1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
|
// ©2013-2014 Cameron Desrochers.
// Distributed under the simplified BSD license (see the LICENSE file that
// should have come with this file).
#pragma once
#include "wrappers.h"
#include <atomic>
#include <cstdint>
#if defined(_MSC_VER) && _MSC_VER < 1900
#define alignas(T)
#endif
// Fairly simple, yet correct, implementation of a simple lock-free queue based on linked pointers with CAS
template<typename T>
class SimpleLockFreeQueue
{
public:
typedef DummyToken producer_token_t;
typedef DummyToken consumer_token_t;
// Total maximum capacity: 2**39 (half a terabyte's worth -- off-by-one aligned indices)
static const int UBER_BLOCKS = 256;
static const int UBER_BLOCK_SIZE = 256;
static const int ULTRA_BLOCK_SIZE = 256;
static const int SUPER_BLOCK_SIZE = 256;
static const int BLOCK_SIZE = 128;
private:
static const uint64_t VERSION_MASK = 0xFFFFFF0000000000ULL;
static const uint64_t VERSION_INCR = 0x0000010000000000ULL;
static const uint64_t UBER_BLOCK_IDX_MASK = 0xFF00000000ULL;
static const uint64_t UBER_BLOCK_MASK = 0x00FF000000ULL;
static const uint64_t ULTRA_BLOCK_MASK = 0x0000FF0000ULL;
static const uint64_t SUPER_BLOCK_MASK = 0x000000FF00ULL;
static const uint64_t BLOCK_MASK = 0x00000000FEULL;
static const uint64_t UBER_BLOCK_IDX_SHIFT = 32;
static const uint64_t UBER_BLOCK_SHIFT = 24;
static const uint64_t ULTRA_BLOCK_SHIFT = 16;
static const uint64_t SUPER_BLOCK_SHIFT = 8;
static const uint64_t BLOCK_SHIFT = 1;
typedef std::uint64_t idx_t;
public:
SimpleLockFreeQueue()
: nextNodeIdx(2), freeListHead(0)
{
// Invariants: Head and tail are never null
auto initialNode = allocate_blank_node();
head.store(set_consumed_flag(initialNode), std::memory_order_relaxed);
tail.store(initialNode, std::memory_order_relaxed);
std::atomic_thread_fence(std::memory_order_seq_cst);
}
~SimpleLockFreeQueue()
{
std::atomic_thread_fence(std::memory_order_seq_cst);
idx_t idx = head.load(std::memory_order_relaxed);
if (is_consumed(idx)) {
idx = clear_consumed_flag(idx);
auto node = get_node_at(idx);
auto next = node->next.load(std::memory_order_relaxed);
node->~Node();
idx = next;
}
while (idx != 0) {
auto node = get_node_at(idx);
auto next = node->next.load(std::memory_order_relaxed);
node->item()->~T();
node->~Node();
idx = next;
}
idx = freeListHead.load(std::memory_order_relaxed);
while (idx != 0) {
auto node = get_node_at(idx);
auto next = node->next.load(std::memory_order_relaxed);
node->~Node();
idx = next;
}
}
template<typename U>
inline bool enqueue(U&& item)
{
idx_t nodeIdx = allocate_node_for(std::forward<U>(item));
auto tail_ = tail.load(std::memory_order_relaxed);
while (!tail.compare_exchange_weak(tail_, nodeIdx, std::memory_order_release, std::memory_order_relaxed))
continue;
get_node_at(tail_)->next.store(nodeIdx, std::memory_order_release);
return true;
}
inline bool try_dequeue(T& item)
{
while (true) {
auto rawHead_ = head.load(std::memory_order_acquire);
auto head_ = clear_consumed_flag(rawHead_);
auto headNode = get_node_at(head_);
auto next = headNode->next.load(std::memory_order_relaxed);
if (next == 0) {
// Can't move head (that would make head null), but can try to dequeue the node at head anyway
if (is_consumed(rawHead_)) {
return false;
}
if (head.compare_exchange_strong(head_, set_consumed_flag(head_), std::memory_order_release, std::memory_order_relaxed)) {
// Whee, we own the right to dequeue this item
item = std::move(*headNode->item());
headNode->item()->~T();
return true;
}
}
else {
// Remove node whether it's already been consumed or not; if it hasn't been consumed, consume it!
// head_->next can't possibly change, since once it's not null nobody writes to it (and ABA is avoided with versioning)
if (head.compare_exchange_weak(rawHead_, next, std::memory_order_acq_rel, std::memory_order_relaxed)) {
// Aha, we successfully moved the head. But does it have anything in it?
if (!is_consumed(rawHead_)) {
item = std::move(*headNode->item());
headNode->item()->~T();
}
add_node_to_free_list(head_, headNode);
if (!is_consumed(rawHead_)) {
return true;
}
}
}
}
}
// Dummy token methods (not used)
bool enqueue(producer_token_t const&, T const&) { return false; }
bool try_enqueue(producer_token_t, T const&) { return false; }
bool try_dequeue(consumer_token_t, T& item) { return false; }
template<typename It> bool enqueue_bulk(It, size_t) { return false; }
template<typename It> bool enqueue_bulk(producer_token_t const&, It, size_t) { return false; }
template<typename It> size_t try_dequeue_bulk(It, size_t) { return 0; }
template<typename It> size_t try_dequeue_bulk(consumer_token_t, It, size_t) { return 0; }
private:
struct Node
{
std::atomic<idx_t> next;
alignas(T)
char rawItem[sizeof(T)];
template<typename U>
Node(U&& item)
: next(0)
{
new (this->item()) T(std::forward<U>(item));
}
Node()
: next(0)
{
}
inline T* item() { return reinterpret_cast<T*>(rawItem); }
};
struct Block
{
alignas(Node)
char nodes[sizeof(Node) * BLOCK_SIZE];
inline char* node_pos(idx_t idx) { return nodes + ((idx & BLOCK_MASK) >> BLOCK_SHIFT) * sizeof(Node); }
};
template<typename TSubBlock, int BlockSize>
struct HigherOrderBlock
{
std::atomic<TSubBlock*> subblocks[BlockSize];
HigherOrderBlock()
{
for (int i = 0; i != BlockSize; ++i) {
subblocks[i].store(nullptr, std::memory_order_release);
}
}
~HigherOrderBlock()
{
for (int i = 0; i != BlockSize; ++i) {
if (subblocks[i].load(std::memory_order_relaxed) != nullptr) {
delete subblocks[i].load(std::memory_order_relaxed);
}
}
}
};
typedef HigherOrderBlock<Block, SUPER_BLOCK_SIZE> SuperBlock;
typedef HigherOrderBlock<SuperBlock, ULTRA_BLOCK_SIZE> UltraBlock;
typedef HigherOrderBlock<UltraBlock, UBER_BLOCK_SIZE> UberBlock;
typedef HigherOrderBlock<UberBlock, UBER_BLOCKS> UberBlockContainer;
private:
inline idx_t set_consumed_flag(idx_t idx)
{
return idx | (idx_t)1;
}
inline idx_t clear_consumed_flag(idx_t idx)
{
return idx & ~(idx_t)1;
}
inline bool is_consumed(idx_t idx)
{
return (idx & 1) != 0;
}
inline void add_node_to_free_list(idx_t idx, Node* node)
{
auto head = freeListHead.load(std::memory_order_relaxed);
do {
node->next.store(head, std::memory_order_relaxed);
} while (!freeListHead.compare_exchange_weak(head, idx, std::memory_order_release, std::memory_order_relaxed));
}
inline idx_t try_get_node_from_free_list()
{
auto head = freeListHead.load(std::memory_order_acquire);
while (head != 0 && !freeListHead.compare_exchange_weak(head, get_node_at(head)->next.load(std::memory_order_relaxed), std::memory_order_acquire)) {
continue;
}
if (head != 0) {
// Increment version
head = (head & ~VERSION_MASK) | ((head + VERSION_INCR) & VERSION_MASK);
}
return head;
}
inline Node* get_node_at(idx_t idx)
{
auto uberBlock = uberBlockContainer.subblocks[(idx & UBER_BLOCK_IDX_MASK) >> UBER_BLOCK_IDX_SHIFT].load(std::memory_order_relaxed);
auto ultraBlock = uberBlock->subblocks[(idx & UBER_BLOCK_MASK) >> UBER_BLOCK_SHIFT].load(std::memory_order_relaxed);
auto superBlock = ultraBlock->subblocks[(idx & ULTRA_BLOCK_MASK) >> ULTRA_BLOCK_SHIFT].load(std::memory_order_relaxed);
auto block = superBlock->subblocks[(idx & SUPER_BLOCK_MASK) >> SUPER_BLOCK_SHIFT].load(std::memory_order_relaxed);
return reinterpret_cast<Node*>(block->node_pos(idx));
}
template<typename U>
inline idx_t allocate_node_for(U&& item)
{
auto idx = try_get_node_from_free_list();
if (idx != 0) {
auto node = get_node_at(idx);
node->next.store(0, std::memory_order_relaxed);
new (node->item()) T(std::forward<U>(item));
return idx;
}
new (new_node_address(idx)) Node(std::forward<U>(item));
return idx;
}
inline idx_t allocate_blank_node()
{
idx_t idx;
new (new_node_address(idx)) Node();
return idx;
}
inline char* new_node_address(idx_t& idx)
{
idx = nextNodeIdx.fetch_add(static_cast<idx_t>(1) << BLOCK_SHIFT, std::memory_order_relaxed);
std::size_t uberBlockContainerIdx = (idx & UBER_BLOCK_IDX_MASK) >> UBER_BLOCK_IDX_SHIFT;
std::size_t uberBlockIdx = (idx & UBER_BLOCK_MASK) >> UBER_BLOCK_SHIFT;
std::size_t ultraBlockIdx = (idx & ULTRA_BLOCK_MASK) >> ULTRA_BLOCK_SHIFT;
std::size_t superBlockIdx = (idx & SUPER_BLOCK_MASK) >> SUPER_BLOCK_SHIFT;
auto uberBlock = lookup_subblock<UberBlockContainer, UberBlock>(&uberBlockContainer, uberBlockContainerIdx);
auto ultraBlock = lookup_subblock<UberBlock, UltraBlock>(uberBlock, uberBlockIdx);
auto superBlock = lookup_subblock<UltraBlock, SuperBlock>(ultraBlock, ultraBlockIdx);
auto block = lookup_subblock<SuperBlock, Block>(superBlock, superBlockIdx);
return block->node_pos(idx);
}
template<typename TBlock, typename TSubBlock>
inline TSubBlock* lookup_subblock(TBlock* block, std::size_t idx)
{
auto ptr = block->subblocks[idx].load(std::memory_order_acquire);
if (ptr == nullptr) {
auto newBlock = new TSubBlock();
if (!block->subblocks[idx].compare_exchange_strong(ptr, newBlock, std::memory_order_release, std::memory_order_acquire)) {
delete newBlock;
}
else {
ptr = newBlock;
}
}
return ptr;
}
private:
std::atomic<idx_t> nextNodeIdx;
std::atomic<idx_t> head;
std::atomic<idx_t> tail;
std::atomic<idx_t> freeListHead;
UberBlockContainer uberBlockContainer;
};
|