File: agg_trans_affine_1D.h

package info (click to toggle)
contextfree 3.4%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 3,260 kB
  • sloc: cpp: 37,992; lex: 414; makefile: 123; sh: 43; python: 34
file content (320 lines) | stat: -rw-r--r-- 10,792 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.4
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
// Copyright (C) 2009 John Horigan ( john@glyphic.com )
//
// Permission to copy, use, modify, sell and distribute this software 
// is granted provided this copyright notice appears in all copies. 
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: john@glyphic.com
//          mcseem@antigrain.com
//          mcseemagg@yahoo.com
//          http://www.antigrain.com
//          
//----------------------------------------------------------------------------
//
// Affine transformation classes in one dimension.
//
//----------------------------------------------------------------------------
#ifndef AGG_TRANS_AFFINE_1D_INCLUDED
#define AGG_TRANS_AFFINE_1D_INCLUDED

#include <math.h>
#include "agg2/agg_basics.h"

namespace agg
{
    const double affine_1D_epsilon = 1e-14; 
    
    //============================================================trans_affine_1D
    //
    // Affine transformation are linear transformations in Cartesian coordinates
    // (strictly speaking not only in Cartesian, but for the beginning we will 
    // think so). In one dimension, they are rotation and translation.  
    //
    //----------------------------------------------------------------------
    struct trans_affine_1D
    {
        double sz, tz;
        
        //------------------------------------------ Construction
        // Identity matrix
        trans_affine_1D() :
        sz(1.0), tz(0.0)
        {}
        
        // Custom matrix. Usually used in derived classes
        trans_affine_1D(double v0, double v1) :
        sz(v0), tz(v1)
        {}
        
        // Custom matrix from m[2]
        explicit trans_affine_1D(const double* m) :
        sz(m[0]), tz(m[1])
        {}
        
        //------------------------------------------ Operations
        // Reset - load an identity matrix
        const trans_affine_1D& reset();
        
        // Direct transformations operations
        const trans_affine_1D& translate(double z);
        const trans_affine_1D& scale(double s);
        
        // Multiply matrix to another one
        const trans_affine_1D& multiply(const trans_affine_1D& m);
        
        // Multiply "m" to "this" and assign the result to "this"
        const trans_affine_1D& premultiply(const trans_affine_1D& m);
        
        // Multiply matrix to inverse of another one
        const trans_affine_1D& multiply_inv(const trans_affine_1D& m);
        
        // Multiply inverse of "m" to "this" and assign the result to "this"
        const trans_affine_1D& premultiply_inv(const trans_affine_1D& m);
        
        // Invert matrix. Do not try to invert degenerate matrices, 
        // there's no check for validity. If you set scale to 0 and 
        // then try to invert matrix, expect unpredictable result.
        const trans_affine_1D& invert();
        
        //------------------------------------------- Load/Store
        // Store matrix to an array [6] of double
        void store_to(double* m) const
        {
            *m++ = sz; *m++ = tz; 
        }
        
        // Load matrix from an array [6] of double
        const trans_affine_1D& load_from(const double* m)
        {
            sz = *m++; tz = *m++; 
            return *this;
        }
        
        //------------------------------------------- Operators
        
        // Multiply the matrix by another one
        const trans_affine_1D& operator *= (const trans_affine_1D& m)
        {
            return multiply(m);
        }
        
        // Multiply the matrix by inverse of another one
        const trans_affine_1D& operator /= (const trans_affine_1D& m)
        {
            return multiply_inv(m);
        }
        
        // Multiply the matrix by another one and return
        // the result in a separete matrix.
        trans_affine_1D operator * (const trans_affine_1D& m) const
        {
            return trans_affine_1D(*this).multiply(m);
        }
        
        // Multiply the matrix by inverse of another one 
        // and return the result in a separete matrix.
        trans_affine_1D operator / (const trans_affine_1D& m) const
        {
            return trans_affine_1D(*this).multiply_inv(m);
        }
        
        // Calculate and return the inverse matrix
        trans_affine_1D operator ~ () const
        {
            trans_affine_1D ret = *this;
            return ret.invert();
        }
        
        // Equal operator with default epsilon
        bool operator == (const trans_affine_1D& m) const
        {
            return is_equal(m, affine_1D_epsilon);
        }
        
        // Not Equal operator with default epsilon
        bool operator != (const trans_affine_1D& m) const
        {
            return !is_equal(m, affine_1D_epsilon);
        }
        
        //-------------------------------------------- Transformations
        // Direct transformation of z
        void transform(double* z) const;
        
        // Inverse transformation of z. It works slower than the 
        // direct transformation. For massive operations it's better to 
        // invert() the matrix and then use direct transformations. 
        void inverse_transform(double* z) const;
        
        //-------------------------------------------- Auxiliary
        // Calculate the determinant of matrix
        double determinant() const
        {
            return sz;
        }
        
        // Calculate the reciprocal of the determinant
        double determinant_reciprocal() const
        {
            return 1.0 / (sz);
        }
        
        double scale() const;
        
        // Check to see if the matrix is not degenerate
        bool is_valid(double epsilon = affine_1D_epsilon) const;
        
        // Check to see if it's an identity matrix
        bool is_identity(double epsilon = affine_1D_epsilon) const;
        
        // Check to see if two matrices are equal
        bool is_equal(const trans_affine_1D& m, double epsilon = affine_1D_epsilon) const;
        
        // Determine the major parameters. Use with caution considering 
        // possible degenerate cases.
        void   translation(double* dz) const;
    };
    
    //------------------------------------------------------------------------
    inline void trans_affine_1D::transform(double* z) const
    {
        *z = *z * sz + tz;
    }
    
    //------------------------------------------------------------------------
    inline void trans_affine_1D::inverse_transform(double* z) const
    {
        double d = determinant_reciprocal();
        *z = (*z - tz) * d;
    }
    
    //------------------------------------------------------------------------
    inline double trans_affine_1D::scale() const
    {
        return fabs(sz);
    }
    
    //------------------------------------------------------------------------
    inline const trans_affine_1D& trans_affine_1D::translate(double z) 
    { 
        tz += z;
        return *this;
    }
    
    //------------------------------------------------------------------------
    inline const trans_affine_1D& trans_affine_1D::scale(double s) 
    {
        double m = s; // Possible hint for the optimizer
        sz  *= m;
        tz  *= m;
        return *this;
    }
    
    //------------------------------------------------------------------------
    inline const trans_affine_1D& trans_affine_1D::premultiply(const trans_affine_1D& m)
    {
        trans_affine_1D t = m;
        return *this = t.multiply(*this);
    }
    
    //------------------------------------------------------------------------
    inline const trans_affine_1D& trans_affine_1D::multiply_inv(const trans_affine_1D& m)
    {
        trans_affine_1D t = m;
        t.invert();
        return multiply(t);
    }
    
    //------------------------------------------------------------------------
    inline const trans_affine_1D& trans_affine_1D::premultiply_inv(const trans_affine_1D& m)
    {
        trans_affine_1D t = m;
        t.invert();
        return *this = t.multiply(*this);
    }
    
    //====================================================trans_affine_1D_scaling
    // Scaling matrix. x, y - scale coefficients by X and Y respectively
    class trans_affine_1D_scaling : public trans_affine_1D
        {
        public:
            trans_affine_1D_scaling(double s) : 
            trans_affine_1D(s, 0.0)
            {}
        };
    
    //================================================trans_affine_1D_translation
    // Translation matrix
    class trans_affine_1D_translation : public trans_affine_1D
        {
        public:
            trans_affine_1D_translation(double z) : 
            trans_affine_1D(1.0, z)
            {}
        };
        
    //------------------------------------------------------------------------
    inline const trans_affine_1D& trans_affine_1D::invert()
    {
        double d  = determinant_reciprocal();

        sz = d;
        tz = -tz * d;
        return *this;
    }
    
    
    //------------------------------------------------------------------------
    inline const trans_affine_1D& trans_affine_1D::multiply(const trans_affine_1D& m)
    {
        sz = sz * m.sz;
        tz = tz * m.sz + m.tz;
        
        return *this;
    }
    
    //------------------------------------------------------------------------
    inline const trans_affine_1D& trans_affine_1D::reset()
    {
        sz = 1.0; 
        tz = 0.0;
        return *this;
    }
    
    //------------------------------------------------------------------------
    inline bool trans_affine_1D::is_identity(double epsilon) const
    {
        return  is_equal_eps(sz, 1.0, epsilon) &&
                is_equal_eps(tz, 0.0, epsilon);
    }
    
    //------------------------------------------------------------------------
    inline bool trans_affine_1D::is_valid(double epsilon) const
    {
        return fabs(sz) > epsilon;
    }
    
    //------------------------------------------------------------------------
    inline bool trans_affine_1D::is_equal(const trans_affine_1D& m, double epsilon) const
    {
        return  is_equal_eps(sz, m.sz, epsilon) &&
                is_equal_eps(tz, m.tz, epsilon);
    }
    
    //------------------------------------------------------------------------
    inline void trans_affine_1D::translation(double* dz) const
    {
        *dz = tz;
    }
    
    
}


#endif