1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
|
// ast.cpp
// this file is part of Context Free
// ---------------------
// Copyright (C) 2012-2014 John Horigan - john@glyphic.com
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License
// as published by the Free Software Foundation; either version 2
// of the License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
//
// John Horigan can be contacted at john@glyphic.com or at
// John Horigan, 1209 Villa St., Mountain View, CA 94041-1123, USA
//
//
#define _USE_MATH_DEFINES 1
#include "ast.h"
#include "astexpression.h"
#include "astreplacement.h"
#include "builder.h"
#include <cmath>
#include <cassert>
#include "rendererAST.h"
#include "attributes.h"
#include <cstdlib>
#include <cstring>
namespace AST {
const std::map<expType, std::string> ASTparameter::typeNames =
{
{NoType, "no type"},
{NumericType, "numeric type"},
{ModType, "adjustment type"},
{RuleType, "rule type"},
{FlagType, "flag type"}
};
const std::map<Locality_t, std::string> ASTparameter::localityNames =
{
{UnknownLocal, "unknown locality"},
{ImpureNonlocal, "impure non-local"},
{PureNonlocal, "pure non-local"},
{PureLocal, "pure local"}
};
void
ASTparameter::init(int nameIndex, ASTdefine* def)
{
mType = def->mType;
mLocality = def->mExpression ? def->mExpression->mLocality : PureLocal;
mTuplesize = def->mTuplesize;
if (mType == AST::NumericType) {
isNatural = def->mExpression && def->mExpression->isNatural;
if (mTuplesize == 0) mTuplesize = 1; // loop index
if (mTuplesize < 1 || mTuplesize > MaxVectorSize)
CfdgError::Error(mLocation, "Illegal vector size (<1 or >99)");
}
mName = nameIndex;
if (def->mDefineType == ASTdefine::ConstDefine)
mDefinition = def;
}
expType
decodeType(const std::string& typeName, int& mTuplesize,
bool& isNatural, const yy::location& mLocation)
{
expType type = NoType;
mTuplesize = 1;
isNatural = false;
if (typeName == "number") {
type = AST::NumericType;
} else if (typeName == "natural") {
type = AST::NumericType;
isNatural = true;
} else if (typeName == "adjustment") {
mTuplesize = ModificationSize;
type = AST::ModType;
} else if (typeName == "shape") {
type = AST::RuleType;
} else if (typeName.find("vector") == 0) {
// Would have used a regex but gcc does not have support yet
if (typeName.length() < 7 || !std::strchr("123456789", typeName[6]))
CfdgError::Error(mLocation, "Illegal vector type specification");
else {
// Must make sure next char is not +/-, whitespace or 0 before
// we can use strtol()
char* tail = nullptr;
errno = 0;
long sz = std::strtol(typeName.c_str() + 6, &tail, 10);
if ((tail && *tail != '\0') || errno == ERANGE) {
CfdgError::Error(mLocation, "Illegal vector type specification");
} else if (sz <= 1 || sz > MaxVectorSize) {
CfdgError::Error(mLocation, "Illegal vector size (<=1 or >99)");
} else {
type = AST::NumericType;
mTuplesize = static_cast<int>(sz);
}
}
} else {
type = AST::NoType;
CfdgError::Error(mLocation, "Unrecognized type name");
}
return type;
}
void
ASTparameter::init(const std::string& typeName, int nameIndex)
{
mLocality = PureNonlocal;
mType = decodeType(typeName, mTuplesize, isNatural, mLocation);
mName = nameIndex;
mDefinition = nullptr;
}
ASTparameter::ASTparameter(const std::string& typeName, int nameIndex,
const yy::location& where)
: mLocality(PureNonlocal), mLocation(where)
{ init(typeName, nameIndex); }
ASTparameter::ASTparameter(int nameIndex, ASTdefine* def, const yy::location& where)
: mLocation(where)
{ init(nameIndex, def); }
ASTparameter::ASTparameter(int nameIndex, const yy::location& where)
: mType(NumericType), isLoopIndex(true), mName(nameIndex), mLocation(where)
{ } // ctor for loop variables
ASTparameter::ASTparameter(const ASTparameter& from)
: mType(from.mType), isParameter(from.isParameter), isLoopIndex(from.isLoopIndex),
isNatural(from.isNatural), mLocality(from.mLocality), mName(from.mName),
mLocation(from.mLocation), mDefinition(nullptr), mStackIndex(from.mStackIndex),
mTuplesize(from.mTuplesize)
{}
ASTparameter&
ASTparameter::operator=(const ASTparameter& from)
{
if (this == &from) return *this;
mType = from.mType;
isParameter = from.isParameter;
isLoopIndex = from.isLoopIndex;
isNatural = from.isNatural;
mLocality = from.mLocality;
mName = from.mName;
mLocation = from.mLocation;
mStackIndex = from.mStackIndex;
mTuplesize = from.mTuplesize;
mDefinition = from.mDefinition;
return *this;
}
void
ASTparameter::checkParam(const yy::location&, const yy::location& nameLoc)
{
if (mName == -1)
CfdgError::Error(nameLoc, "Reserved keyword used for parameter name");
}
bool
ASTparameter::operator!=(const ASTparameter& p) const
{
if (mType != p.mType) return true;
if (mType == AST::NumericType &&
mTuplesize != p.mTuplesize) return true;
return false;
}
bool
ASTparameter::operator!=(const ASTexpression& e) const
{
if (mType != e.mType) return true;
if (mType == AST::NumericType &&
mTuplesize != e.evaluate()) return true;
return false;
}
int
ASTparameter::CheckType(const ASTparameters* types, const ASTexpression* args,
const yy::location& where, bool checkNumber, Builder* b)
{
// Walks down the right edge of an expression tree checking that the types
// of the children match the specified argument types
if ((types == nullptr || types->empty()) && (args == nullptr)) return 0;
if (types == nullptr || types->empty()) {
CfdgError::Error(args->where, "Arguments are not expected.", b);
return -1;
}
if (args == nullptr) {
CfdgError::Error(where, "Arguments are expected.", b);
return -1;
}
bool justCount = args->mType == AST::NoType;
size_t size = 0;
ASTparameters::const_iterator param_it = types->begin(),
param_end = types->end();
for (auto&& arg: *args) {
if (param_it == param_end) {
CfdgError::Error(args->where, "Too many arguments", b);
return -1;
}
if (!justCount) {
if (param_it->mType != arg.mType) {
CfdgError::Error(arg.where, "Incorrect argument type.", b);
CfdgError::Error(param_it->mLocation, "This is the expected type.", b);
return -1;
}
if (param_it->isNatural && !arg.isNatural && !b->impure()) {
CfdgError::Error(arg.where, "this expression does not satisfy the natural number requirement", b);
return -1;
}
if (param_it->mType == AST::NumericType &&
param_it->mTuplesize != arg.evaluate())
{
if (param_it->mTuplesize == 1)
CfdgError::Error(arg.where, "This argument should be scalar", b);
else
CfdgError::Error(arg.where, "This argument should be a vector", b);
CfdgError::Error(param_it->mLocation, "This is the expected type.", b);
return -1;
}
if (arg.mLocality != PureLocal && arg.mLocality != PureNonlocal &&
param_it->mType == AST::NumericType && !param_it->isNatural &&
!b->impure() && checkNumber)
{
CfdgError::Error(arg.where, "This expression does not satisfy the number parameter requirement", b);
return -1;
}
}
size += param_it->mTuplesize;
++param_it;
}
if (param_it != param_end) {
CfdgError::Error(args->where, "Not enough arguments.", b);
CfdgError::Error(param_it->mLocation, "Expecting this argument.", b);
return -1;
}
return static_cast<int>(size);
}
ASTexpression*
ASTparameter::constCopy(const yy::location& where, const std::string& entropy) const
{
switch (mType) {
case AST::NumericType: {
std::vector<double> data(mTuplesize);
bool natural = isNatural;
int valCount = mDefinition->mExpression->evaluate(data.data(), mTuplesize);
if (valCount != mTuplesize || valCount == 0)
CfdgError::Error(where, "Unexpected compile error."); // this also shouldn't happen
if (valCount < 1 || data.empty())
return new ASTreal(0.0, where); // shouldn't happen, but we don't want to crash if it does
// Create a new cons-list based on the evaluated variable's expression
ASTexpression* list = nullptr;
for (auto value: data) {
ASTreal* r = new ASTreal(value, where);
if (!list) r->text = entropy;
list = list ? list->append(r) : r;
}
list->isNatural = natural;
list->mLocality = mLocality;
return list;
}
case AST::ModType: {
ASTmodification* ret = nullptr;
if (const ASTmodification* mod = dynamic_cast<const ASTmodification*>(mDefinition->mExpression.get()))
ret = new ASTmodification(*mod, where);
else
ret = new ASTmodification(mDefinition->mChildChange, where);
ret->mLocality = mLocality;
return ret;
}
case AST::RuleType: {
// This must be bound to an ASTruleSpecifier, otherwise it would not be constant
if (const ASTruleSpecifier* r = dynamic_cast<const ASTruleSpecifier*> (mDefinition->mExpression.get())) {
ASTruleSpecifier* ret = new ASTruleSpecifier(r->shapeType, entropy, nullptr, where, nullptr);
ret->grab(r);
ret->mLocality = mLocality;
return ret;
} else {
CfdgError::Error(where, "Internal error computing bound rule specifier");
}
break;
}
default:
break;
}
return nullptr;
}
Locality_t
CombineLocality(Locality_t first, Locality_t second)
{
return static_cast<Locality_t>(first & second);
}
double
CFatof(const char* s)
{
double ret = atof(s);
return strchr(s, '%') ? ret / 100.0 : ret;
}
void
addUnique(SymmList& syms, agg::trans_affine& tr)
{
if (std::find(syms.begin(), syms.end(), tr) == syms.end())
syms.push_back(tr);
}
void
processDihedral(SymmList& syms, double order, double x, double y,
bool dihedral, double angle, const yy::location& where)
{
if (order < 1.0)
CfdgError::Error(where, "Rotational symmetry order must be one or larger");
agg::trans_affine reg;
agg::trans_affine_reflection mirror(angle);
reg.translate(-x, -y);
int num = static_cast<int>(order);
order = 2.0 * M_PI / order;
for (int i = 0; i < num; ++i) {
agg::trans_affine tr(reg);
if (i) tr.rotate(i * order);
agg::trans_affine tr2(tr);
tr2 *= mirror;
tr.translate(x, y);
tr2.translate(x, y);
addUnique(syms, tr);
if (dihedral) addUnique(syms, tr2);
}
}
// Analyze the symmetry spec accumulated in the data vector and add the
// appropriate affine transforms to the SymmList. Avoid adding the identity
// transform if it is already present in the SymmList.
void
processSymmSpec(SymmList& syms, agg::trans_affine& tile, bool tiled,
std::vector<double>& data, const yy::location& where)
{
if (data.empty()) return;
AST::FlagTypes t = static_cast<AST::FlagTypes>(static_cast<int>(data[0]));
bool frieze = (tile.sx != 0.0 || tile.sy != 0.0) && (tile.sx * tile.sy == 0.0);
bool rhombic = tiled && ((fabs(tile.shy) <= 0.0000001 && fabs(tile.shx/tile.sx - 0.5) < 0.0000001) ||
(fabs(tile.shx) <= 0.0000001 && fabs(tile.shy/tile.sy - 0.5) < 0.0000001));
bool rectangular = tiled && tile.shx == 0.0 && tile.shy == 0.0;
bool square = rectangular && tile.sx == tile.sy;
bool hexagonal = false;
bool square45 = false;
double size45 = tile.sx;
if (rhombic) {
double x1 = 1.0, y1 = 0.0;
tile.transform(&x1, &y1);
double dist10 = sqrt(x1 * x1 + y1 * y1);
double x2 = 0.0, y2 = 1.0;
tile.transform(&x2, &y2);
double dist01 = sqrt(x2 * x2 + y2 * y2);
hexagonal = fabs(dist10/dist01 - 1.0) < 0.0000001;
square45 = fabs(dist01/dist10 - M_SQRT2) < 0.0000001 ||
fabs(dist10/dist01 - M_SQRT2) < 0.0000001;
size45 = fmin(dist01, dist10);
}
static const agg::trans_affine_reflection ref45(M_PI_4);
static const agg::trans_affine_reflection ref135(-M_PI_4);
if (t >= AST::CF_P11G && t <= AST::CF_P2MM && !frieze)
CfdgError::Error(where, "Frieze symmetry only works in frieze designs");
if (t >= AST::CF_PM && t <= AST::CF_P6M && !tiled)
CfdgError::Error(where, "Wallpaper symmetry only works in tiled designs");
if (t == AST::CF_P2 && !frieze && !tiled)
CfdgError::Error(where, "p2 symmetry only works in frieze or tiled designs");
switch (t) {
case AST::CF_CYCLIC: {
double order, x = 0.0, y = 0.0;
switch (data.size()) {
case 4:
x = data[2];
y = data[3];
FALLTHROUGH;
case 2:
order = data[1];
break;
default:
CfdgError::Error(where, "Cyclic symmetry requires an order argument and an optional center of rotation");
order = 1.0; // suppress warning, never executed
break; // never gets here
}
processDihedral(syms, order, x, y, false, 0.0, where);
break;
}
case AST::CF_DIHEDRAL: {
double order, angle = 0.0, x = 0.0, y = 0.0;
switch (data.size()) {
case 5:
x = data[3];
y = data[4];
FALLTHROUGH;
case 3:
order = data[1];
angle = data[2] * M_PI / 180.0;
break;
case 4:
x = data[2];
y = data[3];
FALLTHROUGH;
case 2:
order = data[1];
break;
default:
CfdgError::Error(where, "Dihedral symmetry requires an order argument, an optional mirror angle, and an optional center of rotation");
order = 1.0; // suppress warning, never executed
break; // never gets here
}
processDihedral(syms, order, x, y, true, angle, where);
break;
}
case AST::CF_P11G: {
double mirrorx = 0.0, mirrory = 0.0;
if (data.size() == 2) {
if (tile.sx != 0.0)
mirrory = data[1];
else
mirrorx = data[1];
} else if (data.size() > 2) {
CfdgError::Error(where, "p11g symmetry takes no arguments or an optional glide axis position argument");
}
agg::trans_affine tr;
addUnique(syms, tr);
tr.translate(-mirrorx, -mirrory);
if (tile.sx != 0.0)
tr.flip_y();
else
tr.flip_x();
tr.translate(tile.sx * 0.5 + mirrorx, tile.sy * 0.5 + mirrory);
addUnique(syms, tr);
break;
}
case AST::CF_P11M: {
double mirrorx = 0.0, mirrory = 0.0;
if (data.size() == 2) {
if (tile.sx != 0.0)
mirrory = data[1];
else
mirrorx = data[1];
} else if (data.size() > 2) {
CfdgError::Error(where, "p11m symmetry takes no arguments or an optional mirror axis position argument");
}
agg::trans_affine tr;
addUnique(syms, tr);
tr.translate(-mirrorx, -mirrory);
if (tile.sx != 0.0)
tr.flip_y();
else
tr.flip_x();
tr.translate(mirrorx, mirrory);
addUnique(syms, tr);
break;
}
case AST::CF_P1M1: {
double mirrorx = 0.0, mirrory = 0.0;
if (data.size() == 2) {
if (tile.sx != 0.0)
mirrorx = data[1];
else
mirrory = data[1];
} else if (data.size() > 2) {
CfdgError::Error(where, "p1m1 symmetry takes no arguments or an optional mirror axis position argument");
}
agg::trans_affine tr;
addUnique(syms, tr);
tr.translate(-mirrorx, -mirrory);
if (tile.sx != 0.0)
tr.flip_x();
else
tr.flip_y();
tr.translate(mirrorx, mirrory);
addUnique(syms, tr);
break;
}
case AST::CF_P2: {
double mirrorx = 0.0, mirrory = 0.0;
if (data.size() == 3) {
mirrorx = data[1];
mirrory = data[2];
} else if (data.size() != 1) {
CfdgError::Error(where, "p2 symmetry takes no arguments or a center of rotation");
}
processDihedral(syms, 2.0, mirrorx, mirrory, false, 0.0, where);
break;
}
case AST::CF_P2MG: {
double mirrorx = 0.0, mirrory = 0.0;
if (data.size() == 3) {
mirrorx = data[1];
mirrory = data[2];
} else if (data.size() != 1) {
CfdgError::Error(where, "p2mg symmetry takes no arguments or a center of rotation");
}
agg::trans_affine tr1;
agg::trans_affine_translation tr2(-mirrorx, -mirrory);
agg::trans_affine_translation tr3(-mirrorx, -mirrory);
agg::trans_affine_translation tr4(-mirrorx, -mirrory);
tr2.flip_x();
tr3.flip_x();
tr3.flip_y();
tr4.flip_y();
tr2.translate(tile.sx * 0.5 + mirrorx, tile.sy * 0.5 + mirrory);
tr3.translate(mirrorx, mirrory);
tr4.translate(tile.sx * 0.5 + mirrorx, tile.sy * 0.5 + mirrory);
addUnique(syms, tr1);
addUnique(syms, tr2);
addUnique(syms, tr3);
addUnique(syms, tr4);
break;
}
case AST::CF_P2MM: {
double mirrorx = 0.0, mirrory = 0.0;
if (data.size() == 3) {
mirrorx = data[1];
mirrory = data[2];
} else if (data.size() != 1) {
CfdgError::Error(where, "p2mm symmetry takes no arguments or a center of relection");
}
processDihedral(syms, 2.0, mirrorx, mirrory, true, 0.0, where);
break;
}
case AST::CF_PM: {
if (!rectangular && !square45) {
CfdgError::Error(where, "pm symmetry requires rectangular tiling");
}
double offset = 0.0;
switch (data.size()) {
case 2:
break;
case 3:
offset = data[2];
break;
default:
CfdgError::Error(where, "pm symmetry takes a mirror axis argument and an optional axis position argument");
}
agg::trans_affine tr;
addUnique(syms, tr);
int axis = static_cast<int>(data[1]);
if (rectangular && (axis < 0 || axis > 1))
CfdgError(where, "pm symmetry mirror axis argument must be 0 or 1");
else if (square45 && (axis < 2 || axis > 3))
CfdgError::Error(where, "pm symmetry mirror axis argument must be 2 or 3");
switch (axis) {
case 0: // mirror on x axis
tr.translate(0, -offset);
tr.flip_y();
tr.translate(0, offset);
break;
case 1: // mirror on y axis
tr.translate(-offset, 0);
tr.flip_x();
tr.translate(offset, 0);
break;
case 2: // mirror on x=y axis
tr.translate(-offset * M_SQRT1_2, offset * M_SQRT1_2);
tr *= ref45;
tr.translate( offset * M_SQRT1_2, -offset * M_SQRT1_2);
break;
case 3: // mirror on x=-y axis
tr.translate(-offset * M_SQRT1_2, -offset * M_SQRT1_2);
tr *= ref135;
tr.translate( offset * M_SQRT1_2, offset * M_SQRT1_2);
break;
default:
CfdgError::Error(where, "pm symmetry mirror axis argument must be 0, 1, 2, or 3");
break;
}
addUnique(syms, tr);
break;
}
case AST::CF_PG: {
if (!rectangular && !square45) {
CfdgError::Error(where, "pg symmetry requires rectangular tiling");
}
double offset = 0.0;
switch (data.size()) {
case 2:
break;
case 3:
offset = data[2];
break;
default:
CfdgError::Error(where, "pg symmetry takes a glide axis argument and an optional axis position argument");
}
agg::trans_affine tr;
addUnique(syms, tr);
int axis = static_cast<int>(data[1]);
if (rectangular && (axis < 0 || axis > 1))
CfdgError(where, "pg symmetry mirror axis argument must be 0 or 1");
else if (square45 && (axis < 2 || axis > 3))
CfdgError::Error(where, "pg symmetry mirror axis argument must be 2 or 3");
switch (axis) {
case 0: // mirror on x axis
tr.translate(0, -offset);
tr.flip_y();
tr.translate(tile.sx * 0.5, offset);
break;
case 1: // mirror on y axis
tr.translate(-offset, 0);
tr.flip_x();
tr.translate(offset, tile.sy * 0.5);
break;
case 2: // mirror on x=y axis
tr.translate(-offset * M_SQRT1_2, offset * M_SQRT1_2);
tr *= ref45;
tr.translate(( offset + size45 * 0.5) * M_SQRT1_2, (-offset + size45 * 0.5) * M_SQRT1_2);
break;
case 3: // mirror on x=-y axis
tr.translate(-offset * M_SQRT1_2, -offset * M_SQRT1_2);
tr *= ref135;
tr.translate(( offset - size45 * 0.5) * M_SQRT1_2, ( offset + size45 * 0.5) * M_SQRT1_2);
break;
default:
CfdgError::Error(where, "pg symmetry glide axis argument must be 0, 1, 2, or 3");
break;
}
addUnique(syms, tr);
break;
}
case AST::CF_CM: {
if (!rhombic && !square) {
CfdgError::Error(where, "cm symmetry requires diamond tiling");
}
double offset = 0.0;
switch (data.size()) {
case 2:
break;
case 3:
offset = data[2];
break;
default:
CfdgError::Error(where, "cm symmetry takes a mirror axis argument and an optional axis position argument");
}
agg::trans_affine tr;
addUnique(syms, tr);
int axis = static_cast<int>(data[1]);
if (rhombic && (axis < 0 || axis > 1))
CfdgError(where, "cm symmetry mirror axis argument must be 0 or 1");
else if (square && (axis < 2 || axis > 3))
CfdgError::Error(where, "cm symmetry mirror axis argument must be 2 or 3");
switch (axis) {
case 0: // mirror on x axis
tr.translate(0, -offset);
tr.flip_y();
tr.translate(0, offset);
break;
case 1: // mirror on y axis
tr.translate(-offset, 0);
tr.flip_x();
tr.translate(offset, 0);
break;
case 2: // mirror on x=y axis
tr.translate( offset * M_SQRT1_2, -offset * M_SQRT1_2);
tr *= ref45;
tr.translate(-offset * M_SQRT1_2, offset * M_SQRT1_2);
break;
case 3: // mirror on x=-y axis
tr.translate(-offset * M_SQRT1_2, -offset * M_SQRT1_2);
tr *= ref135;
tr.translate( offset * M_SQRT1_2, offset * M_SQRT1_2);
break;
default:
CfdgError::Error(where, "cm symmetry mirror axis argument must be 0, 1, 2, or 3");
break;
}
addUnique(syms, tr);
break;
}
case AST::CF_PMM: {
if (!rectangular && !square45) {
CfdgError::Error(where, "pmm symmetry requires rectangular tiling");
}
double centerx = 0.0, centery = 0.0;
switch (data.size()) {
case 1:
break;
case 3:
centerx = data[1];
centery = data[2];
break;
default:
CfdgError::Error(where, "pmm symmetry takes no arguments or a center of reflection");
}
processDihedral(syms, 2.0, centerx, centery, true, square45 ? M_PI_4 : 0.0, where);
break;
}
case AST::CF_PMG: {
if (!rectangular && !square45) {
CfdgError::Error(where, "pmg symmetry requires rectangular tiling");
}
double centerx = 0.0, centery = 0.0;
switch (data.size()) {
case 2:
break;
case 4:
centerx = data[2];
centery = data[3];
break;
default:
CfdgError::Error(where, "pmg symmetry takes a mirror axis argument and an optional center of reflection");
}
agg::trans_affine tr, tr2;
int axis = static_cast<int>(data[1]);
if (rectangular && (axis < 0 || axis > 1))
CfdgError(where, "pmg symmetry mirror axis argument must be 0 or 1");
else if (square45 && (axis < 2 || axis > 3))
CfdgError::Error(where, "pmg symmetry mirror axis argument must be 2 or 3");
switch (axis) {
case 0: { // mirror on x axis
double cy = fabs(centery + 0.25 * tile.sy) < fabs(centery - 0.25 * tile.sy) ?
centery + 0.25 * tile.sy : centery - 0.25 * tile.sy;
processDihedral(syms, 2.0, centerx, cy, false, 0.0, where);
tr.translate(-centerx, 0.0);
tr.flip_x();
tr.translate(centerx, 0.5 * tile.sy);
addUnique(syms, tr);
tr2.translate(0.0, -centery);
tr2.flip_y();
tr2.translate(0.0, centery);
addUnique(syms, tr2);
break;
}
case 1: { // mirror on y axis
double cx = fabs(centerx + 0.25 * tile.sx) < fabs(centerx - 0.25 * tile.sx) ?
centerx + 0.25 * tile.sx : centerx - 0.25 * tile.sx;
processDihedral(syms, 2.0, cx, centery, false, 0.0, where);
tr.translate(-centerx, 0.0);
tr.flip_x();
tr.translate(centerx, 0.0);
addUnique(syms, tr);
tr2.translate(0.0, -centery);
tr2.flip_y();
tr2.translate(0.5 * tile.sx, centery);
addUnique(syms, tr2);
break;
}
case 2: { // mirror on x=y axis
double cx = centerx - 0.25 * M_SQRT1_2 * size45;
double cy = centery + 0.25 * M_SQRT1_2 * size45;
double cx2 = centerx + 0.25 * M_SQRT1_2 * size45;
double cy2 = centery - 0.25 * M_SQRT1_2 * size45;
if (cx2 * cx2 + cy2 * cy2 < cx * cx + cy * cy) {
cx = cx2;
cy = cy2;
}
processDihedral(syms, 2.0, cx, cy, false, 0.0, where);
tr.translate(-centerx, -centery); // mirror on x=y
tr *= ref45;
tr.translate( centerx, centery);
addUnique(syms, tr);
tr2.translate(-centerx, -centery); // glide on x=-y
tr2 *= ref135;
tr2.translate(centerx - size45 * M_SQRT1_2 * 0.5, centery + size45 * M_SQRT1_2 * 0.5);
addUnique(syms, tr2);
break;
}
case 3: { // mirror on x=-y axis
double cx = centerx + 0.25 * M_SQRT1_2 * size45;
double cy = centery + 0.25 * M_SQRT1_2 * size45;
double cx2 = centerx - 0.25 * M_SQRT1_2 * size45;
double cy2 = centery - 0.25 * M_SQRT1_2 * size45;
if (cx2 * cx2 + cy2 * cy2 < cx * cx + cy * cy) {
cx = cx2;
cy = cy2;
}
processDihedral(syms, 2.0, cx, cy, false, 0.0, where);
tr.translate(-centerx, -centery); // mirror on x=-y
tr *= ref135;
tr.translate( centerx, centery);
addUnique(syms, tr);
tr2.translate(-centerx, -centery); // glide on x=y
tr2 *= ref45;
tr2.translate(centerx + size45 * M_SQRT1_2 * 0.5, centery + size45 * M_SQRT1_2 * 0.5);
addUnique(syms, tr2);
break;
}
default:
CfdgError::Error(where, "pmg symmetry mirror axis argument must be 0, 1, 2, or 3");
break;
}
break;
}
case AST::CF_PGG: {
if (!rectangular && !square45) {
CfdgError::Error(where, "pgg symmetry requires rectangular tiling");
}
double centerx = 0.0, centery = 0.0;
switch (data.size()) {
case 1:
break;
case 3:
centerx = data[1];
centery = data[2];
break;
default:
CfdgError::Error(where, "pgg symmetry takes no arguments or a center of glide axis intersection");
}
if (square45) {
double cx = centerx + 0.25 * M_SQRT2 * size45;
double cy = centery;
double cx2 = centerx - 0.25 * M_SQRT2 * size45;
double cy2 = centery;
if (cx2*cx2 + cy2*cy2 < cx*cx + cy*cy) {
cx = cx2;
cy = cy2;
}
cx2 = centerx;
cy2 = centery + 0.25 * M_SQRT2 * size45;
if (cx2*cx2 + cy2*cy2 < cx*cx + cy*cy) {
cx = cx2;
cy = cy2;
}
cx2 = centerx;
cy2 = centery - 0.25 * M_SQRT2 * size45;
if (cx2*cx2 + cy2*cy2 < cx*cx + cy*cy) {
cx = cx2;
cy = cy2;
}
processDihedral(syms, 2.0, cx, cy, false, 0.0, where);
agg::trans_affine tr, tr2;
tr.translate(-centerx, -centery); // glide on x=y
tr *= ref45;
tr.translate(centerx + size45 * M_SQRT1_2 * 0.5, centery + size45 * M_SQRT1_2 * 0.5);
addUnique(syms, tr);
tr2.translate(-centerx, -centery); // glide on x=-y
tr2 *= ref135;
tr2.translate(centerx - size45 * M_SQRT1_2 * 0.5, centery + size45 * M_SQRT1_2 * 0.5);
addUnique(syms, tr2);
break;
}
double cx = fabs(centerx + 0.25 * tile.sx) < fabs(centerx - 0.25 * tile.sx) ?
centerx + 0.25 * tile.sx : centerx - 0.25 * tile.sx;
double cy = fabs(centery + 0.25 * tile.sy) < fabs(centery - 0.25 * tile.sy) ?
centery + 0.25 * tile.sy : centery - 0.25 * tile.sy;
processDihedral(syms, 2.0, cx, cy, false, 0.0, where);
agg::trans_affine tr, tr2;
tr.translate(-centerx, 0.0);
tr.flip_x();
tr.translate(centerx, 0.5 * tile.sy);
addUnique(syms, tr);
tr2.translate(0.0, -centery);
tr2.flip_y();
tr2.translate(0.5 * tile.sx, centery);
addUnique(syms, tr2);
break;
}
case AST::CF_CMM: {
if (!rhombic && !square) {
CfdgError::Error(where, "cmm symmetry requires diamond tiling");
}
double centerx = 0.0, centery = 0.0;
switch (data.size()) {
case 1:
break;
case 3:
centerx = data[1];
centery = data[2];
break;
default:
CfdgError::Error(where, "cmm symmetry takes no arguments or a center of reflection");
}
processDihedral(syms, 2.0, centerx, centery, true, square45 ? M_PI_4 : 0.0, where);
break;
}
case AST::CF_P4:
case AST::CF_P4M: {
if (!square && !square45) {
CfdgError::Error(where, "p4 & p4m symmetry requires square tiling");
}
double x = 0.0, y = 0.0;
switch (data.size()) {
case 1:
break;
case 3:
x = data[1];
y = data[2];
break;
default:
CfdgError::Error(where, "p4 & p4m symmetry takes no arguments or a center of rotation");
}
processDihedral(syms, 4.0, x, y, t == AST::CF_P4M, square ? M_PI_4 : 0.0, where);
break;
}
case AST::CF_P4G: {
if (!square && !square45) {
CfdgError::Error(where, "p4g symmetry requires square tiling");
}
double centerx = 0.0, centery = 0.0;
switch (data.size()) {
case 1:
break;
case 3:
centerx = data[1];
centery = data[2];
break;
default:
CfdgError::Error(where, "p4g symmetry takes no arguments or a center of rotation");
}
agg::trans_affine reg;
reg.translate(-centerx, -centery);
agg::trans_affine glide(reg);
if (square45) {
glide.translate(-size45 * 0.25 * M_SQRT1_2, -size45 * 0.25 * M_SQRT1_2);
glide *= ref135;
glide.translate(-size45 * 0.25 * M_SQRT1_2, size45 * 0.75 * M_SQRT1_2);
} else {
glide.translate(tile.sx * 0.25, 0.0);
glide.flip_x();
glide.translate(-tile.sx * 0.25, tile.sy * 0.5);
}
for (int i = 0; i < 4; ++i) {
agg::trans_affine tr(reg), tr2(glide);
if (i) {
tr.rotate(i * M_PI_2);
tr2.rotate(i * M_PI_2);
}
tr.translate(centerx, centery);
tr2.translate(centerx, centery);
addUnique(syms, tr);
addUnique(syms, tr2);
}
break;
}
case AST::CF_P3: {
if (!hexagonal) {
CfdgError::Error(where, "p3 symmetry requires hexagonal tiling");
}
double x = 0.0, y = 0.0;
switch (data.size()) {
case 1:
break;
case 3:
x = data[1];
y = data[2];
break;
default:
CfdgError::Error(where, "p3 symmetry takes no arguments or a center of rotation");
}
processDihedral(syms, 3.0, x, y, false, 0.0, where);
break;
}
case AST::CF_P3M1:
case AST::CF_P31M: {
if (!hexagonal) {
CfdgError::Error(where, "p3m1 & p31m symmetry requires hexagonal tiling");
}
double x = 0.0, y = 0.0;
switch (data.size()) {
case 1:
break;
case 3:
x = data[1];
y = data[2];
break;
default:
CfdgError::Error(where, "p3m1 & p31m symmetry takes no arguments or a center of rotation");
}
bool deg30 = (fabs(tile.shx) <= 0.000001) != (t == AST::CF_P3M1);
double angle = M_PI / (deg30 ? 6.0 : 3.0);
processDihedral(syms, 3.0, x, y, true, angle, where);
break;
}
case AST::CF_P6:
case AST::CF_P6M: {
if (!hexagonal) {
CfdgError::Error(where, "p6 & p6m symmetry requires hexagonal tiling");
}
double x = 0.0, y = 0.0;
switch (data.size()) {
case 1:
break;
case 3:
x = data[1];
y = data[2];
break;
default:
CfdgError::Error(where, "p6 & p6m symmetry takes no arguments or a center of rotation");
}
processDihedral(syms, 6.0, x, y, t == AST::CF_P6M, 0.0, where);
break;
}
default:
CfdgError::Error(where, "Unknown symmetry type");
break; // never gets here
}
data.clear();
}
std::vector<const ASTmodification*>
getTransforms(const ASTexpression* e, SymmList& syms, RendererAST* r,
bool tiled, agg::trans_affine& tile)
{
std::vector<const ASTmodification*> ret;
syms.clear();
if (e == nullptr) return ret;
std::vector<double> symmSpec;
yy::location where;
bool snarfFlagOpts = false;
for (auto&& kid: *e) {
switch (kid.mType) {
case FlagType:
if (snarfFlagOpts)
processSymmSpec(syms, tile, tiled, symmSpec, where);
// Snarf and process the numeric arguments for the symmetry spec
where = kid.where;
snarfFlagOpts = true;
FALLTHROUGH;
case NumericType:
if (snarfFlagOpts) {
int sz = kid.evaluate();
if (sz < 1) {
CfdgError::Error(kid.where, "Could not evaluate this");
} else {
size_t oldsize = symmSpec.size();
symmSpec.resize(oldsize + sz);
if (kid.evaluate(symmSpec.data() + oldsize, sz, r) != sz)
CfdgError::Error(kid.where, "Could not evaluate this");
}
where = where + kid.where;
} else {
CfdgError::Error(kid.where, "Symmetry flag expected here");
}
break;
case ModType:
if (snarfFlagOpts)
processSymmSpec(syms, tile, tiled, symmSpec, where);
snarfFlagOpts = false;
if (const ASTmodification* m = dynamic_cast<const ASTmodification*>(&kid)) {
if ((m->modClass &
(ASTmodification::GeomClass | ASTmodification::PathOpClass)) ==
m->modClass && (r || m->isConstant))
{
Modification mod;
kid.evaluate(mod, false, r);
addUnique(syms, mod.m_transform);
} else {
ret.push_back(m);
}
} else {
CfdgError::Error(kid.where, "Wrong type");
}
break;
default:
CfdgError::Error(kid.where, "Wrong type");
break;
}
}
if (snarfFlagOpts)
processSymmSpec(syms, tile, tiled, symmSpec, where);
return ret;
}
}
|