1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
|
// Copyright (C) 2004 Davis E. King (davis@dlib.net)
// License: Boost Software License See LICENSE.txt for the full license.
#ifndef DLIB_MEMORY_MANAGER_KERNEl_1_
#define DLIB_MEMORY_MANAGER_KERNEl_1_
#include "../algs.h"
#include "memory_manager_kernel_abstract.h"
#include "../assert.h"
#include <new>
namespace dlib
{
template <
typename T,
size_t max_pool_size
>
class memory_manager_kernel_1
{
/*!
INITIAL VALUE
allocations == 0
next == 0
pool_size == 0
REQUIREMENTS ON max_pool_size
max_pool_size is the maximum number of nodes we will keep in our linked list at once.
So you can put any value in for this argument.
CONVENTION
This memory manager implementation allocates T objects one at a time when there are
allocation requests. Then when there is a deallocate request the returning T object
is place into a list of free blocks if that list has less than max_pool_size
blocks in it. subsequent allocation requests will be serviced by drawing from the
free list whenever it isn't empty.
allocations == get_number_of_allocations()
- if (next != 0) then
- next == the next pointer to return from allocate()
and next == pointer to the first node in a linked list. each node
is one item in the memory pool.
- the last node in the linked list has next set to 0
- pool_size == the number of nodes in the linked list
- pool_size <= max_pool_size
- else
- we need to call new to get the next pointer to return from allocate()
!*/
union node
{
node* next;
char item[sizeof(T)];
};
public:
typedef T type;
template <typename U>
struct rebind {
typedef memory_manager_kernel_1<U,max_pool_size> other;
};
memory_manager_kernel_1(
) :
allocations(0),
next(0),
pool_size(0)
{
}
virtual ~memory_manager_kernel_1(
)
{
while (next != 0)
{
node* temp = next;
next = next->next;
::operator delete ( static_cast<void*>(temp));
}
}
size_t get_number_of_allocations (
) const { return allocations; }
T* allocate_array (
size_t size
)
{
T* temp = new T[size];
++allocations;
return temp;
}
void deallocate_array (
T* item
)
{
--allocations;
delete [] item;
}
T* allocate (
)
{
T* temp;
if (next != 0)
{
temp = reinterpret_cast<T*>(next);
node* n = next->next;
try
{
// construct this new T object with placement new.
new (static_cast<void*>(temp))T();
}
catch (...)
{
next->next = n;
throw;
}
next = n;
--pool_size;
}
else
{
temp = static_cast<T*>(::operator new(sizeof(node)));
try
{
// construct this new T object with placement new.
new (static_cast<void*>(temp))T();
}
catch (...)
{
// construction of the new object threw so delete the block of memory
::operator delete ( static_cast<void*>(temp));
throw;
}
}
++allocations;
return temp;
}
void deallocate (
T* item
)
{
--allocations;
item->~T();
if (pool_size >= max_pool_size)
{
::operator delete ( static_cast<void*>(item));
return;
}
// add this memory chunk into our linked list.
node* temp = reinterpret_cast<node*>(item);
temp->next = next;
next = temp;
++pool_size;
}
void swap (
memory_manager_kernel_1& item
)
{
exchange(allocations,item.allocations);
exchange(next,item.next);
exchange(pool_size,item.pool_size);
}
private:
// data members
size_t allocations;
node* next;
size_t pool_size;
// restricted functions
memory_manager_kernel_1(memory_manager_kernel_1&); // copy constructor
memory_manager_kernel_1& operator=(memory_manager_kernel_1&); // assignment operator
};
// ----------------------------------------------------------------------------------------
template <
typename T
>
class memory_manager_kernel_1<T,0>
{
/*!
INITIAL VALUE
allocations == 0
CONVENTION
This memory manager just calls new and delete directly so it doesn't
really do anything.
allocations == get_number_of_allocations()
!*/
public:
typedef T type;
template <typename U>
struct rebind {
typedef memory_manager_kernel_1<U,0> other;
};
memory_manager_kernel_1(
) :
allocations(0)
{
}
virtual ~memory_manager_kernel_1(
)
{
}
size_t get_number_of_allocations (
) const { return allocations; }
T* allocate_array (
size_t size
)
{
T* temp = new T[size];
++allocations;
return temp;
}
void deallocate_array (
T* item
)
{
--allocations;
delete [] item;
}
T* allocate (
)
{
T* temp = new T;
++allocations;
return temp;
}
void deallocate (
T* item
)
{
delete item;
--allocations;
}
void swap (
memory_manager_kernel_1& item
)
{
exchange(allocations,item.allocations);
}
private:
// data members
size_t allocations;
// restricted functions
memory_manager_kernel_1(memory_manager_kernel_1&); // copy constructor
memory_manager_kernel_1& operator=(memory_manager_kernel_1&); // assignment operator
};
// ----------------------------------------------------------------------------------------
template <
typename T,
size_t max_pool_size
>
inline void swap (
memory_manager_kernel_1<T,max_pool_size>& a,
memory_manager_kernel_1<T,max_pool_size>& b
) { a.swap(b); }
// ----------------------------------------------------------------------------------------
}
#endif // DLIB_MEMORY_MANAGER_KERNEl_1_
|