File: Rand64.cpp

package info (click to toggle)
contextfree 3.4%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 3,260 kB
  • sloc: cpp: 37,992; lex: 414; makefile: 123; sh: 43; python: 34
file content (176 lines) | stat: -rw-r--r-- 4,467 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
// Rand64.cpp
// this file is part of Context Free
// ---------------------
// Copyright (C) 2008-2015 John Horigan - john@glyphic.com
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License
// as published by the Free Software Foundation; either version 2
// of the License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
// 
// John Horigan can be contacted at john@glyphic.com or at
// John Horigan, 1209 Villa St., Mountain View, CA 94041-1123, USA
//
//


#include "Rand64.h"
#include "myrandom.h"
#include <cstddef>

Rand64 Rand64::Common;

// Return int in [l,u]
int64_t Rand64::getInt(int64_t l, int64_t u)
{
    CF::uniform_int_distribution<int64_t> intRand(l,u);
    return intRand(mSeed);
}

// Return int in [0,trials]
int64_t Rand64::getBinomial(int64_t trials, double p)
{
    CF::binomial_distribution<int64_t> bd(nat(trials), prob(p));
    return bd(mSeed);
}

// Return int in [0,trials]
int64_t Rand64::getNegativeBinomial(int64_t trials, double p)
{
    CF::negative_binomial_distribution<int64_t> nbd(nat(trials), prob(p));
    return nbd(mSeed);
}

bool Rand64::getBernoulli(double p)
{
    CF::bernoulli_distribution bd(prob(p));
    return bd(mSeed);
}

int64_t Rand64::getGeometric(double p)
{
    CF::geometric_distribution<int64_t> gd(prob(p));
    return gd(mSeed);
}

int64_t Rand64::getPoisson(double mean)
{
    CF::poisson_distribution<int64_t> pd(pos(mean));
    return pd(mSeed);
}

double Rand64::getExponential(double lambda)
{
    CF::exponential_distribution<double> ed(pos(lambda));
    return ed(mSeed);
}

double Rand64::getGamma(double alpha, double beta)
{
    CF::gamma_distribution<double> gd(pos(alpha), pos(beta));
    return gd(mSeed);
}

double Rand64::getWeibull(double a, double b)
{
    CF::weibull_distribution<double> wd(pos(a), pos(b));
    return wd(mSeed);
}

double Rand64::getExtremeValue(double location, double scale)
{
    CF::extreme_value_distribution<double> evd(location, pos(scale));
    return evd(mSeed);
}

double Rand64::getNormal(double mean, double stddev)
{
    CF::normal_distribution<double> nd(mean, stddev);
    return nd(mSeed);
}

double Rand64::getLogNormal(double scale, double shape)
{
    CF::lognormal_distribution<double> lnd(scale, shape);
    return lnd(mSeed);
}

double Rand64::getChiSquared(double freedom)
{
    CF::chi_squared_distribution<double> csd(degree(freedom));
    return csd(mSeed);
}

double Rand64::getCauchy(double location, double scale)
{
    CF::cauchy_distribution<double> cd(location, pos(scale));
    return cd(mSeed);
}

double Rand64::getFisherF(double mfree, double nfree)
{
    CF::fisher_f_distribution<double> ffd(degree(mfree), degree(nfree));
    return ffd(mSeed);
}

double Rand64::getStudentT(double freedom)
{
    CF::student_t_distribution<double> sttd(degree(freedom));
    return sttd(mSeed);
}

int64_t Rand64::getDiscrete(unsigned count, const double* weights)
{
    if (count == 0)
        return 0;

    std::vector<double> w(count);
    for (unsigned i = 0; i < count; ++i)
        w[i] = fabs(weights[i]);

    std::size_t i(0);
    CF::discrete_distribution<int64_t> sd(count, 0, 1,
        [&w, &i](double)
        {
            auto weight = w[i];
            ++i;
            return weight;
        });
    return sd(mSeed);
}


void Rand64::xorChar(unsigned char c, unsigned i)
{
    mSeed.mSeed ^= (static_cast<result_type>(c)) << (i * 8);
}

void Rand64::xorString(const char* t, int& i)
{
    for (; *t; ++t) {
        xorChar(static_cast<unsigned char>(*t), static_cast<unsigned>(i));
        mSeed.discard(1);
        i = (i + 1) & 7;
    }
}

std::string Rand64::serialize() const
{
    static const char* digits = "0123456789ABCDEF";
    constexpr std::size_t hex_len = sizeof(mSeed.mSeed) << 1;
    std::string rc("0x");
    rc.resize(hex_len + 2, '0');
    for (std::size_t i=0, j=(hex_len-1)*4 ; i<hex_len; ++i,j-=4)
        rc[i + 2] = digits[((mSeed.mSeed)>>j) & 0x0f];
    return rc;
}