1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
|
// ©2014 Cameron Desrochers
// moodycamel::ConcurrentQueue contains many inner data structures which
// are difficult to test in isolation. So, this file contains copies of
// them, extracted and isolated so as to be independently testable.
#pragma once
#include <atomic>
#include <cstdint>
#include <cstdlib>
#include <algorithm>
#include <utility>
#include <limits>
#include <cassert>
// Define corealgos_allocator before including this header in order to override the
// default malloc/free functions
#ifndef corealgos_allocator
struct corealgos_allocator
{
static inline void* malloc(std::size_t size) { return std::malloc(size); }
static inline void free(void* ptr) { std::free(ptr); }
};
#endif
////////////////////////////////////////////////////////////////////////////////
// Lock-free add-only list (e.g. used to track producers)
////////////////////////////////////////////////////////////////////////////////
namespace moodycamel { namespace corealgos {
struct ListItem
{
ListItem()
: concurrentListPrev(nullptr)
{
}
public:
std::atomic<ListItem*> concurrentListPrev;
};
template<typename T> // T should inherit ListItem or implement the same interface
struct ConcurrentAddOnlyList
{
ConcurrentAddOnlyList()
: tail_(nullptr)
{
}
inline T* tail() { return tail_.load(std::memory_order_acquire); }
void add(T* element)
{
assert(element != nullptr);
// Add it to the lock-free list
auto prevTail = tail_.load(std::memory_order_relaxed);
do {
element->concurrentListPrev = prevTail;
} while (!tail_.compare_exchange_weak(prevTail, element, std::memory_order_release, std::memory_order_relaxed));
}
private:
std::atomic<T*> tail_;
};
} }
////////////////////////////////////////////////////////////////////////////////
// Thread local hash map
////////////////////////////////////////////////////////////////////////////////
#if defined(__APPLE__)
#include "TargetConditionals.h" // Needed for TARGET_OS_IPHONE
#endif
// Platform-specific definitions of a numeric thread ID type and an invalid value
#if defined(_WIN32) || defined(__WINDOWS__) || defined(__WIN32__)
// No sense pulling in windows.h in a header, we'll manually declare the function
// we use and rely on backwards-compatibility for this not to break
extern "C" __declspec(dllimport) unsigned long __stdcall GetCurrentThreadId(void);
namespace moodycamel { namespace corealgos { namespace details {
static_assert(sizeof(unsigned long) == sizeof(std::uint32_t), "Expected size of unsigned long to be 32 bits on Windows");
typedef std::uint32_t thread_id_t;
static const thread_id_t invalid_thread_id = 0; // See http://blogs.msdn.com/b/oldnewthing/archive/2004/02/23/78395.aspx
static inline thread_id_t thread_id() { return static_cast<thread_id_t>(::GetCurrentThreadId()); }
} } }
#elif defined(__arm__) || defined(_M_ARM) || defined(__aarch64__) || (defined(__APPLE__) && TARGET_OS_IPHONE)
namespace moodycamel { namespace corealgos { namespace details {
typedef std::uintptr_t thread_id_t;
static const thread_id_t invalid_thread_id = 0;
static inline thread_id_t thread_id() { return std::hash<std::thread::id>()(std::this_thread::get_id()); }
} } }
#else
// Use a nice trick from this answer: http://stackoverflow.com/a/8438730/21475
// In order to get a numeric thread ID in a platform-independent way, we use a thread-local
// static variable's address as a thread identifier :-)
#if defined(__GNUC__) || defined(__INTEL_COMPILER)
#define MOODYCAMEL_COREALGO_THREADLOCAL __thread
#elif defined(_MSC_VER)
#define MOODYCAMEL_COREALGO_THREADLOCAL __declspec(thread)
#else
// Assume C++11 compliant compiler
#define MOODYCAMEL_COREALGO_THREADLOCAL thread_local
#endif
namespace moodycamel { namespace corealgos { namespace details {
typedef std::uintptr_t thread_id_t;
static const thread_id_t invalid_thread_id = 0; // Address can't be nullptr
static inline thread_id_t thread_id() { static MOODYCAMEL_COREALGO_THREADLOCAL int x; return reinterpret_cast<thread_id_t>(&x); }
} } }
#endif
namespace moodycamel { namespace corealgos {
namespace details
{
template<bool use32> struct _hash_32_or_64 {
static inline std::size_t hash(std::uint32_t h)
{
// MurmurHash3 finalizer -- see https://code.google.com/p/smhasher/source/browse/trunk/MurmurHash3.cpp
// Since the thread ID is already unique, all we really want to do is propagate that
// uniqueness evenly across all the bits, so that we can use a subset of the bits while
// reducing collisions significantly
h ^= h >> 16;
h *= 0x85ebca6b;
h ^= h >> 13;
h *= 0xc2b2ae35;
return static_cast<std::size_t>(h ^ (h >> 16));
}
};
template<> struct _hash_32_or_64<1> {
static inline std::size_t hash(std::uint64_t h)
{
h ^= h >> 33;
h *= 0xff51afd7ed558ccd;
h ^= h >> 33;
h *= 0xc4ceb9fe1a85ec53;
return static_cast<std::size_t>(h ^ (h >> 33));
}
};
template<std::size_t size> struct hash_32_or_64 : public _hash_32_or_64<(size > 4)> { };
static inline std::size_t hash_thread_id(thread_id_t id)
{
static_assert(sizeof(thread_id_t) <= 8, "Expected a platform where thread IDs are at most 64-bit values");
return hash_32_or_64<sizeof(thread_id_t)>::hash(id);
}
template<typename U>
static inline char* align_for(char* ptr)
{
const std::size_t alignment = std::alignment_of<U>::value;
return ptr + (alignment - (reinterpret_cast<std::uintptr_t>(ptr) % alignment)) % alignment;
}
}
template<typename T> // T should inherit ListItem or implement the same interface
struct ThreadLocal
{
explicit ThreadLocal(std::size_t initialHashSize)
: initialHashEntries(initialHashSize)
{
assert(initialHashSize > 0 && (initialHashSize & (initialHashSize - 1)) == 0);
resizeInProgress.clear();
currentHashCount.store(0, std::memory_order_relaxed);
auto hash = &initialHash;
hash->capacity = initialHashSize;
hash->entries = &initialHashEntries[0];
for (std::size_t i = 0; i != initialHashSize; ++i) {
initialHashEntries[i].key.store(details::invalid_thread_id, std::memory_order_relaxed);
}
hash->prev = nullptr;
currentHash.store(hash, std::memory_order_relaxed);
}
~ThreadLocal()
{
// Destroy items
auto ptr = items.tail();
while (ptr != nullptr) {
auto prev = static_cast<T*>(ptr->concurrentListPrev.load(std::memory_order_relaxed));
ptr->~T();
corealgos_allocator::free(ptr);
ptr = prev;
}
// Destroy hash tables
auto hash = currentHash.load(std::memory_order_relaxed);
while (hash != nullptr) {
auto prev = hash->prev;
if (prev != nullptr) { // The last hash is part of this object and was not allocated dynamically
for (std::size_t i = 0; i != hash->capacity; ++i) {
hash->entries[i].~KeyValuePair();
}
hash->~InnerHash();
corealgos_allocator::free(hash);
}
hash = prev;
}
}
// Only fails (returns nullptr) if memory allocation fails
T* get_or_create()
{
// Note that since the data is essentially thread-local (key is thread ID),
// there's a reduced need for fences (memory ordering is already consistent
// for any individual thread), except for the current table itself
// Start by looking for the thread ID in the current and all previous hash tables.
// If it's not found, it must not be in there yet, since this same thread would
// have added it previously to one of the tables that we traversed.
// Code and algorithm adapted from http://preshing.com/20130605/the-worlds-simplest-lock-free-hash-table
auto id = details::thread_id();
auto hashedId = details::hash_thread_id(id);
auto mainHash = currentHash.load(std::memory_order_acquire);
for (auto hash = mainHash; hash != nullptr; hash = hash->prev) {
// Look for the id in this hash
auto index = hashedId;
while (true) { // Not an infinite loop because at least one slot is free in the hash table
index &= hash->capacity - 1;
auto probedKey = hash->entries[index].key.load(std::memory_order_relaxed);
if (probedKey == id) {
// Found it! If we had to search several hashes deep, though, we should lazily add it
// to the current main hash table to avoid the extended search next time.
// Note there's guaranteed to be room in the current hash table since every subsequent
// table implicitly reserves space for all previous tables (there's only one
// currentHashCount).
auto value = hash->entries[index].value;
if (hash != mainHash) {
index = hashedId;
while (true) {
index &= mainHash->capacity - 1;
probedKey = mainHash->entries[index].key.load(std::memory_order_relaxed);
auto expected = details::invalid_thread_id;
if (probedKey == expected && mainHash->entries[index].key.compare_exchange_strong(expected, id, std::memory_order_relaxed)) {
mainHash->entries[index].value = value;
break;
}
++index;
}
}
return value;
}
if (probedKey == details::invalid_thread_id) {
break; // Not in this hash table
}
++index;
}
}
// Insert!
auto newCount = 1 + currentHashCount.fetch_add(1, std::memory_order_relaxed);
while (true) {
if (newCount >= (mainHash->capacity >> 1) && !resizeInProgress.test_and_set(std::memory_order_acquire)) {
// We've acquired the resize lock, try to allocate a bigger hash table.
// Note the acquire fence synchronizes with the release fence at the end of this block, and hence when
// we reload currentHash it must be the most recent version (it only gets changed within this
// locked block).
mainHash = currentHash.load(std::memory_order_acquire);
auto newCapacity = mainHash->capacity << 1;
while (newCount >= (newCapacity >> 1)) {
newCapacity <<= 1;
}
auto raw = static_cast<char*>(corealgos_allocator::malloc(sizeof(InnerHash) + std::alignment_of<KeyValuePair>::value - 1 + sizeof(KeyValuePair) * newCapacity));
if (raw == nullptr) {
// Allocation failed
currentHashCount.fetch_add((uint32_t)-1, std::memory_order_relaxed);
resizeInProgress.clear(std::memory_order_relaxed);
return nullptr;
}
auto newHash = new (raw) InnerHash;
newHash->capacity = newCapacity;
newHash->entries = reinterpret_cast<KeyValuePair*>(details::align_for<KeyValuePair>(raw + sizeof(InnerHash)));
for (std::size_t i = 0; i != newCapacity; ++i) {
new (newHash->entries + i) KeyValuePair;
newHash->entries[i].key.store(details::invalid_thread_id, std::memory_order_relaxed);
}
newHash->prev = mainHash;
currentHash.store(newHash, std::memory_order_release);
resizeInProgress.clear(std::memory_order_release);
mainHash = newHash;
}
// If it's < three-quarters full, add to the old one anyway so that we don't have to wait for the next table
// to finish being allocated by another thread (and if we just finished allocating above, the condition will
// always be true)
if (newCount < (mainHash->capacity >> 1) + (mainHash->capacity >> 2)) {
auto element = (T*)corealgos_allocator::malloc(sizeof(T));
if (element == nullptr) {
return nullptr;
}
new (element) T();
items.add(element); // Track items so they can be destructed later
auto index = hashedId;
while (true) {
index &= mainHash->capacity - 1;
auto probedKey = mainHash->entries[index].key.load(std::memory_order_relaxed);
auto expected = details::invalid_thread_id;
if (probedKey == expected && mainHash->entries[index].key.compare_exchange_strong(expected, id, std::memory_order_relaxed)) {
mainHash->entries[index].value = element;
break;
}
++index;
}
return element;
}
// Hmm, the old hash is quite full and somebody else is busy allocating a new one.
// We need to wait for the allocating thread to finish (if it succeeds, we add, if not,
// we try to allocate ourselves).
mainHash = currentHash.load(std::memory_order_acquire);
}
}
private:
struct KeyValuePair
{
std::atomic<details::thread_id_t> key;
T* value; // No need for atomicity since it's only read by the thread that sets it in the first place
KeyValuePair()
{ }
KeyValuePair(KeyValuePair const& other)
: key(other.key.load()), value(other.value)
{ }
KeyValuePair& operator=(KeyValuePair const& other)
{
key.store(other.key.load());
value = other.value;
return *this;
}
};
struct InnerHash
{
std::size_t capacity;
KeyValuePair* entries;
InnerHash* prev;
};
std::atomic_flag resizeInProgress;
std::atomic<InnerHash*> currentHash;
std::atomic<std::size_t> currentHashCount; // Number of slots logically used
InnerHash initialHash;
std::vector<KeyValuePair> initialHashEntries;
ConcurrentAddOnlyList<T> items;
};
////////////////////////////////////////////////////////////////////////////////
// Lock-free free list
////////////////////////////////////////////////////////////////////////////////
template <typename N>
struct FreeListNode
{
FreeListNode() : freeListRefs(0), freeListNext(nullptr) { }
std::atomic<std::uint32_t> freeListRefs;
std::atomic<N*> freeListNext;
FreeListNode(FreeListNode const& other)
: freeListRefs(other.freeListRefs.load()), freeListNext(other.freeListNext.load())
{ }
FreeListNode& operator=(FreeListNode const& other)
{
freeListRefs.store(other.freeListRefs.load());
freeListNext.store(other.freeListNext.load());
return *this;
}
};
// A simple CAS-based lock-free free list. Not the fastest thing in the world under heavy contention,
// but simple and correct (assuming nodes are never freed until after the free list is destroyed),
// and fairly speedy under low contention.
template<typename N> // N must inherit FreeListNode or have the same fields (and initialization)
struct FreeList
{
FreeList() : freeListHead(nullptr) { }
inline void add(N* node)
{
// We know that the should-be-on-freelist bit is 0 at this point, so it's safe to
// set it using a fetch_add
if (node->freeListRefs.fetch_add(SHOULD_BE_ON_FREELIST, std::memory_order_acq_rel) == 0) {
// Oh look! We were the last ones referencing this node, and we know
// we want to add it to the free list, so let's do it!
add_knowing_refcount_is_zero(node);
}
}
inline N* try_get()
{
auto head = freeListHead.load(std::memory_order_acquire);
while (head != nullptr) {
auto prevHead = head;
auto refs = head->freeListRefs.load(std::memory_order_relaxed);
if ((refs & REFS_MASK) == 0 || !head->freeListRefs.compare_exchange_strong(refs, refs + 1,
std::memory_order_acquire, std::memory_order_relaxed)) {
head = freeListHead.load(std::memory_order_acquire);
continue;
}
// Good, reference count has been incremented (it wasn't at zero), which means
// we can read the next and not worry about it changing between now and the time
// we do the CAS
auto next = head->freeListNext.load(std::memory_order_relaxed);
if (freeListHead.compare_exchange_strong(head, next,
std::memory_order_acquire, std::memory_order_relaxed)) {
// Yay, got the node. This means it was on the list, which means
// shouldBeOnFreeList must be false no matter the refcount (because
// nobody else knows it's been taken off yet, it can't have been put back on).
assert((head->freeListRefs.load(std::memory_order_relaxed) & SHOULD_BE_ON_FREELIST) == 0);
// Decrease refcount twice, once for our ref, and once for the list's ref
head->freeListRefs.fetch_add(-2u, std::memory_order_release);
return head;
}
// OK, the head must have changed on us, but we still need to decrease the refcount we
// increased.
// Note that we don't need to release any memory effects, but we do need to ensure that the reference
// count decrement happens-after the CAS on the head.
refs = prevHead->freeListRefs.fetch_add(-1u, std::memory_order_acq_rel);
if (refs == SHOULD_BE_ON_FREELIST + 1) {
add_knowing_refcount_is_zero(prevHead);
}
}
return nullptr;
}
// Useful for traversing the list when there's no contention (e.g. to destroy remaining nodes)
N* head_unsafe() const { return freeListHead.load(std::memory_order_relaxed); }
private:
inline void add_knowing_refcount_is_zero(N* node)
{
// Since the refcount is zero, and nobody can increase it once it's zero (except us, and we
// run only one copy of this method per node at a time, i.e. the single thread case), then we
// know we can safely change the next pointer of the node; however, once the refcount is back
// above zero, then other threads could increase it (happens under heavy contention, when the
// refcount goes to zero in between a load and a refcount increment of a node in try_get, then
// back up to something non-zero, then the refcount increment is done by the other thread) --
// so, if the CAS to add the node to the actual list fails, decrease the refcount and leave
// the add operation to the next thread who puts the refcount back at zero (which could be us,
// hence the loop).
auto head = freeListHead.load(std::memory_order_relaxed);
while (true) {
node->freeListNext.store(head, std::memory_order_relaxed);
node->freeListRefs.store(1, std::memory_order_release);
if (!freeListHead.compare_exchange_strong(head, node,
std::memory_order_release, std::memory_order_relaxed)) {
// Hmm, the add failed, but we can only try again when the refcount goes back to zero
if (node->freeListRefs.fetch_add(SHOULD_BE_ON_FREELIST - 1, std::memory_order_release) == 1) {
continue;
}
}
return;
}
}
private:
static const std::uint32_t REFS_MASK = 0x7FFFFFFF;
static const std::uint32_t SHOULD_BE_ON_FREELIST = 0x80000000;
// Implemented like a stack, but where node order doesn't matter (nodes are
// inserted out of order under contention)
std::atomic<N*> freeListHead;
};
////////////////////////////////////////////////////////////////////////////////
// Lock-free (single-producer, multi-consumer) numeric-key hash map of sorts;
// there are many conditions that must be met, i.e. items have to be inserted
// in increasing order by key (wrap-around is OK), and items cannot be searched
// for or removed unless they are known to be in the map in the first place.
////////////////////////////////////////////////////////////////////////////////
template<typename TValue>
struct SPMCSequentialHashMap
{
explicit SPMCSequentialHashMap(std::size_t initialSize)
: nextCapacity(initialSize), index(nullptr)
{
new_index();
}
~SPMCSequentialHashMap()
{
auto ptr = index.load(std::memory_order_relaxed);
if (ptr != nullptr) {
for (std::size_t i = 0; i != ptr->capacity; ++i) {
ptr->index[i]->~IndexEntry();
}
do {
auto prev = ptr->prev;
ptr->~IndexHeader();
corealgos_allocator::free(ptr);
ptr = prev;
} while (ptr != nullptr);
}
}
// Not thread safe. Only call from single producer thread.
// Note: key must *not* be in hash already, and must be exactly
// one larger than the previously inserted key value.
void insert(std::uint64_t key, TValue* value)
{
IndexEntry* idxEntry;
insert_index_entry(idxEntry, key);
idxEntry->value.store(value, std::memory_order_release);
}
// Thread-safe, but if somebody can remove the key while find() is
// in progress, then any returned value is not guaranteed to correspond
// to that key. This also applies if the key was not already present but
// once was. Elements can be found in any order.
TValue* find(std::uint64_t key)
{
auto idxEntry = get_entry_for_key(key);
if (idxEntry == nullptr)
return nullptr;
return idxEntry->value.load(std::memory_order_acquire);
}
// Thread-safe, but if somebody else can remove the same key while remove()
// is in progress, then any removed value is not guaranteed to correspond
// to that key This also applies if the key was not already present but
// once was. Elements can be removed in an order.
TValue* remove(std::uint64_t key)
{
auto idxEntry = get_entry_for_key(key);
if (idxEntry == nullptr)
return nullptr;
TValue* val = nullptr;
while (!idxEntry->value.compare_exchange_weak(val, nullptr, std::memory_order_acquire, std::memory_order_relaxed))
continue;
return val;
}
private:
struct IndexEntry
{
std::atomic<std::uint64_t> key;
std::atomic<TValue*> value;
};
struct IndexHeader
{
std::size_t capacity;
std::atomic<std::size_t> tail;
IndexEntry* entries;
IndexEntry** index;
IndexHeader* prev;
};
inline void insert_index_entry(IndexEntry*& idxEntry, std::uint64_t key)
{
auto localIndex = index.load(std::memory_order_relaxed); // We're the only writer thread, relaxed is OK
auto newTail = (localIndex->tail.load(std::memory_order_relaxed) + 1) & (localIndex->capacity - 1);
idxEntry = localIndex->index[newTail];
if (idxEntry->key.load(std::memory_order_relaxed) == INVALID_KEY ||
idxEntry->value.load(std::memory_order_relaxed) == nullptr) {
idxEntry->key.store(key, std::memory_order_relaxed);
localIndex->tail.store(newTail, std::memory_order_release);
return;
}
// No room in the old index, try to allocate another one!
new_index();
localIndex = index.load(std::memory_order_relaxed);
newTail = (localIndex->tail.load(std::memory_order_relaxed) + 1) & (localIndex->capacity - 1);
idxEntry = localIndex->index[newTail];
assert(idxEntry->key.load(std::memory_order_relaxed) == INVALID_KEY);
idxEntry->key.store(key, std::memory_order_relaxed);
localIndex->tail.store(newTail, std::memory_order_release);
}
inline IndexEntry* get_entry_for_key(std::uint64_t key) const
{
auto localIndex = index.load(std::memory_order_acquire);
auto tail = localIndex->tail.load(std::memory_order_acquire);
auto tailBase = localIndex->index[tail]->key.load(std::memory_order_relaxed);
if (tailBase == INVALID_KEY) {
return nullptr;
}
auto offset = static_cast<std::size_t>(key - tailBase);
std::size_t idx = (tail + offset) & (localIndex->capacity - 1);
auto entry = localIndex->index[idx];
return entry->key.load(std::memory_order_relaxed) == key ? entry : nullptr;
}
bool new_index()
{
auto prev = index.load(std::memory_order_relaxed);
std::size_t prevCapacity = prev == nullptr ? 0 : prev->capacity;
auto entryCount = prev == nullptr ? nextCapacity : prevCapacity;
auto raw = static_cast<char*>(corealgos_allocator::malloc(
sizeof(IndexHeader) +
std::alignment_of<IndexEntry>::value - 1 + sizeof(IndexEntry) * entryCount +
std::alignment_of<IndexEntry*>::value - 1 + sizeof(IndexEntry*) * nextCapacity));
if (raw == nullptr) {
return false;
}
auto header = new (raw) IndexHeader;
auto entries = reinterpret_cast<IndexEntry*>(details::align_for<IndexEntry>(raw + sizeof(IndexHeader)));
auto idx = reinterpret_cast<IndexEntry**>(details::align_for<IndexEntry*>(reinterpret_cast<char*>(entries) + sizeof(IndexEntry) * entryCount));
if (prev != nullptr) {
auto prevTail = prev->tail.load(std::memory_order_relaxed);
auto prevPos = prevTail;
std::size_t i = 0;
do {
prevPos = (prevPos + 1) & (prev->capacity - 1);
idx[i++] = prev->index[prevPos];
} while (prevPos != prevTail);
assert(i == prevCapacity);
}
for (std::size_t i = 0; i != entryCount; ++i) {
new (entries + i) IndexEntry;
entries[i].key.store(INVALID_KEY, std::memory_order_relaxed);
entries[i].value.store(nullptr, std::memory_order_relaxed);
idx[prevCapacity + i] = entries + i;
}
header->prev = prev;
header->entries = entries;
header->index = idx;
header->capacity = nextCapacity;
header->tail.store((prevCapacity - 1) & (nextCapacity - 1), std::memory_order_relaxed);
index.store(header, std::memory_order_release);
nextCapacity <<= 1;
return true;
}
private:
std::size_t nextCapacity;
std::atomic<IndexHeader*> index;
static const std::uint64_t INVALID_KEY = ~(std::uint64_t)0;
};
} }
|