromOS(int& cpus, int& cores, int& logicalCores, double& clockSpeed)
{
cpus = 0;
cores = 0;
logicalCores = 0;
clockSpeed = 0;
// Clock speed
HKEY hKey;
if (RegOpenKeyEx(HKEY_LOCAL_MACHINE, TEXT("HARDWARE\\DESCRIPTION\\System\\CentralProcessor\\0"), 0, KEY_EXECUTE, &hKey) == ERROR_SUCCESS) {
DWORD type = REG_DWORD;
DWORD val;
DWORD cbData = sizeof(val);
if (RegQueryValueEx(hKey, TEXT("~MHz"), NULL, &type, (LPBYTE)&val, &cbData) == ERROR_SUCCESS) {
if (type == REG_DWORD && cbData == sizeof(DWORD)) {
clockSpeed = val / 1000.0;
}
}
}
if (clockSpeed == 0) {
// Can't access registry, try QueryPerformanceFrequency (nearly always same speed as CPU)
LARGE_INTEGER f;
if (!QueryPerformanceFrequency(&f)) {
return false;
}
clockSpeed = f.QuadPart / 1000.0 / 1000.0;
}
// Everything else
LPFN_GLPI glpi;
glpi = (LPFN_GLPI)GetProcAddress(GetModuleHandle(TEXT("kernel32")), "GetLogicalProcessorInformation");
if (glpi == NULL) {
return false;
}
PSYSTEM_LOGICAL_PROCESSOR_INFORMATION buffer = NULL;
DWORD bufferLength = 0;
if (glpi(buffer, &bufferLength) == TRUE) {
return false;
}
while (GetLastError() == ERROR_INSUFFICIENT_BUFFER) {
if (buffer != NULL) {
std::free(buffer);
}
buffer = (PSYSTEM_LOGICAL_PROCESSOR_INFORMATION)std::malloc(bufferLength);
if (buffer == NULL) {
return false;
}
if (glpi(buffer, &bufferLength) == TRUE) {
if (bufferLength / sizeof(SYSTEM_LOGICAL_PROCESSOR_INFORMATION) * sizeof(SYSTEM_LOGICAL_PROCESSOR_INFORMATION) != bufferLength) {
// sizeof(SYSTEM_LOGICAL_PROCESSOR_INFORMATION) must have changed (different from at compile time)
std::free(buffer);
return false;
}
auto end = (PSYSTEM_LOGICAL_PROCESSOR_INFORMATION)((char*)buffer + bufferLength);
for (auto ptr = buffer; ptr != end; ++ptr) {
switch (ptr->Relationship) {
case RelationProcessorCore:
++cores;
logicalCores += countBitsSet(ptr->ProcessorMask);
break;
case RelationProcessorPackage:
++cpus;
break;
default:
break;
}
}
std::free(buffer);
return true;
}
}
if (buffer != NULL) {
std::free(buffer);
}
return false;
}
#else
// TODO
bool getProcessorInfoFromOS(int& cpus, int& cores, int& logicalCores, double& clockSpeed)
{
return false;
}
#endif
#if defined(__x86_64__) || defined(_M_AMD64) || defined(__amd64__) || defined (_M_X64) || defined(_M_IX86) || defined(__i386__)
#define MOODYCAMEL_X86_OR_X64
#endif
#ifdef MOODYCAMEL_X86_OR_X64
struct CPUIDInfo
{
std::uint32_t data[4];
};
#ifdef _MSC_VER
#include <intrin.h>
inline CPUIDInfo cpuid(std::uint32_t eax)
{
CPUIDInfo info;
__cpuidex((int*)&info.data[0], eax, 0);
return info;
}
#else
// Assume GCC-compatible inline assembly syntax
inline CPUIDInfo cpuid(std::uint32_t eax)
{
CPUIDInfo info;
asm volatile("cpuid"
: "=a" (info.data[0]), "=b" (info.data[1]), "=c" (info.data[2]), "=d" (info.data[3])
: "a" (eax), "c" (0));
return info;
}
#endif
#endif // MOODYCAMEL_X86_OR_X64
namespace moodycamel
{
const char* getCPUString()
{
// TODO: Support non-x86/-x64 architectures
#ifdef MOODYCAMEL_X86_OR_X64
static char buf[128] = { 0 };
if (buf[0] != 0) {
return buf;
}
CPUIDInfo info = cpuid(0x80000000);
std::uint32_t ex = info.data[0];
for (std::uint32_t i = 0; i + 0x80000002 <= ex && i != 3; ++i) {
*(reinterpret_cast<CPUIDInfo*>(buf) + i) = cpuid(i + 0x80000002);
}
if (buf[0] == 0) {
strcpy(buf, UNKNOWN_CPU_STRING);
return buf;
}
info = cpuid(0);
if (info.data[0] < 1) {
// cpuid(1) not supported
return buf;
}
// Add number of CPUs, cores, HT, and GHz
info = cpuid(1);
bool ht = ((info.data[3] >> 28) & 1) == 1; // Note: This is also 1 on most multi-core systems, even if there's no HT
int cpus, cores, logicalCores;
double clockSpeed;
if (!getProcessorInfoFromOS(cpus, cores, logicalCores, clockSpeed)) {
return buf;
}
// Strip @ nGHz if any, since we re-calculate this ourselves
int atIndex;
for (atIndex = (int)std::strlen(buf) - 1; atIndex != -1; --atIndex) {
if (buf[atIndex] == '@') {
if (atIndex > 0 && buf[atIndex - 1] == ' ') {
--atIndex;
}
buf[atIndex] = '\0';
break;
}
}
// Strip trailing spaces if any
for (char* s = buf + std::strlen(buf); s != buf && s[-1] == ' '; --s)
s[-1] = '\0';
char* str = buf + std::strlen(buf);
if (cpus > 1) {
// Assume identical CPUs
logicalCores /= cpus;
cores /= cpus;
std::sprintf(str, " x%d", cpus);
str += strlen(str);
}
ht = ht && logicalCores != cores;
std::sprintf(str, " with %d core%s%s @ %.1fGHz%s", cores, cores == 1 ? "" : "s", ht ? " (HyperThreaded)" : "", clockSpeed, cpus > 1 ? " each" : "");
return buf;
#else
return UNKNOWN_CPU_STRING;
#endif
}
}
|