File: thread_pool_extension_abstract.h

package info (click to toggle)
concurrentqueue 1.0.3%2Bds-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 2,648 kB
  • sloc: cpp: 37,303; makefile: 88; ansic: 67; python: 46; sh: 18
file content (842 lines) | stat: -rw-r--r-- 34,586 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
// Copyright (C) 2008  Davis E. King (davis@dlib.net)
// License: Boost Software License   See LICENSE.txt for the full license.
#undef DLIB_THREAD_POOl_ABSTRACT_Hh_
#ifdef DLIB_THREAD_POOl_ABSTRACT_Hh_ 

#include "threads_kernel_abstract.h"
#include "../uintn.h"

namespace dlib
{

// ----------------------------------------------------------------------------------------

    template <
        typename T
        >
    class future
    {
        /*!
            INITIAL VALUE 
                - is_ready() == true

            WHAT THIS OBJECT REPRESENTS
                This object represents a container that allows you to safely pass objects 
                into the tasks performed by the thread_pool object defined below.  An
                example will make it clear:

                    // Suppose you have a global function defined as follows
                    void add (int a, int b, int& result) { result = a + b; }

                    // Also suppose you have a thread_pool named tp defined somewhere.
                    // Then you could do the following.
                    future<int> a, b, result;
                    a = 3;
                    b = 4;
                    // this function call causes another thread to execute a call to the add() function
                    // and passes in the int objects contained in a, b, and result
                    tp.add_task(add,a,b,result);
                    // This line will wait for the task in the thread pool to finish and then print the
                    // value in the result integer.  So it will print a 7.
                    cout << result << endl;
        !*/

    public:
        future (
        );
        /*!
            ensures
                - The object of type T contained in this future has
                  an initial value for its type. 
                - #is_ready() == true
        !*/

        future (
            const T& item
        );
        /*!
            ensures
                - #get() == item
                - #is_ready() == true
        !*/

        future (
            const future& item
        ); 
        /*!
            ensures
                - if (item.is_ready() == false) then
                    - the call to this function blocks until the thread processing the task related
                      to the item future has finished.
                - #is_ready() == true
                - #item.is_ready() == true
                - #get() == item.get()
        !*/

        ~future (
        );
        /*!
            ensures
                - if (is_ready() == false) then
                    - the call to this function blocks until the thread processing the task related
                      to this future has finished.
        !*/

        bool is_ready (
        ) const;
        /*!
            ensures
                - if (the value of this future may not yet be ready to be accessed because it 
                  is in use by a task in a thread_pool) then
                    - returns false 
                - else
                    - returns true 
        !*/

        future& operator=(
            const T& item
        );
        /*!
            ensures
                - if (is_ready() == false) then
                    - the call to this function blocks until the thread processing the task related
                      to this future has finished.
                - #is_ready() == true
                - #get() == item
                - returns *this
        !*/

        future& operator=(
            const future& item
        );
        /*!
            ensures
                - if (is_ready() == false || item.is_ready() == false) then
                    - the call to this function blocks until the threads processing the tasks related
                      to this future and the item future have finished.
                - #is_ready() == true
                - #item.is_ready() == true
                - #get() == item.get()
                - returns *this
        !*/

        operator T& (
        );
        /*!
            ensures
                - if (is_ready() == false) then
                    - the call to this function blocks until the thread processing the task related
                      to this future has finished.
                - #is_ready() == true
                - returns get()
        !*/

        operator const T& (
        ) const;
        /*!
            ensures
                - if (is_ready() == false) then
                    - the call to this function blocks until the thread processing the task related
                      to this future has finished.
                - #is_ready() == true
                - returns get()
        !*/

        T& get (
        );
        /*!
            ensures
                - if (is_ready() == false) then
                    - the call to this function blocks until the thread processing the task related
                      to this future has finished.
                - #is_ready() == true
                - returns a non-const reference to the object of type T contained inside this future
        !*/

        const T& get (
        ) const;
        /*!
            ensures
                - if (is_ready() == false) then
                    - the call to this function blocks until the thread processing the task related
                      to this future has finished.
                - #is_ready() == true
                - returns a const reference to the object of type T contained inside this future
        !*/

    };

// ----------------------------------------------------------------------------------------

    template <typename T>
    inline void swap (
        future<T>& a,
        future<T>& b
    ) { std::swap(a.get(), b.get()); }
    /*!
        provides a global swap function
    !*/

// ----------------------------------------------------------------------------------------


//  The future object comes with overloads for all the usual comparison operators.

    template <typename T> bool operator== (const future<T>& a, const future<T>& b) { return a.get() == b.get(); }
    template <typename T> bool operator!= (const future<T>& a, const future<T>& b) { return a.get() != b.get(); }
    template <typename T> bool operator<= (const future<T>& a, const future<T>& b) { return a.get() <= b.get(); }
    template <typename T> bool operator>= (const future<T>& a, const future<T>& b) { return a.get() >= b.get(); }
    template <typename T> bool operator<  (const future<T>& a, const future<T>& b) { return a.get() <  b.get(); }
    template <typename T> bool operator>  (const future<T>& a, const future<T>& b) { return a.get() >  b.get(); }

    template <typename T> bool operator== (const future<T>& a, const T& b)         { return a.get() == b; }
    template <typename T> bool operator== (const T& a,         const future<T>& b) { return a       == b.get(); }
    template <typename T> bool operator!= (const future<T>& a, const T& b)         { return a.get() != b; }
    template <typename T> bool operator!= (const T& a,         const future<T>& b) { return a       != b.get(); }
    template <typename T> bool operator<= (const future<T>& a, const T& b)         { return a.get() <= b; }
    template <typename T> bool operator<= (const T& a,         const future<T>& b) { return a       <= b.get(); }
    template <typename T> bool operator>= (const future<T>& a, const T& b)         { return a.get() >= b; }
    template <typename T> bool operator>= (const T& a,         const future<T>& b) { return a       >= b.get(); }
    template <typename T> bool operator<  (const future<T>& a, const T& b)         { return a.get() <  b; }
    template <typename T> bool operator<  (const T& a,         const future<T>& b) { return a       <  b.get(); }
    template <typename T> bool operator>  (const future<T>& a, const T& b)         { return a.get() >  b; }
    template <typename T> bool operator>  (const T& a,         const future<T>& b) { return a       >  b.get(); }

// ----------------------------------------------------------------------------------------

    class thread_pool 
    {
        /*!
            WHAT THIS OBJECT REPRESENTS
                This object represents a fixed size group of threads which you can
                submit tasks to and then wait for those tasks to be completed. 

                Note that setting the number of threads to 0 is a valid way to
                use this object.  It causes it to not contain any threads
                at all.  When tasks are submitted to the object in this mode
                the tasks are processed within the calling thread.  So in this
                mode any thread that calls add_task() is considered to be
                a thread_pool thread capable of executing tasks.

                This object is also implemented such that no memory allocations occur 
                after the thread_pool has been constructed so long as the user doesn't 
                call any of the add_task_by_value() routines.  The future object also 
                doesn't perform any memory allocations or contain any system resources 
                such as mutex objects. 

            EXCEPTIONS
                Note that if an exception is thrown inside a task thread and is not caught
                then the exception will be trapped inside the thread pool and rethrown at a
                later time when someone calls one of the add task or wait member functions
                of the thread pool.  This allows exceptions to propagate out of task threads
                and into the calling code where they can be handled.
        !*/

    public:
        explicit thread_pool (
            unsigned long num_threads
        );
        /*!
            ensures
                - #num_threads_in_pool() == num_threads
            throws
                - std::bad_alloc
                - dlib::thread_error
                    the constructor may throw this exception if there is a problem 
                    gathering resources to create threading objects.
        !*/

        ~thread_pool(
        );
        /*!
            ensures
                - blocks until all tasks in the pool have finished.
                - If one of the threads has generated an exception but it hasn't yet been
                  rethrown to the caller (e.g. by calling wait_for_all_tasks()) then the
                  program will be terminated.  So make sure you handle all the possible
                  exceptions from your tasks.
        !*/

        bool is_task_thread (
        ) const;
        /*!
            ensures
                - if (the thread calling this function is one of the threads in this
                  thread pool or num_threads_in_pool() == 0) then
                    - returns true
                - else
                    - returns false
        !*/

        unsigned long num_threads_in_pool (
        ) const;
        /*!
            ensures
                - returns the number of threads contained in this thread pool.  That is, returns
                  the maximum number of tasks that this object will process concurrently.
        !*/

        template <typename F>
        uint64 add_task_by_value (
            const F& function_object
        );
        /*!
            requires
                - function_object() is a valid expression 
            ensures
                - makes a copy of function_object, call it FCOPY.
                - if (is_task_thread() == true and there aren't any free threads available) then
                    - calls FCOPY() within the calling thread and returns when it finishes
                - else
                    - the call to this function blocks until there is a free thread in the pool
                      to process this new task.  Once a free thread is available the task
                      is handed off to that thread which then calls FCOPY().
                - returns a task id that can be used by this->wait_for_task() to wait
                  for the submitted task to finish.
        !*/

        template <typename T>
        uint64 add_task (
            T& obj,
            void (T::*funct)()
        );
        /*!
            requires
                - funct == a valid member function pointer for class T
                - obj will not go out of scope until after the task has completed (i.e. 
                  this function passes obj to the task by reference.  If you want to avoid
                  this restriction then use add_task_by_value())
            ensures
                - if (is_task_thread() == true and there aren't any free threads available) then
                    - calls (obj.*funct)() within the calling thread and returns
                      when it finishes.
                - else
                    - the call to this function blocks until there is a free thread in the pool
                      to process this new task.  Once a free thread is available the task
                      is handed off to that thread which then calls (obj.*funct)()
                - returns a task id that can be used by this->wait_for_task() to wait
                  for the submitted task to finish.
        !*/

        template <typename T>
        uint64 add_task_by_value (
            const T& obj,
            void (T::*funct)() 
        ); 
        /*!
            requires
                - funct == a valid member function pointer for class T
            ensures
                - makes a copy of obj, call it OBJ_COPY.
                - if (is_task_thread() == true and there aren't any free threads available) then
                    - calls (OBJ_COPY.*funct)() within the calling thread and returns 
                      when it finishes.
                - else
                    - the call to this function blocks until there is a free thread in the pool
                      to process this new task.  Once a free thread is available the task
                      is handed off to that thread which then calls (OBJ_COPY.*funct)().
                - returns a task id that can be used by this->wait_for_task() to wait
                  for the submitted task to finish.
        !*/

        template <typename T>
        uint64 add_task (
            T& obj,
            void (T::*funct)(long),
            long arg1
        );
        /*!
            requires
                - funct == a valid member function pointer for class T
                - obj will not go out of scope until after the task has completed (i.e. 
                  this function passes obj to the task by reference.  If you want to avoid
                  this restriction then use add_task_by_value())
            ensures
                - if (is_task_thread() == true and there aren't any free threads available) then
                    - calls (obj.*funct)(arg1) within the calling thread and returns
                      when it finishes
                - else
                    - the call to this function blocks until there is a free thread in the pool
                      to process this new task.  Once a free thread is available the task
                      is handed off to that thread which then calls (obj.*funct)(arg1)
                - returns a task id that can be used by this->wait_for_task() to wait
                  for the submitted task to finish.
        !*/

        template <typename T>
        uint64 add_task (
            T& obj,
            void (T::*funct)(long,long),
            long arg1,
            long arg2
        );
        /*!
            requires
                - funct == a valid member function pointer for class T
                - obj will not go out of scope until after the task has completed (i.e. 
                  this function passes obj to the task by reference.  If you want to avoid
                  this restriction then use add_task_by_value())
            ensures
                - if (is_task_thread() == true and there aren't any free threads available) then
                    - calls (obj.*funct)(arg1,arg2) within the calling thread and returns
                      when it finishes
                - else
                    - the call to this function blocks until there is a free thread in the pool
                      to process this new task.  Once a free thread is available the task
                      is handed off to that thread which then calls (obj.*funct)(arg1,arg2)
                - returns a task id that can be used by this->wait_for_task() to wait
                  for the submitted task to finish.
        !*/

        void wait_for_task (
            uint64 task_id
        ) const;
        /*!
            ensures
                - if (there is currently a task with the given id being executed in the thread pool) then
                    - the call to this function blocks until the task with the given id is complete
                - else
                    - the call to this function returns immediately
        !*/

        void wait_for_all_tasks (
        ) const;
        /*!
            ensures
                - the call to this function blocks until all tasks which were submitted
                  to the thread pool by the thread that is calling this function have 
                  finished.
        !*/

        // --------------------

        template <typename F, typename A1>
        uint64 add_task (
            F& function_object,
            future<A1>& arg1
        );
        /*!
            requires
                - function_object(arg1.get()) is a valid expression 
                  (i.e. The A1 type stored in the future must be a type that can be passed into the given function object)
                - function_object will not go out of scope until after the task has completed (i.e. 
                  this function passes function_object to the task by reference.  If you want to avoid
                  this restriction then use add_task_by_value())
            ensures
                - if (is_task_thread() == true and there aren't any free threads available) then
                    - calls function_object(arg1.get()) within the calling thread and returns
                      when it finishes
                - else
                    - the call to this function blocks until there is a free thread in the pool
                      to process this new task.  Once a free thread is available the task
                      is handed off to that thread which then calls function_object(arg1.get()).
                - #arg1.is_ready() == false 
                - returns a task id that can be used by this->wait_for_task() to wait
                  for the submitted task to finish.
        !*/

        template <typename F, typename A1>
        uint64 add_task_by_value (
            const F& function_object,
            future<A1>& arg1
        );
        /*!
            requires
                - function_object(arg1.get()) is a valid expression 
                  (i.e. The A1 type stored in the future must be a type that can be passed into the given function object)
            ensures
                - makes a copy of function_object, call it FCOPY.
                - if (is_task_thread() == true and there aren't any free threads available) then
                    - calls FCOPY(arg1.get()) within the calling thread and returns when it finishes
                - else
                    - the call to this function blocks until there is a free thread in the pool
                      to process this new task.  Once a free thread is available the task
                      is handed off to that thread which then calls FCOPY(arg1.get()).
                - #arg1.is_ready() == false 
                - returns a task id that can be used by this->wait_for_task() to wait
                  for the submitted task to finish.
        !*/

        template <typename T, typename T1, typename A1>
        uint64 add_task (
            T& obj,
            void (T::*funct)(T1),
            future<A1>& arg1
        ); 
        /*!
            requires
                - funct == a valid member function pointer for class T
                - (obj.*funct)(arg1.get()) must be a valid expression.
                  (i.e. The A1 type stored in the future must be a type that can be passed into the given function)
                - obj will not go out of scope until after the task has completed (i.e. 
                  this function passes obj to the task by reference.  If you want to avoid
                  this restriction then use add_task_by_value())
            ensures
                - if (is_task_thread() == true and there aren't any free threads available) then
                    - calls (obj.*funct)(arg1.get()) within the calling thread and returns
                      when it finishes
                - else
                    - the call to this function blocks until there is a free thread in the pool
                      to process this new task.  Once a free thread is available the task
                      is handed off to that thread which then calls (obj.*funct)(arg1.get()).
                - #arg1.is_ready() == false 
                - returns a task id that can be used by this->wait_for_task() to wait
                  for the submitted task to finish.
        !*/
        
        template <typename T, typename T1, typename A1>
        uint64 add_task_by_value (
            const T& obj,
            void (T::*funct)(T1),
            future<A1>& arg1
        ); 
        /*!
            requires
                - funct == a valid member function pointer for class T
                - (obj.*funct)(arg1.get()) must be a valid expression.
                  (i.e. The A1 type stored in the future must be a type that can be passed into the given function)
            ensures
                - makes a copy of obj, call it OBJ_COPY.
                - if (is_task_thread() == true and there aren't any free threads available) then
                    - calls (OBJ_COPY.*funct)(arg1.get()) within the calling thread and returns 
                      when it finishes.
                - else
                    - the call to this function blocks until there is a free thread in the pool
                      to process this new task.  Once a free thread is available the task
                      is handed off to that thread which then calls (OBJ_COPY.*funct)(arg1.get()).
                - returns a task id that can be used by this->wait_for_task() to wait
                  for the submitted task to finish.
        !*/

        template <typename T, typename T1, typename A1>
        uint64 add_task (
            const T& obj,
            void (T::*funct)(T1) const,
            future<A1>& arg1
        ); 
        /*!
            requires
                - funct == a valid member function pointer for class T
                - (obj.*funct)(arg1.get()) must be a valid expression.
                  (i.e. The A1 type stored in the future must be a type that can be passed into the given function)
                - obj will not go out of scope until after the task has completed (i.e. 
                  this function passes obj to the task by reference.  If you want to avoid
                  this restriction then use add_task_by_value())
            ensures
                - if (is_task_thread() == true and there aren't any free threads available) then
                    - calls (obj.*funct)(arg1.get()) within the calling thread and returns
                      when it finishes
                - else
                    - the call to this function blocks until there is a free thread in the pool
                      to process this new task.  Once a free thread is available the task
                      is handed off to that thread which then calls (obj.*funct)(arg1.get()).
                - #arg1.is_ready() == false 
                - returns a task id that can be used by this->wait_for_task() to wait
                  for the submitted task to finish.
        !*/
        
        template <typename T, typename T1, typename A1>
        uint64 add_task_by_value (
            const T& obj,
            void (T::*funct)(T1) const,
            future<A1>& arg1
        ); 
        /*!
            requires
                - funct == a valid member function pointer for class T
                - (obj.*funct)(arg1.get()) must be a valid expression.
                  (i.e. The A1 type stored in the future must be a type that can be passed into the given function)
            ensures
                - makes a copy of obj, call it OBJ_COPY.
                - if (is_task_thread() == true and there aren't any free threads available) then
                    - calls (OBJ_COPY.*funct)(arg1.get()) within the calling thread and returns 
                      when it finishes.
                - else
                    - the call to this function blocks until there is a free thread in the pool
                      to process this new task.  Once a free thread is available the task
                      is handed off to that thread which then calls (OBJ_COPY.*funct)(arg1.get()).
                - returns a task id that can be used by this->wait_for_task() to wait
                  for the submitted task to finish.
        !*/

        template <typename T1, typename A1>
        uint64 add_task (
            void (*funct)(T1),
            future<A1>& arg1
        ); 
        /*!
            requires
                - funct == a valid function pointer 
                - (funct)(arg1.get()) must be a valid expression.
                  (i.e. The A1 type stored in the future must be a type that can be passed into the given function)
            ensures
                - if (is_task_thread() == true and there aren't any free threads available) then
                    - calls funct(arg1.get()) within the calling thread and returns
                      when it finishes
                - else
                    - the call to this function blocks until there is a free thread in the pool
                      to process this new task.  Once a free thread is available the task
                      is handed off to that thread which then calls funct(arg1.get()).
                - #arg1.is_ready() == false 
                - returns a task id that can be used by this->wait_for_task() to wait
                  for the submitted task to finish.
        !*/

        // --------------------------------------------------------------------------------
        // The remainder of this class just contains overloads for add_task() and add_task_by_value() 
        // that take up to 4 futures (as well as 0 futures).  Their behavior is identical to the above 
        // add_task() and add_task_by_value() functions.
        // --------------------------------------------------------------------------------

        template <typename F, typename A1, typename A2>
        uint64 add_task (
            F& function_object,
            future<A1>& arg1,
            future<A2>& arg2
        );

        template <typename F, typename A1, typename A2>
        uint64 add_task_by_value (
            const F& function_object,
            future<A1>& arg1,
            future<A2>& arg2
        );

        template <typename T, typename T1, typename A1,
                              typename T2, typename A2>
        uint64 add_task (
            T& obj,
            void (T::*funct)(T1,T2),
            future<A1>& arg1,
            future<A2>& arg2
        ); 
        
        uint64 add_task_by_value (
            const T& obj,
            void (T::*funct)(T1,T2),
            future<A1>& arg1,
            future<A2>& arg2
        ); 

        template <typename T, typename T1, typename A1,
                              typename T2, typename A2>
        uint64 add_task (
            const T& obj,
            void (T::*funct)(T1,T2) const,
            future<A1>& arg1,
            future<A2>& arg2
        ); 
        
        template <typename T, typename T1, typename A1,
                              typename T2, typename A2>
        uint64 add_task_by_value (
            const T& obj,
            void (T::*funct)(T1,T2) const,
            future<A1>& arg1,
            future<A2>& arg2
        ); 

        template <typename T1, typename A1,
                  typename T2, typename A2>
        uint64 add_task (
            void (*funct)(T1,T2),
            future<A1>& arg1,
            future<A2>& arg2
        ); 

        // --------------------

        template <typename F, typename A1, typename A2, typename A3>
        uint64 add_task (
            F& function_object,
            future<A1>& arg1,
            future<A2>& arg2,
            future<A3>& arg3
        );

        template <typename F, typename A1, typename A2, typename A3>
        uint64 add_task_by_value (
            const F& function_object,
            future<A1>& arg1,
            future<A2>& arg2,
            future<A3>& arg3
        );

        template <typename T, typename T1, typename A1,
                              typename T2, typename A2,
                              typename T3, typename A3>
        uint64 add_task (
            T& obj,
            void (T::*funct)(T1,T2,T3),
            future<A1>& arg1,
            future<A2>& arg2,
            future<A3>& arg3
        ); 

        template <typename T, typename T1, typename A1,
                              typename T2, typename A2,
                              typename T3, typename A3>
        uint64 add_task_by_value (
            const T& obj,
            void (T::*funct)(T1,T2,T3),
            future<A1>& arg1,
            future<A2>& arg2,
            future<A3>& arg3
        ); 
        
        template <typename T, typename T1, typename A1,
                              typename T2, typename A2,
                              typename T3, typename A3>
        uint64 add_task (
            const T& obj,
            void (T::*funct)(T1,T2,T3) const,
            future<A1>& arg1,
            future<A2>& arg2,
            future<A3>& arg3
        ); 

        template <typename T, typename T1, typename A1,
                              typename T2, typename A2,
                              typename T3, typename A3>
        uint64 add_task_by_value (
            const T& obj,
            void (T::*funct)(T1,T2,T3) const,
            future<A1>& arg1,
            future<A2>& arg2,
            future<A3>& arg3
        ); 
        
        template <typename T1, typename A1,
                  typename T2, typename A2,
                  typename T3, typename A3>
        uint64 add_task (
            void (*funct)(T1,T2,T3),
            future<A1>& arg1,
            future<A2>& arg2,
            future<A3>& arg3
        ); 

        // --------------------

        template <typename F, typename A1, typename A2, typename A3, typename A4>
        uint64 add_task (
            F& function_object,
            future<A1>& arg1,
            future<A2>& arg2,
            future<A3>& arg3,
            future<A4>& arg4
        );

        template <typename F, typename A1, typename A2, typename A3, typename A4>
        uint64 add_task_by_value (
            const F& function_object,
            future<A1>& arg1,
            future<A2>& arg2,
            future<A3>& arg3,
            future<A4>& arg4
        );

        template <typename T, typename T1, typename A1,
                              typename T2, typename A2,
                              typename T3, typename A3,
                              typename T4, typename A4>
        uint64 add_task (
            T& obj,
            void (T::*funct)(T1,T2,T3,T4),
            future<A1>& arg1,
            future<A2>& arg2,
            future<A3>& arg3,
            future<A4>& arg4
        ); 

        template <typename T, typename T1, typename A1,
                              typename T2, typename A2,
                              typename T3, typename A3,
                              typename T4, typename A4>
        uint64 add_task_by_value (
            const T& obj,
            void (T::*funct)(T1,T2,T3,T4),
            future<A1>& arg1,
            future<A2>& arg2,
            future<A3>& arg3,
            future<A4>& arg4
        ); 
        
        template <typename T, typename T1, typename A1,
                              typename T2, typename A2,
                              typename T3, typename A3,
                              typename T4, typename A4>
        uint64 add_task (
            const T& obj,
            void (T::*funct)(T1,T2,T3,T4) const,
            future<A1>& arg1,
            future<A2>& arg2,
            future<A3>& arg3,
            future<A4>& arg4
        ); 

        template <typename T, typename T1, typename A1,
                              typename T2, typename A2,
                              typename T3, typename A3,
                              typename T4, typename A4>
        uint64 add_task_by_value (
            const T& obj,
            void (T::*funct)(T1,T2,T3,T4) const,
            future<A1>& arg1,
            future<A2>& arg2,
            future<A3>& arg3,
            future<A4>& arg4
        ); 
        
        template <typename T1, typename A1,
                  typename T2, typename A2,
                  typename T3, typename A3,
                  typename T4, typename A4>
        uint64 add_task (
            void (*funct)(T1,T2,T3,T4),
            future<A1>& arg1,
            future<A2>& arg2,
            future<A3>& arg3,
            future<A4>& arg4
        );

        // --------------------

        template <typename F>
        uint64 add_task (
            F& function_object
        );

        template <typename T>
        uint64 add_task (
            const T& obj,
            void (T::*funct)() const,
        ); 
        
        template <typename T>
        uint64 add_task_by_value (
            const T& obj,
            void (T::*funct)() const
        ); 

        uint64 add_task (
            void (*funct)()
        ); 

        // --------------------

    private:

        // restricted functions
        thread_pool(thread_pool&);        // copy constructor
        thread_pool& operator=(thread_pool&);    // assignment operator
    };

}

// ----------------------------------------------------------------------------------------

#endif // DLIB_THREAD_POOl_ABSTRACT_Hh_