1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435
|
(*
Confluence System Design Library
Copyright (C) 2003-2004 Tom Hawkins (tomahawkins@yahoo.com)
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*)
rootenvironment
(* General *)
(==)
(!=)
error
string_of
show
unify
(* Components *)
is_component
string_of_component
(* Systems *)
is_system
string_of_system
ports_of_system
(* Numbers (integers and floats) *)
(<)
(>)
(<=)
(>=)
(+)
(-)
(*)
(/)
(**)
(* Integers *)
is_integer
string_of_integer
integer_of_string
float_of_integer
(%)
(~)
(&)
(^)
(|)
(<<)
(>>)
range
(:)
binary_of_integer
integer_of_binary
bits_required
(* Floats *)
is_float
string_of_float
float_of_string
integer_of_float
ceil
floor
round
exp
log
sqrt
sin
cos
tan
asin
acos
atan
atan2
e
pi
(* Booleans *)
is_boolean
string_of_boolean
(!)
(* Records *)
is_record
record_info
string_of_record
(* Lists *)
is_list
string_of_list
print
argv
(head)
(tail)
(length)
(++)
(::)
(#)
List (*
nth
take
drop
reverse
flatten
isolate
transpose
map
mapi
map2
fold_left
fold_right
tree
iter
iteri
Assoc (*
find
member
add
remove
replace
*)
member
satisfy_and
satisfy_or
find
filter
partition
sort
*)
(* Vectors *)
is_vector
string_of_vector
vector_of_string
bin_of_vector
hex_of_vector
(width)
clock
reset
enable
assert
input
output
inout
display
const
one
ones
zero
reg
regs
rom
ram_wbr
ram_rbw
('~')
('&')
('^')
('|')
('then')
tristate
('++')
('#')
(')
('==')
('!=')
('<')
('>')
('<=')
('>=')
('<+')
('>+')
('<=+')
('>=+')
('+')
('-')
('*')
('*+')
('<<')
('>>')
('>>+')
('/')
('%')
('**')
('msb')
('msbs')
('lsb')
('lsbs')
external_combinatorial
external_sequential
external_softvector
list_of_bits
all_bits_high
all_bits_low
all_bits_same
mux
counter
decoder
truth_table
state_machine
(* CTL* Properties *)
is_property
string_of_property
(`!`)
(`X`)
(*
(`G`)
(`F`)
*)
(`&&`)
(`^^`)
(`||`)
(`<->`)
(`->`)
(`U`)
(*
(`W`)
(`B`)
(`V`)
*)
sequence
(* Abstract Data Types *)
(*
Map
Set
*)
is
(* General *)
(** Compares any two values for equality. *)
component (==) +a +b -is_equal is
{prim IsEqual a b is_equal end a b is_equal}
end
(** Compares any two values for inequality. *)
component (!=) +a +b -is_not_equal is
is_not_equal = ! (a == b)
end
(** Raises an error and prevents code generation. *)
component error +msg is
{prim Error msg end msg}
end
(** Converts any value to a string. Handles recursive data structures. *)
component string_of +value +sofar -str is
if {is_component value $} {string_of_component value str}
ef {is_integer value $} {string_of_integer value str}
ef {is_float value $} {string_of_float value str}
ef {is_boolean value $} {string_of_boolean value str}
ef {is_vector value $} {string_of_vector value str}
ef {is_property value $} {string_of_property value str}
ef {List.member sofar value $} str = "rec"
ef {is_list value $} {string_of_list value sofar str}
ef {is_record value $} {string_of_record value sofar str}
ef {is_system value $} {string_of_system value sofar str}
else
{error "string_of: Unknown type."}
end
end
(** Prints any value to stdout. *)
component show +value is
{print {string_of value [] $}}
end
(** Unifies two variables. *)
component unify *value_a *value_b is
value_a = value_b
end
(* Components *)
(** Checks if value is a component. *)
component is_component +value -yes is
{prim IsComponent a x end value yes}
end
(** Converts a component to a string. *)
component string_of_component +comp_value -str is
if !{is_component comp_value $}
{error "string_of_component: Value is not a component."}
else
str = "<component>"
end
end
(* Systems *)
(** Checks if value is a system. *)
component is_system +value -yes is
{prim IsSystem a x end value yes}
end
(** Returns the record of a system's ports. *)
component ports_of_system system port_record is
{prim SystemPorts a x end system port_record}
end
(** Converts a system to a string. *)
component string_of_system +system +sofar -str is
if !{is_system system $}
{error "string_of_system: Value is not a system."}
else
str = "<system: " ++ {string_of_record {ports_of_system system $} (system :: sofar) $} ++ ">"
end
end
(* Numbers *)
(** Less than comparison of integers or floats. *)
component (<) +a +b -yes is
if {is_integer a $} && {is_integer b $}
{prim IntegerLt a b x end a b yes}
ef {is_float a $} && {is_float b $}
{prim FloatLt a b x end a b yes}
else
{error "(<): Values are not integers or floats."}
end
end
(** Greater than comparison of integers or floats. *)
component (>) +a +b -yes is
if {is_integer a $} && {is_integer b $} || {is_float a $} && {is_float b $}
yes = ! (a < b || a == b)
else
{error "(>): Values are not integers or floats."}
end
end
(** Less than or equal comparison of integers or floats. *)
component (<=) +a +b -yes is
if {is_integer a $} && {is_integer b $} || {is_float a $} && {is_float b $}
yes = a < b || a == b
else
{error "(<=): Values are not integers or floats."}
end
end
(** Greater than or equal comparison of integers or floats. *)
component (>=) +a +b -yes is
if {is_integer a $} && {is_integer b $} || {is_float a $} && {is_float b $}
yes = ! (a < b)
else
{error "(>=): Values are not integers or floats."}
end
end
(** Integer or float addition. *)
component (+) +a +b -x is
if {is_integer a $} && {is_integer b $}
{prim IntegerAdd a b x end a b x}
ef {is_float a $} && {is_float b $}
{prim FloatAdd a b x end a b x}
else
{error "(+): Values are not integers or floats."}
end
end
(** Integer or float subtraction. *)
component (-) +a +b -x is
if {is_integer a $} && {is_integer b $}
{prim IntegerSub a b x end a b x}
ef {is_float a $} && {is_float b $}
{prim FloatSub a b x end a b x}
else
{error "(-): Values are not integers or floats."}
end
end
(** Integer or float multiplication. *)
component (*) +a +b -x is
if {is_integer a $} && {is_integer b $}
{prim IntegerMul a b x end a b x}
ef {is_float a $} && {is_float b $}
{prim FloatMul a b x end a b x}
else
{error "(*): Values are not integers or floats."}
end
end
(** Integer or float division. *)
component (/) +a +b -x is
if {is_integer a $} && {is_integer b $}
{prim IntegerDiv a b x end a b x}
ef {is_float a $} && {is_float b $}
{prim FloatDiv a b x end a b x}
else
{error "(/): Values are not integers or floats."}
end
end
(** Integer or float power. *)
component (**) +a +b -x is
if {is_integer a $} && {is_integer b $}
{prim IntegerPow a b x end a b x}
ef {is_float a $} && {is_float b $}
{prim FloatPow a b x end a b x}
else
{error "(**): Values are not integers or floats."}
end
end
(* Integers *)
(** Checks if value is an integer. *)
component is_integer +value -yes is
{prim IsInteger a x end value yes}
end
(** Converts and integer to a string. *)
component string_of_integer +integer -str is
{prim IntegerToString a x end integer str}
end
(** Converts a string to an integer. *)
component integer_of_string +str -integer is
{prim StringToInteger a x end str integer}
end
(** Converts an integer to a float. *)
component float_of_integer +integer -float is
{prim IntegerToFloat a x end integer float}
end
(** Integer modulo. *)
component (%) +a +b -x is
{prim IntegerMod a b x end a b x}
end
(** Integer bitwise NOT. *)
component (~) +a -x is
{prim IntegerNot a x end a x}
end
(** Integer bitwise AND. *)
component (&) +a +b -x is
{prim IntegerAnd a b x end a b x}
end
(** Integer bitwise XOR. *)
component (^) +a +b -x is
{prim IntegerXor a b x end a b x}
end
(** Integer bitwise OR. *)
component (|) +a +b -x is
{prim IntegerOr a b x end a b x}
end
(** Integer bitwise shift left. *)
component (<<) +a +b -x is
{prim IntegerShiftLeft a b x end a b x}
end
(** Integer bitwise shift right. *)
component (>>) +a +b -x is
{prim IntegerShiftRight a b x end a b x}
end
(** Returns a list of integers between a certain range (inclusive). *)
component range +a +b -x is
x = a == b then [a] else
a < b then a :: {range (a + 1) b $} else
a :: {range (a - 1) b $}
end
(:) = range
(** Returns the number of bits required to represent a number of items. *)
component bits_required +tally -bits is
if tally < 0
{error "bits_required: tally must be >= 0."}
ef tally == 0
bits = 0
ef tally == 1
bits = 1
else
bits = {integer_of_float {ceil ({log {float_of_integer tally $} $} / {log 2.0 $}) $} $}
end
end
local binary_of_integer0 is
component binary_of_integer0 +value +width_ +bin_in -bin_out is
if width_ <= 0
bin_out = bin_in
else
bin_out = {binary_of_integer0 (value / 2) (width_ - 1) ((value % 2 == 1 then "1" else "0") ++ bin_in) $}
end
end
(** Converts an integer into a binary string. *)
component binary_of_integer +value +width_ -binary is
if width_ < 0
{error "binary_of_integer: width_ must be >= 0."}
else
{binary_of_integer0 value width_ "" binary}
end
end
end
local integer_of_binary0 is
component integer_of_binary0 +binary +factor +value_in -value_out is
if binary == ""
value_out = value_in
else
value_out = {integer_of_binary0 (tail binary) (factor * 2) (head binary == @1 then value_in + factor else value_in) $}
end
end
(** Converts a binary string into an integer. *)
component integer_of_binary +binary -integer is
{integer_of_binary0 {List.reverse binary $} 1 0 integer}
end
end
(* Floats *)
(** Checks if value is a float. *)
component is_float +value -yes is
{prim IsFloat a x end value yes}
end
(** Converts a float to a string. *)
component string_of_float +float -str is
{prim FloatToString a x end float str}
end
(** Converts a string to a flost. *)
component float_of_string +str -float is
{prim StringToFloat a x end str float}
end
(** Converts a float to an integer. *)
component integer_of_float +float -integer is
{prim FloatToInteger a x end float integer}
end
(** Rounds a float up to the nearest integer (float type returned). *)
component ceil +a -x is
{prim FloatCeil a x end a x}
end
(** Rounds a float down to the nearest integer (float type returned). *)
component floor +a -x is
{prim FloatFloor a x end a x}
end
(** Rounds a float to the nearest integer (float type returned). *)
component round +a -x with t is
{floor a t}
x = a - t <= 0.5 then t else {ceil a $}
end
(** Exponent. *)
component exp +a -x is
{prim FloatExp a x end a x}
end
(** Natural log. *)
component log +a -x is
{prim FloatLog a x end a x}
end
(** Square root. *)
component sqrt +a -x is
x = a ** 0.5
end
(** Sine of radians. *)
component sin +a -x is
{prim FloatSin a x end a x}
end
(** Cosine of radians. *)
component cos +a -x is
{prim FloatCos a x end a x}
end
(** Tangent of radians. *)
component tan +a -x is
{prim FloatTan a x end a x}
end
(** Arc sine. *)
component asin +a -x is
{prim FloatAsin a x end a x}
end
(** Arc cosine. *)
component acos +a -x is
{prim FloatAcos a x end a x}
end
(** Arc tangent. *)
component atan +a -x is
{prim FloatAtan a x end a x}
end
(** Arc tangent2. *)
component atan2 +rise +run -x is
{prim FloatAtan2 a b x end rise run x}
end
(* Exponent e. *)
e = {exp 1.0 $}
(* PI. *)
pi = {acos -1.0 $}
(* Booleans *)
(** Checks if value is a boolean. *)
component is_boolean +value -yes is
{prim IsBoolean a x end value yes}
end
(** Converts a boolean to a string. *)
component string_of_boolean +boolean -str is
if !{is_boolean boolean $}
{error "string_of_boolean: Value is not a boolean."}
else
str = boolean then "true" else "false"
end
end
(** Boolean negation. *)
component (!) +a -x is
{prim BooleanNot a x end a x}
end
(* Records *)
(** Checks if value is a record. *)
component is_record +value -yes is
{prim IsRecord a x end value yes}
end
(** Record information. A list of (name: value:). *)
component record_info +record -info is
{prim RecordInfo a x end record info}
end
(** Converts a record to a string. *)
component string_of_record +record +sofar -str with f sofar0 is
sofar0 = record :: sofar
component f +pairs -str is
if pairs == []
str = ""
else with h t is
h :: t = pairs
str = h.name ++ ":" ++ {string_of h.value sofar0 $} ++ (t == [] then "" else " " ++ {f t $})
end
end
str = "(" ++ {f {record_info record $} $} ++ ")"
end
(* Lists *)
(** Checks if value is a list. *)
component is_list +value -yes is
{prim IsList a x end value yes}
end
(** Converts a list to a string. *)
component string_of_list +list +sofar -str with sofar0 string_of_elements is
sofar0 = list :: sofar
component string_of_elements +es -str is
if es == []
str = []
ef tail es == []
str = {string_of (head es) sofar0 $}
else
str = {string_of (head es) sofar0 $} ++ " " ++ {string_of_elements (tail es) $}
end
end
str = "[" ++ {string_of_elements list $} ++ "]"
end
(** Prints a string to stdout. *)
component print +str is
{prim ListPrint a end str}
end
(* Command line arguments. *)
argv = {prim ListArgv -Args end $}
(** Returns the first element of a list (head). *)
component (head) +list -hd is
hd = list.hd
end
(** Returns the list without the first element (tail). *)
component (tail) +list -tl is
tl = list.tl
end
(** Returns the length of a list. *)
component (length) +list -len is
{List.fold_left comp +count +ele +total is total = count + 1 end 0 list len}
end
(** Creates a new list by added an element in front of an existing list (cons). *)
component (::) *hd *tl *list is
list = (hd:hd tl:tl)
end
(** Concatenates two lists together. *)
component (++) +a +b -x is
if a == []
x = b
else
x = head a :: {(++) (tail a) b $}
end
end
(** Repeated list concatenation. *)
component (#) +list_in +count -list_out with f is
component f +list +count -list_out is
if count <= 0
list_out = list
else
list_out = {f (list ++ list_in) (count - 1) $}
end
end
{f [] count list_out}
end
(* Common list functions. *)
List = import "list.cf"
(* Vectors *)
(** Checks if value is a vector. *)
component is_vector +value -yes is
{prim IsVector a x end value yes}
end
(** Converts a vector to a string. Width information included. *)
component string_of_vector +vec -str is
if !{is_vector vec $}
{error "string_of_vector: Value is not a vector."}
else
str = "<vector: " ++ {string_of_integer (width vec) $} ++ ">"
end
end
local f is
component f +str +vec_in -vec_out is
if str == ""
vec_out = vec_in
else
vec_out = {f (tail str) (vec_in '++' {const 8 (head str) $}) $}
end
end
(** Converts a string to an ASCII encoded vector. *)
component vector_of_string +str -vec is
{f str '' vec}
end
end
(** Converts a vector into a ASCII bin vector. *)
component bin_of_vector +vec -vec_bin is
if width vec <= 0
vec_bin = ''
else
vec_bin = ('msb' vec 'then' {const 8 @1 $} 'else' {const 8 @0 $}) '++' {bin_of_vector ('lsbs' vec) $}
end
end
local hex_of_nib is
component hex_of_nib +nib -hex is
hex =
nib '==' '0000' 'then' {const 8 @0 $} 'else'
nib '==' '0001' 'then' {const 8 @1 $} 'else'
nib '==' '0010' 'then' {const 8 @2 $} 'else'
nib '==' '0011' 'then' {const 8 @3 $} 'else'
nib '==' '0100' 'then' {const 8 @4 $} 'else'
nib '==' '0101' 'then' {const 8 @5 $} 'else'
nib '==' '0110' 'then' {const 8 @6 $} 'else'
nib '==' '0111' 'then' {const 8 @7 $} 'else'
nib '==' '1000' 'then' {const 8 @8 $} 'else'
nib '==' '1001' 'then' {const 8 @9 $} 'else'
nib '==' '1010' 'then' {const 8 @A $} 'else'
nib '==' '1011' 'then' {const 8 @B $} 'else'
nib '==' '1100' 'then' {const 8 @C $} 'else'
nib '==' '1101' 'then' {const 8 @D $} 'else'
nib '==' '1110' 'then' {const 8 @E $} 'else' {const 8 @F $}
end
(** Converts a vector into a ASCII hex vector. *)
component hex_of_vector +vec -vec_hex is
if width vec <= 0
vec_hex = ''
ef width vec < 4
vec_hex = {hex_of_nib ('0' '#' (4 - width vec) '++' vec) $}
ef width vec == 4
vec_hex = {hex_of_nib vec $}
else
vec_hex = {hex_of_vector vec'[((width vec) - 1) : 4] $} '++' {hex_of_nib vec'[3 : 0] $}
end
end
end
(** Returns the integer width of a vector. *)
component (width) +vec -width_ is
{prim VectorWidth a x end vec width_}
end
(** Clocks a subsystem. Clock must be a string. *)
component clock +clock_name +system is
{prim VectorClock a b end clock_name system}
end
(** Resets a subsystem. *)
component reset +vec_reset +system is
{prim VectorReset a b end vec_reset system}
end
(** Enables a subsystem. *)
component enable +vec_enable +system is
{prim VectorEnable a b end vec_enable system}
end
(** Posts assertion violation message with test vector drops low. *)
(* XXX
component assert +message +test is
{prim VectorAssert a b end message test}
end
*)
(** Creates a top level input, given a port name and width. *)
component input +name +width_ -vec is
{prim VectorInput a b x end name width_ vec}
end
(** Creates a top level output, given a port name and vector. *)
component output +name +vec is
{prim VectorOutput a b end name vec}
end
(** Displays an ASCII encoded vector, provided enable is high. *)
(* XXX
component display +enable +message is
{prim VectorPrint a b end enable message}
end
*)
(** Creates a vector constant given a width and value. *)
component const +width_ +value -vec is
{prim VectorConst a b x end value width_ vec}
end
(** Creates a vector constant of ...0001. *)
component one +width_ -vec is
{const width_ 1 vec}
end
(** Creates a vector constant of ...1111. *)
component ones +width_ -vec is
{const width_ -1 vec}
end
(** Creates a vector constant of ...0000. *)
component zero +width_ -vec is
{const width_ 0 vec}
end
(** Creates a register given a width and an input vector. *)
component reg +width_ +in -out is
{prim VectorReg a b x end width_ in out}
end
(** Creates a register chain given a width, a delay length, and an input vector. *)
component regs +width_ +depth +in -out is
if depth <= 0
in = out
else
{regs width_ (depth - 1) {reg width_ in $} out}
end
end
(** Creates a ROM given a data width, list of values, and an address vector. *)
(* XXX Implemented with registers. *)
component rom +width_ +values +addr -data with rom_consts is
{List.map comp a x is x = width_'a end values rom_consts}
{reg width_ {mux addr rom_consts $} data}
end
(** Creates a read-before-write RAM. *)
component ram_rbw +data_width +write_enable +write_addr +write_data +read_addr -read_data with reg_enables reg_data is
{decoder write_enable write_addr reg_enables}
{List.map comp +reg_enable -reg_data is {enable reg_enable {reg data_width write_data reg_data}} end {list_of_bits reg_enables $} reg_data}
{reg data_width {mux read_addr reg_data $} read_data}
end
(** Creates a write-before-read RAM. *)
component ram_wbr +data_width +write_enable +write_addr +write_data +read_addr -read_data with reg_enables reg_data is
{decoder write_enable write_addr reg_enables}
{List.map comp +reg_enable -reg_data is {enable reg_enable {reg data_width write_data reg_data}} end {list_of_bits reg_enables $} reg_data}
{mux {reg (width read_addr) read_addr $} reg_data read_data}
end
(** Vector bitwise NOT. *)
component ('~') +a -x is
{prim VectorNot a x end a x}
end
(** Vector bitwise AND. *)
component ('&') +a +b -x is
{prim VectorAnd a b x end a b x}
end
(** Vector bitwise XOR. *)
component ('^') +a +b -x is
{prim VectorXor a b x end a b x}
end
(** Vector bitwise OR. *)
component ('|') +a +b -x is
{prim VectorOr a b x end a b x}
end
(** 2 input mux: ctrl 'then' high 'else' low *)
component ('then') +ctrl +high +low -result is
{prim VectorMux a b c x end ctrl high low result}
end
(** Vector concatenation. *)
component ('++') +a +b -x is
{prim VectorConcat a b x end a b x}
end
(** Vector repeated concatenation. *)
component ('#') +vec +count -vec_out is
if count <= 0
vec_out = ''
else
vec_out = vec '++' {('#') vec (count - 1) $}
end
end
(** Vector bit select or constant declaration.
For selection, bits is a list of integers, where head of list becomes MSB.
For constant declartion, in is the width and bits is the value. *)
component (') +in +bits -out is
if {is_integer in $}
{const in bits out}
ef bits == []
{prim VectorZero x end out}
else
out = {prim VectorSelect a b x end in (head bits) $} '++' {(') in (tail bits) $}
end
end
(** Vector equality comparison. *)
component ('==') +a +b -is_equal is
{prim VectorEqu a b x end a b is_equal}
end
(** Vector inequality comparison. *)
component ('!=') +a +b -is_not_equal is
is_not_equal = '~' (a '==' b)
end
(** Vector unsigned less than comparison. *)
component ('<') +a +b -yes is
{prim VectorLt a b yes end a b yes}
end
(** Vector unsigned greater than comparison. *)
component ('>') +a +b -yes is
{('<') b a yes}
end
(** Vector unsigned less than or equal comparison. *)
component ('<=') +a +b -yes is
yes = '~' (a '>' b)
end
(** Vector unsigned greater than or equal comparison. *)
component ('>=') +a +b -yes is
yes = '~' (a '<' b)
end
(** Vector signed less than comparison. *)
component ('<+') +a +b -yes is
yes = ('~' 'msb' a '++' 'lsbs' a) '<' ('~' 'msb' b '++' 'lsbs' b)
end
(** Vector signed greater than comparison. *)
component ('>+') +a +b -yes is
yes = ('~' 'msb' a '++' 'lsbs' a) '>' ('~' 'msb' b '++' 'lsbs' b)
end
(** Vector signed less than or equal comparison. *)
component ('<=+') +a +b -yes is
yes = ('~' 'msb' a '++' 'lsbs' a) '<=' ('~' 'msb' b '++' 'lsbs' b)
end
(** Vector signed greater than or equal comparison. *)
component ('>=+') +a +b -yes is
yes = ('~' 'msb' a '++' 'lsbs' a) '>=' ('~' 'msb' b '++' 'lsbs' b)
end
(** Vector addition. *)
component ('+') +a +b -x is
{prim VectorAdd a b x end a b x}
end
(** Vector subtraction. *)
component ('-') +a +b -x is
{prim VectorSub a b x end a b x}
end
(** Vector unsigned multiplication. *)
component ('*') +a +b -x is
if width a == 0 || width b == 0 {error "('*'): Vectors require width greater than 0."} end
{prim VectorMul a b x end ({zero (width b) $} '++' a) ({zero (width a) $} '++' b) x}
end
(** Vector signed multiplication. *)
component ('*+') +a +b -x is
if width a == 0 || width b == 0 {error "('*+'): Vectors require width greater than 0."} end
{prim VectorMul a b x end ('msb' a '#' width b '++' a) ('msb' b '#' width a '++' b) x}
end
(** Vector shift right. Shift amount must be a positive integer. *)
component ('<<') +vec_a +shift -vec_x is (* XXX Add support for vector '<<' vector. *)
if shift < 0
{error "('<<'): Shift amount must be >= 0."}
else with width_ is
width_ = width vec_a
if shift >= width_
vec_x = '0' '#' width_
else
vec_x = vec_a'[(width_ - 1 - shift) : 0] '++' '0' '#' shift
end
end
end
(** Vector unsigned shift left. Shift amount must be a positive integer. *)
component ('>>') +vec_a +shift -vec_x is (* XXX Add support for vector '>>' vector. *)
if shift < 0
{error "('>>'): Shift amount must be >= 0."}
else with width_ is
width_ = width vec_a
if shift >= width_
vec_x = '0' '#' width_
else
vec_x = '0' '#' shift '++' vec_a'[(width_ - 1) : shift]
end
end
end
(** Vector signed shift left. Shift amount must be a positive integer. *)
component ('>>+') +vec_a +shift -vec_x is (* XXX Add support for vector '>>+' vector. *)
if shift < 0
{error "('>>+'): Shift amount must be >= 0."}
else with width_ is
width_ = width vec_a
if shift >= width_
vec_x = 'msb' vec_a '#' width_
else
vec_x = 'msb' vec_a '#' shift '++' vec_a'[(width_ - 1) : shift]
end
end
end
(** ('/') operator is not supported. *)
component ('/') +vec_a +vec_b -vec_x is
{error "('/'): Operator not supported."} (* XXX *)
end
(** ('%') operator is not supported. *)
component ('%') +vec_a +vec_b -vec_x is
{error "('%'): Operator not supported."} (* XXX *)
end
(** ('**') operator is not supported. *)
component ('**') +vec_a +vec_b -vec_x is
{error "('**'): Operator not supported."} (* XXX *)
end
(** Returns the least signficant bit of a vector. *)
component ('lsb') +vec_a -vec_x is
vec_x = vec_a'[0]
end
(** Returns the most signficant bit of a vector. *)
component ('msb') +vec_a -vec_x is
vec_x = vec_a'[(width vec_a - 1)]
end
(** Returns a vector without the most signficant bit. *)
component ('lsbs') +vec_a -vec_x is
if width vec_a == 0
{error "('lsbs'): Width must be > 0."}
ef width vec_a == 1
vec_x = ''
else
vec_x = vec_a'[(width vec_a - 2) : 0]
end
end
(** Returns a vector without the least signficant bit. *)
component ('msbs') +vec_a -vec_x is
if width vec_a == 0
{error "('msbs'): Width must be > 0."}
ef width vec_a == 1
vec_x <- ''
else
vec_x <- vec_a'[(width vec_a - 1) : 1]
end
end
(*
(** External combinatorial component. *)
component external_combinatorial +name +params +in +width_out -out is
{prim VectorExtComb a b c d x end name params in width_out out}
end
(** External sequential component. *)
component external_sequential +name +params +in +width_out -out is
{prim VectorExtSequ a b c d x end name params in width_out out}
end
(** External soft component. *)
component external_softvector +name +params +width_ *data is
{prim VectorExtSoft a b c x end name params width_ data}
end
*)
(** Splits of a vector into a list of 1-bit vectors. Head of list is MSB. *)
component list_of_bits +vec -bits is
if width vec == 0
bits = []
else
bits = 'msb' vec :: {list_of_bits ('lsbs' vec) $}
end
end
(** Returns '1' when all bits in a vector are high. *)
component all_bits_high +vec -yes is
{List.tree ('&') unify {list_of_bits vec $} yes}
end
(** Returns '1' when all bits in a vector are low. *)
component all_bits_low +vec -yes is
yes = '~' {List.tree ('|') unify {list_of_bits vec $} $}
end
(** Returns '1' when all bits in a vector are the same. *)
component all_bits_same +vec -yes is
yes = {all_bits_high vec $} '|' {all_bits_low vec $}
end
local mux_down_row is
component mux_down_row +sel +ins -outs is
if ins == [] || length ins == 1
outs = ins
else
outs = (sel 'then' head tail ins 'else' head ins) :: {mux_down_row sel (tail tail ins) $}
end
end
(** Vector multiplexer. Select of '000' selects head of options. *)
component mux +select +options -out is
if options == []
{error "mux: Option list must have at least 1 element."}
ef length options == 1
out = head options
ef width select == 0
{error "mux: Not enough select bits to select all options."}
else
out = {mux ('msbs' select) {mux_down_row ('lsb' select) options $} $}
end
end
end
(** Given a width, creates an up counter reset to 0. *)
component counter +width_ -count with next is
next = count '+' {one width_ $}
{reg width_ next count}
end
(** Decoder with an enable. *)
component decoder +enable +addr -decode with addr_width number table_rows is
addr_width = width addr
number = 2 ** addr_width
component table_rows +count -rows is
if count >= number
rows = []
else
rows = [("1" ++ {binary_of_integer count addr_width $}) (("0" # (number - count - 1)) ++ "1" ++ ("0" # count))] :: {table_rows (count + 1) $}
end
end
{truth_table ([("0" ++ ("-" # addr_width)) ("0" # number)] :: {table_rows 0 $}) (enable '++' addr) decode}
end
local validate_input_bit validate_output_bit check_table build_outputs select build_logic is
component validate_input_bit +bit is
if ! (bit == @0 || bit == @1 || bit == @-) {error "truth_table: Invalid bit string."} end
end
component validate_output_bit +bit is
if ! (bit == @0 || bit == @1) {error "truth_table: Invalid bit string."} end
end
component check_table +table +input_width +output_width is
if table != [] with row input output is
row = head table
{List.nth row 0 input}
{List.nth row 1 output}
if input_width != length input {error "truth_table: Input width does not match." } end
if output_width != length output {error "truth_table: Output width does not match."} end
{List.iterate validate_input_bit input}
{List.iterate validate_output_bit output}
{check_table (tail table) input_width output_width}
end
end
component build_outputs +outputs +assoc_in -assoc_out is
if outputs == []
assoc_out = assoc_in
else with output is
output = head outputs
if {List.Assoc.member assoc_in output $}
{build_outputs (tail outputs) assoc_in assoc_out}
else
{build_outputs
(tail outputs)
{List.Assoc.add assoc_in output {const (length output) {integer_of_binary output $} $} $}
assoc_out}
end
end
end
component select +input +bit -bit_string -bit_select is
if input == []
bit_string = ""
bit_select = []
else
if head input == @-
{select (tail input) (bit - 1) bit_string bit_select}
else with bit_string_0 bit_select_0 is
{select (tail input) (bit - 1) bit_string_0 bit_select_0}
bit_string = head input :: bit_string_0
bit_select = bit :: bit_select_0
end
end
end
component build_logic +table +input +input_width +output_vectors -output with row input_string output_string is
row = head table
{List.nth row 0 input_string}
{List.nth row 1 output_string}
if length table == 1
{List.Assoc.find output_vectors {List.nth row 1 $} output}
else with bit_string bit_select vector_comp is
{select input_string (input_width - 1) bit_string bit_select}
{const (length bit_string) {integer_of_binary bit_string $} vector_comp}
if length bit_string == input_width
output = input '==' vector_comp 'then' {List.Assoc.find output_vectors output_string $} 'else' {build_logic (tail table) input input_width output_vectors $}
else
output = input'bit_select '==' vector_comp 'then' {List.Assoc.find output_vectors output_string $} 'else' {build_logic (tail table) input input_width output_vectors $}
end
end
end
(** Constructs a truth-table given an input and a table. Example: [["00" "11"] ["01" "10"] ["1-" "00"]] *)
component truth_table +table +input -output with outputs is
{check_table table (length head head table) (length head tail head table)}
{build_outputs {List.nth {List.transpose table $} 1 $} [] outputs}
{build_logic table input (width input) outputs output}
end
end
(**
Constructs a state-machine given a state transition table.
Inputs (i) and current states (s) may use dontcare bits ("-01").
Outputs (o) and next states (s) must only use true bits ("01").
Example: [(i:"0-" s:"0" n:"1" o:"11")
(i:"11" s:"1" n:"0" o:"00")]
*)
component state_machine +table +input -output with
first_row i_width s_width o_width validate_row tt_table
state next_state next_state_output
is
first_row = head table
i_width = length first_row.i
o_width = length first_row.o
s_width = length first_row.s
component validate_row row is
if length row.i != i_width {error "state-machine: Inconsistant input widths."} end
if length row.o != o_width {error "state-machine: Inconsistant output widths."} end
if length row.s != s_width {error "state-machine: Inconsistant state widths."} end
if length row.n != s_width {error "state-machine: Inconsistant next-state widths."} end
end
{List.iterate validate_row table}
{List.map comp row_sm row_tt is row_tt = [(row_sm.i ++ row_sm.s) (row_sm.n ++ row_sm.o)] end table tt_table}
{reg s_width next_state state}
{truth_table tt_table (input '++' state) next_state_output}
next_state = next_state_output'[(s_width + o_width - 1) : o_width]
output = next_state_output'[(o_width - 1) : 0]
end
(* Properties *)
(** Checks if value is a property. *)
component is_property +value -yes is
{prim IsProperty a x end value yes}
end
(** Converts a property to a string. *)
component string_of_property +prop -str is
if ! {is_property prop $}
{error "string_of_property: Value is not a property."}
else
str = "<property>"
end
end
(** Property logical negation. *)
component (`!`) +prop_a -prop_x is
{prim PropertyNot a x end prop_a prop_x}
end
(** Property temporal next. *)
component (`X`) +prop_a -prop_x is
{prim PropertyNext a x end prop_a prop_x}
end
(** Property logical AND. *)
component (`&&`) +prop_a +prop_b -prop_x is
prop_x = `!` (`!` prop_a `||` `!` prop_b)
end
(** Property logical XOR. *)
component (`^^`) +prop_a +prop_b -prop_x is
prop_x = (prop_a `&&` `!` prop_b) `||` (`!` prop_a `&&` prop_b)
end
(** Property logical OR. *)
component (`||`) +prop_a +prop_b -prop_x is
{prim PropertyOr a b x end prop_a prop_b prop_x}
end
(** Property logical equivalence. *)
component (`<->`) +prop_a +prop_b -prop_x is
prop_x = `!` (prop_a `^^` prop_b)
end
(** Propeprty logical implication. *)
component (`->`) +prop_a +prop_b -prop_x is
prop_x = `!` (prop_a `&&` `!` prop_b)
end
(** Property temporal until. *)
component (`U`) +prop_a +prop_b -prop_x is
{prim PropertyUntil a b x end prop_a prop_b prop_x}
end
(** Property sequence. *)
component sequence +prop_list -prop_x is
if prop_list == []
{error "sequence: Requires one or more properties."}
ef length prop_list == 1
prop_x = head prop_list
else
prop_x = head prop_list `->` `X` {sequence (tail prop_list) $}
end
end
|