1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
|
// tiledCanvas.cpp
// this file is part of Context Free
// ---------------------
// Copyright (C) 2006 John Horigan - john@glyphic.com
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License
// as published by the Free Software Foundation; either version 2
// of the License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
//
// John Horigan can be contacted at john@glyphic.com or at
// John Horigan, 1209 Villa St., Mountain View, CA 94041-1123, USA
//
//
#include "tiledCanvas.h"
#include <math.h>
#include "primShape.h"
#include "bounds.h"
#include <cstdlib>
#include <stdlib.h>
void tiledCanvas::start(bool clear, const agg::rgba& bk, int , int )
{
mTile->start(clear, bk, mTile->mWidth, mTile->mHeight);
}
void tiledCanvas::end()
{
mTile->end();
}
void tiledCanvas::circle(RGBA8 c, agg::trans_affine tr)
{
switch (tileTransform(tr, primShape::shapeMap[primShape::circleType])) {
case inside:
mTile->circle(c, tr);
return;
case simple:
case complex:
for (unsigned int i = 0; i < mTileList.size(); ++i) {
agg::trans_affine t(tr);
t.tx += mTileList[i].x;
t.ty += mTileList[i].y;
mTile->circle(c, t);
}
return;
}
return;
}
void tiledCanvas::square(RGBA8 c, agg::trans_affine tr)
{
switch (tileTransform(tr, primShape::shapeMap[primShape::squareType])) {
case inside:
mTile->square(c, tr);
return;
case simple:
case complex:
for (unsigned int i = 0; i < mTileList.size(); ++i) {
agg::trans_affine t(tr);
t.tx += mTileList[i].x;
t.ty += mTileList[i].y;
mTile->square(c, t);
}
return;
}
return;
}
void tiledCanvas::triangle(RGBA8 c, agg::trans_affine tr)
{
switch (tileTransform(tr, primShape::shapeMap[primShape::triangleType])) {
case inside:
mTile->triangle(c, tr);
return;
case simple:
case complex:
for (unsigned int i = 0; i < mTileList.size(); ++i) {
agg::trans_affine t(tr);
t.tx += mTileList[i].x;
t.ty += mTileList[i].y;
mTile->triangle(c, t);
}
return;
}
return;
}
void tiledCanvas::path(RGBA8 c, agg::trans_affine tr, agg::path_storage* path,
pathAttr* attr)
{
switch (tileTransform(tr, path, attr)) {
case inside:
mTile->path(c, tr, path, attr);
return;
case simple:
case complex:
for (unsigned int i = 0; i < mTileList.size(); ++i) {
agg::trans_affine t(tr);
t.tx += mTileList[i].x;
t.ty += mTileList[i].y;
mTile->path(c, t, path, attr);
}
return;
}
return;
}
static const double tileBuffer = 1.05;
tiledCanvas::tileType tiledCanvas::tileTransform(agg::trans_affine& tr,
agg::path_storage* path,
pathAttr* attr)
// Adjust the translation part of the transform so that it falls within the
// tile parallelogram at the origin.
//
// Returns whether the shape is close to the edge of the canvas
// (true=not close, false=close/overlapping).
{
double dummy;
mInvert.transform(&(tr.tx), &(tr.ty)); // transform to unit square tesselation
tr.tx = modf(tr.tx, &dummy); // translate to unit square at the origin
tr.ty = modf(tr.ty, &dummy);
if (tr.tx < 0.0) tr.tx += 1.0;
if (tr.ty < 0.0) tr.ty += 1.0;
mOffset.transform(&(tr.tx), &(tr.ty)); // transform back to specified tesselation
Bounds b(tr, path, attr, tileBuffer);
if (b.mMin_X > 0 && b.mMax_X < mWidth && b.mMin_Y > 0 && b.mMax_Y < mHeight)
return inside;
//if ((b.mMax_X - b.mMin_X) < mWidth && (b.mMax_Y - b.mMin_Y) < mHeight)
// return simple;
getTesselation(b);
return complex;
}
tiledCanvas::tiledCanvas(Canvas* tile, const agg::trans_affine& tr)
: Canvas(tile->mWidth, tile->mHeight),
mTile(tile),
mOffset(tr)
{
}
void tiledCanvas::scale(double scaleFactor)
{
agg::trans_affine_scaling scale(scaleFactor);
// Generate the tiling transform in pixel units
mOffset *= scale;
// The mInvert transform can transform coordinates from the pixel unit tiling
// to the unit square tiling.
mInvert = mOffset;
mInvert.invert();
}
tileList tiledCanvas::getTesselation(int w, int h, int x, int y, bool flipY)
{
// Produce an integer version of mOffset that is centered in the w x h screen
agg::trans_affine tess(mWidth, floor(mOffset.shy + 0.5), floor(mOffset.shx + 0.5),
flipY ? -mHeight : mHeight, x, y);
agg::rect_i screen(0, 0, w - 1, h - 1);
tileList tessPoints;
tessPoints.push_back(agg::point_i(x, y)); // always include the center tile
// examine rings of tile units around the center unit until you encounter a
// ring that doesn't have any tile units that intersect the screen. Then stop.
for (int ring = 1; ; ring++) {
bool hit = false;
for (int y = -ring; y <= ring; y++) {
for (int x = -ring; x <= ring; x++) {
// These loops enumerate all tile units on and within the ring.
// Skip tile units that are within (not on) the ring.
if (abs(x) < ring && abs(y) < ring) continue;
// Find where this tile is on the screen
double dx = x;
double dy = y;
tess.transform(&dx, &dy);
int px = (int)floor(dx + 0.5);
int py = (int)floor(dy + 0.5);
// If the tile is visible then record it
agg::rect_i tile(px, py, px + mWidth - 1, py + mHeight - 1);
if (tile.overlaps(screen)) {
hit = true;
tessPoints.push_back(agg::point_i(px, py));
}
}
}
if (!hit) break;
}
return tessPoints;
}
void tiledCanvas::getTesselation(Bounds b)
// use the same algorithm as getTesselation(int ...) , but purely in the
// floating point domain, to see what tesselation points the large shape
// needs to be drawn at such that all parts of it that overlap the canvas are
// drawn.
{
mTileList.clear();
mTileList.push_back(agg::point_d(0, 0));
agg::rect_d canvas(0, 0, (double)(mWidth - 1), (double)(mHeight - 1));
for (int ring = 1; ; ring++) {
bool hit = false;
for (int y = -ring; y <= ring; y++) {
for (int x = -ring; x <= ring; x++) {
// These loops enumerate all tile units on and within the ring.
// Skip tile units that are within (not on) the ring.
if (abs(x) < ring && abs(y) < ring) continue;
// Find where this tile is on the canvas
double dx = x;
double dy = y;
mOffset.transform(&dx, &dy);
// If the tile might touch the canvas then record it
agg::rect_d shape(b.mMin_X + dx, b.mMin_Y + dy, b.mMax_X + dx, b.mMax_Y + dy);
if (shape.overlaps(canvas)) {
hit = true;
mTileList.push_back(agg::point_d(dx, dy));
}
}
}
if (!hit) break;
}
}
bool tiledCanvas::isRectangular(int* x_factor, int* y_factor)
{
int shx = (int)floor(mOffset.shx + 0.5);
int shy = (int)floor(mOffset.shy + 0.5);
if (shx == 0 && shy == 0) {
if (x_factor && y_factor) *x_factor = *y_factor = 1;
return true;
}
if (shx && mWidth % abs(shx) == 0) {
if (x_factor && y_factor) {
*x_factor = 1;
*y_factor = mWidth / abs(shx);
}
return true;
}
if (shx && mWidth % (mWidth - abs(shx)) == 0) {
if (x_factor && y_factor) {
*x_factor = 1;
*y_factor = mWidth / (mWidth - abs(shx));
}
return true;
}
if (shy && mHeight % shy == 0) {
if (x_factor && y_factor) {
*x_factor = mHeight / abs(shy);
*y_factor = 1;
}
return true;
}
if (shy && mHeight % (mHeight - abs(shy)) == 0) {
if (x_factor && y_factor) {
*x_factor = mHeight / (mHeight - abs(shy));
*y_factor = 1;
}
return true;
}
return false;
}
|