1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
|
// Copyright (C) 2004 Davis E. King (davis@dlib.net)
// License: Boost Software License See LICENSE.txt for the full license.
#ifndef DLIB_MEMORY_MANAGER_KERNEl_3_
#define DLIB_MEMORY_MANAGER_KERNEl_3_
#include "../algs.h"
#include "memory_manager_kernel_abstract.h"
#include "../assert.h"
#include <new>
#include "memory_manager_kernel_2.h"
#include "../binary_search_tree/binary_search_tree_kernel_2.h"
namespace dlib
{
template <
typename T,
size_t chunk_size
>
class memory_manager_kernel_3
{
/*!
INITIAL VALUE
allocations == 0
next == 0
first_chunk == 0
bst_of_arrays == 0
REQUIREMENTS ON chunk_size
chunk_size is the number of items of type T we will allocate at a time. so
it must be > 0.
CONVENTION
This memory manager implementation allocates memory in blocks of chunk_size*sizeof(T)
bytes. All the sizeof(T) subblocks are kept in a linked list of free memory blocks
and are given out whenever an allocation request occurs. Also, memory is not freed
until this object is destructed.
allocations == get_number_of_allocations()
- if (next != 0) then
- next == the next pointer to return from allocate()
and next == pointer to the first node in a linked list. each node
is one item in the memory pool.
- the last node in the linked list has next set to 0
- else
- we need to call new to get the next pointer to return from allocate()
- if (arrays != 0) then
- someone has called allocate_array()
- (*arrays)[size] == an array of size bytes of memory
- if (first_chunk != 0) then
- first_chunk == the first node in a linked list that contains pointers
to all the chunks we have ever allocated. The last link in the list
has its next pointer set to 0.
!*/
union node
{
node* next;
char item[sizeof(T)];
};
struct chunk_node
{
node* chunk;
chunk_node* next;
};
typedef binary_search_tree_kernel_2<
size_t,
char*,
memory_manager_kernel_2<char,5>
> bst_of_arrays;
public:
typedef T type;
template <typename U>
struct rebind {
typedef memory_manager_kernel_3<U,chunk_size> other;
};
memory_manager_kernel_3(
) :
allocations(0),
next(0),
first_chunk(0),
arrays(0)
{
// You FOOL! You can't have a zero chunk_size.
COMPILE_TIME_ASSERT(chunk_size > 0);
}
virtual ~memory_manager_kernel_3(
)
{
if (allocations == 0)
{
while (first_chunk != 0)
{
chunk_node* temp = first_chunk;
first_chunk = first_chunk->next;
// delete the memory chunk
::operator delete ( static_cast<void*>(temp->chunk));
// delete the chunk_node
delete temp;
}
}
if (arrays)
{
arrays->reset();
while (arrays->move_next())
{
::operator delete (arrays->element().value());
}
delete arrays;
}
}
size_t get_number_of_allocations (
) const { return allocations; }
T* allocate_array (
size_t size
)
{
size_t block_size = sizeof(T)*size + sizeof(size_t)*2;
// make sure we have initialized the arrays object.
if (arrays == 0)
{
arrays = new bst_of_arrays;
}
char* temp;
// see if we have a suitable block of memory already.
arrays->position_enumerator(block_size);
if (arrays->current_element_valid())
{
// we have a suitable block of memory already so use that one.
arrays->remove_current_element(block_size,temp);
}
else
{
temp = static_cast<char*>(::operator new(block_size));
}
reinterpret_cast<size_t*>(temp)[0] = block_size;
reinterpret_cast<size_t*>(temp)[1] = size;
temp += sizeof(size_t)*2;
try
{
initialize_array(reinterpret_cast<T*>(temp),size);
}
catch (...)
{
// something was thrown while we were initializing the array so
// stick our memory block into arrays and rethrow the exception
temp -= sizeof(size_t)*2;
arrays->add(block_size,temp);
throw;
}
++allocations;
return reinterpret_cast<T*>(temp);
}
void deallocate_array (
T* item
)
{
char* temp = reinterpret_cast<char*>(item);
temp -= sizeof(size_t)*2;
size_t block_size = reinterpret_cast<size_t*>(temp)[0];
size_t size = reinterpret_cast<size_t*>(temp)[1];
deinitialize_array(item,size);
arrays->add(block_size,temp);
--allocations;
}
T* allocate (
)
{
T* temp;
if (next != 0)
{
temp = reinterpret_cast<T*>(next);
node* n = next->next;
try
{
// construct this new T object with placement new.
new (static_cast<void*>(temp))T();
}
catch (...)
{
next->next = n;
throw;
}
next = n;
}
else
{
// the linked list is empty so we need to allocate some more memory
node* block = static_cast<node*>(::operator new (sizeof(node)*chunk_size));
// the first part of this block can be our new object
temp = reinterpret_cast<T*>(block);
try
{
// construct this new T object with placement new.
new (static_cast<void*>(temp))T();
}
catch (...)
{
// construction of the new object threw so delete the block of memory
::operator delete ( static_cast<void*>(block));
throw;
}
// allocate a new chunk_node
chunk_node* chunk;
try {chunk = new chunk_node; }
catch (...)
{
temp->~T();
::operator delete ( static_cast<void*>(block));
throw;
}
// add this block into the chunk list
chunk->chunk = block;
chunk->next = first_chunk;
first_chunk = chunk;
++block;
// now add the rest of the block into the linked list of free nodes.
for (size_t i = 0; i < chunk_size-1; ++i)
{
block->next = next;
next = block;
++block;
}
}
++allocations;
return temp;
}
void deallocate (
T* item
)
{
--allocations;
item->~T();
// add this memory into our linked list.
node* temp = reinterpret_cast<node*>(item);
temp->next = next;
next = temp;
}
void swap (
memory_manager_kernel_3& item
)
{
exchange(allocations,item.allocations);
exchange(next,item.next);
exchange(first_chunk,item.first_chunk);
exchange(arrays,item.arrays);
}
private:
// data members
size_t allocations;
node* next;
chunk_node* first_chunk;
bst_of_arrays* arrays;
void initialize_array (
T* array,
size_t size
) const
{
size_t i;
try
{
for (i = 0; i < size; ++i)
{
// construct this new T object with placement new.
new (static_cast<void*>(array+i))T();
}
}
catch (...)
{
// Catch any exceptions thrown during the construction process
// and then destruct any T objects that actually were successfully
// constructed.
for (size_t j = 0; j < i; ++j)
{
array[i].~T();
}
throw;
}
}
void deinitialize_array (
T* array,
size_t size
) const
{
for (size_t i = 0; i < size; ++i)
{
array[i].~T();
}
}
// don't do any initialization for the built in types
void initialize_array(unsigned char*, size_t) {}
void deinitialize_array(unsigned char*, size_t) {}
void initialize_array(signed char*, size_t) {}
void deinitialize_array(signed char*, size_t) {}
void initialize_array(char*, size_t) {}
void deinitialize_array(char*, size_t) {}
void initialize_array(int*, size_t) {}
void deinitialize_array(int*, size_t) {}
void initialize_array(unsigned int*, size_t) {}
void deinitialize_array(unsigned int*, size_t) {}
void initialize_array(unsigned long*, size_t) {}
void deinitialize_array(unsigned long*, size_t) {}
void initialize_array(long*, size_t) {}
void deinitialize_array(long*, size_t) {}
void initialize_array(float*, size_t) {}
void deinitialize_array(float*, size_t) {}
void initialize_array(double*, size_t) {}
void deinitialize_array(double*, size_t) {}
void initialize_array(short*, size_t) {}
void deinitialize_array(short*, size_t) {}
void initialize_array(unsigned short*, size_t) {}
void deinitialize_array(unsigned short*, size_t) {}
// restricted functions
memory_manager_kernel_3(memory_manager_kernel_3&); // copy constructor
memory_manager_kernel_3& operator=(memory_manager_kernel_3&); // assignment operator
};
template <
typename T,
size_t chunk_size
>
inline void swap (
memory_manager_kernel_3<T,chunk_size>& a,
memory_manager_kernel_3<T,chunk_size>& b
) { a.swap(b); }
// ----------------------------------------------------------------------------------------
}
#endif // DLIB_MEMORY_MANAGER_KERNEl_3_
|