1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
|
from __future__ import annotations
import re
from typing import TYPE_CHECKING, Any
from asv.util import human_value
from loader import Loader
import matplotlib.pyplot as plt
import numpy as np
from contourpy import FillType, LineType
if TYPE_CHECKING:
from matplotlib.axes import Axes
from matplotlib.patches import Rectangle
# Default fill/line types that exist in all algorithms.
default_fill_type = FillType.OuterCode
default_line_type = LineType.SeparateCode
def capital_letters_to_newlines(text: str) -> str:
return re.sub(r"([a-z0-9])([A-Z])", r"\1\n\2", text)
def get_corner_mask_label(corner_mask: bool | str) -> str:
if corner_mask == "no mask":
return "no mask"
else:
return f"corner_mask={corner_mask}"
def get_style(name: str, corner_mask: bool | str) -> tuple[str, str, str, float]:
# Colors from Paul Tol's colorblind friendly light scheme (https://personal.sron.nl/~pault)
colors = {
"mpl2005": "#eedd88", # light yellow.
"mpl2014": "#ee8866", # orange.
"serial": "#77aadd", # light blue.
"threaded": "#99ddff", # light cyan.
}
hatches = {
"no mask": "",
False: "---",
True: "///",
}
edge_color = "#222222"
return colors[name], edge_color, hatches[corner_mask], 0.5
def with_time_units(value: float, error: float | None = None) -> str:
# ASV's human_value() doesn't put a space between numbers and units.
# See e.g. https://physics.nist.gov/cuu/Units/checklist.html
with_units = human_value(value, "seconds", error)
return re.sub(r"(?<=\S)([a-zA-Z]+)$", r" \1", with_units)
def by_name_and_type(loader: Loader, filled: bool, dataset: str, render: bool, n: int) -> None:
show_error = False
corner_masks: list[str | bool] = ["no mask", False, True]
filled_str = "filled" if filled else "lines"
title = f"{filled_str} {dataset} n={n} {'(calculate and render)' if render else ''}"
nbars = 3
width = 1.0 / (nbars + 1)
ntypes = len(FillType.__members__) if filled else len(LineType.__members__)
cache = {} # Results cache
for mode in ["light", "dark"]:
plt.style.use("default" if mode == "light" else "dark_background")
fig, ax = plt.subplots(figsize=(8.5, 6))
xticklabels = []
for name in ["mpl2005", "mpl2014", "serial"]:
bname = "serial" if name == "serial" else "mpl20xx"
benchmarks_name = f"time_{filled_str}_{bname}{'_render' if render else ''}"
if name == "serial":
xs = 2 + np.arange(ntypes)
else:
xs = np.array(0 if name == "mpl2005" else 1)
i = 0
for corner_mask in corner_masks:
kwargs = {"name": name, "dataset": dataset, "corner_mask": corner_mask, "n": n}
results = loader.get(benchmarks_name, **kwargs)
if results["name"] != name:
raise RuntimeError(f"Loader returning wrong name: {name} != {results['name']}")
if results["mean"] is None:
continue
name = results["name"]
mean = results["mean"]
error = results["error"]
types = results["fill_type" if filled else "line_type"]
if not isinstance(types, list):
types = [types]
if mode == "light":
for m, t in zip(mean, types):
cache[(name, t, corner_mask)] = m
color, edge_color, hatch, line_width = get_style(name, corner_mask)
offset = width*(i - 0.5*(nbars - 1))
label = f"{name} {get_corner_mask_label(corner_mask)}"
yerr = error if show_error else None
mean = np.asarray(mean, dtype=np.float64) # None -> nan.
if corner_mask == "no mask":
xticklabels += [name + str(t).split(".")[1] for t in types]
rects = ax.bar(
xs + offset, mean, width, yerr=yerr, color=color, edgecolor=edge_color,
hatch=hatch, linewidth=line_width, capsize=4, label=label, zorder=3)
if show_error:
labels = [with_time_units(m, s) for m, s in zip(mean, error)]
else:
labels = [with_time_units(m) for m in mean]
ax.bar_label(rects, labels, padding=5, rotation="vertical", size="medium")
i += 1
if filled and not render:
if dataset == "random":
ax.set_ylim(0, 3.3)
else:
ax.set_ylim(0, 0.27)
elif filled and render and dataset == "simple":
ax.set_ylim(0, 0.41)
elif not filled and render and dataset == "simple":
ax.set_ylim(0, 0.38)
else:
ax.set_ylim(0, ax.get_ylim()[1]*1.1) # Magic number.
loc: str | tuple[float, float] = "best"
if not filled and render and dataset == "random":
loc = "lower left"
elif render and dataset == "simple":
loc = "lower right"
elif filled and render and dataset == "random":
loc = (0.51, 0.6)
ax.legend(loc=loc, framealpha=0.9)
ax.grid(axis="y", c="k" if mode == "light" else "w", alpha=0.2)
ax.set_xticks(np.arange(ntypes+2))
xticklabels = list(map(capital_letters_to_newlines, xticklabels))
ax.set_xticklabels(xticklabels)
ax.set_ylabel("Time (seconds)")
ax.set_title(title)
for spine in ax.spines.values():
spine.set_zorder(5)
fig.tight_layout()
filename = f"{filled_str}_{dataset}_{n}{'_render' if render else ''}_{mode}.svg"
#print(f"Saving {filename}")
fig.savefig(filename, transparent=True)
# Print comparison of different algorithms using mpl default type.
print(f"Times and speedups: {filled_str} dataset={dataset} render={render}")
default_type = FillType.OuterCode if filled else LineType.SeparateCode
for target in ["mpl2005", "mpl2014"]:
names = ["serial", target]
for m in ("no mask", False, True):
if names[1] == "mpl2005" and m is True:
continue
times = [cache[(name, default_type, m)] for name in names]
ratio = times[0]/times[1]
print(f" {ratio:.3f}, {1.0/ratio:.3f}, {names[0]}:{names[1]}, {default_type}, {m}")
print()
# Print comparison of different line/fill types for serial algorithm.
name = "serial"
for t in (FillType.__members__.values() if filled else LineType.__members__.values()):
if t == default_type:
continue
for m in ("no mask", False, True):
times = [cache[(name, t, m)], cache[(name, default_type, m)]]
ratio = times[0]/times[1]
print(f" {ratio:.3f}, {1.0/ratio:.3f}, {name}, {t}:{default_type}, {m}")
print()
def comparison_two_benchmarks(
loader: Loader, filled: bool, dataset: str, varying: str, varying_values: list[float],
) -> None:
if varying == "thread_count":
file_prefix = "threaded"
elif varying == "total_chunk_count":
file_prefix = "chunk"
else:
raise RuntimeError(f"Invalid varying field '{varying}'")
show_error = False
show_speedups = (varying == "thread_count")
n = 1000
corner_mask = "no mask"
filled_str = "filled" if filled else "lines"
kwargs: dict[str, Any] = {"dataset":dataset, "corner_mask": corner_mask, "n": n}
if varying == "thread_count":
kwargs["total_chunk_count"] = 40
name0 = "serial"
name1 = "threaded" if varying == "thread_count" else "serial"
kwargs["name"] = name0
if varying == "thread_count":
benchmarks_name = f"time_{filled_str}_{name0}_chunk"
else:
benchmarks_name = f"time_{filled_str}_{name0}"
results = loader.get(benchmarks_name, **kwargs)
fill_or_line_type = results["fill_type"] if filled else results["line_type"]
ntype = len(fill_or_line_type)
mean0 = results["mean"]
error0 = results["error"]
kwargs["name"] = name1
kwargs[varying] = varying_values
if varying == "thread_count":
benchmarks_name = f"time_{filled_str}_{name1}"
else:
benchmarks_name = f"time_{filled_str}_{name1}_chunk"
results = loader.get(benchmarks_name, **kwargs)
mean1 = results["mean"]
error1 = results["error"]
varying_count = len(varying_values)
xs = np.arange(ntype*(varying_count+2))
xs.reshape((ntype, varying_count+2))
speedups = np.expand_dims(mean0, axis=1) / np.reshape(mean1, (ntype, varying_count))
speedups_flat = speedups.ravel()
def in_bar_label(ax: Axes, rect: Rectangle, value: str) -> None:
kwargs: dict[str, Any] = {"fontsize": "medium", "ha": "center", "va": "bottom",
"color": "k"}
if varying != "thread_count":
kwargs["rotation"] = "vertical"
ax.annotate(value, (rect.xy[0] + 0.5*rect.get_width(), rect.xy[1]), **kwargs)
for mode in ["light", "dark"]:
plt.style.use("default" if mode == "light" else "dark_background")
fig, ax = plt.subplots(figsize=(8.5, 6))
# Serial bars.
color, edge_color, hatch, line_width = get_style(name0, corner_mask)
if varying == "thread_count":
label = f"{name0} {get_corner_mask_label(corner_mask)}"
else:
label = None
rects = ax.bar(xs[:, 0], mean0, width=1, color=color, edgecolor=edge_color, hatch=hatch,
linewidth=line_width, label=label, zorder=3)
if show_error:
labels = [with_time_units(m, s) for m, s in zip(mean0, error0)]
else:
labels = [with_time_units(m) for m in mean0]
ax.bar_label(rects, labels, padding=5, rotation="vertical", size="medium")
if varying != "thread_count":
for rect in rects:
in_bar_label(ax, rect, " 1")
# Threaded bars.
color, edge_color, hatch, line_width = get_style(name1, corner_mask)
label = varying.replace("_", " ")
label = f"{name1} {get_corner_mask_label(corner_mask)}\n({label} shown at bottom of bar)"
rects = ax.bar(xs[:, 1:-1].ravel(), mean1, width=1, color=color, edgecolor=edge_color,
hatch=hatch, linewidth=line_width, label=label, zorder=3)
labels = []
for i, (mean, error, speedup) in enumerate(zip(mean1, error1, speedups_flat)):
if show_error:
label = with_time_units(mean, error)
else:
label = with_time_units(mean)
if show_speedups and i % varying_count > 0:
label += f" (x {speedup:.2f})"
labels.append(label)
ax.bar_label(rects, labels, padding=5, rotation="vertical", size="medium")
for rect, value in zip(rects, np.tile(varying_values, ntype)):
in_bar_label(ax, rect, f" {value}")
if dataset == "random":
ymax = 1.9 if filled else 1.4
elif varying == "thread_count":
ymax = ax.get_ylim()[1]*1.32
else:
ymax = ax.get_ylim()[1]*1.25
ax.set_ylim(0, ymax)
ax.set_xticks(xs[:, 0] + 0.5*varying_count)
xticklabels = [str(t).split(".")[1] for t in fill_or_line_type]
xticklabels = list(map(capital_letters_to_newlines, xticklabels))
ax.set_xticklabels(xticklabels)
ax.legend(loc="upper right", framealpha=0.9)
ax.grid(axis="y", c="k" if mode == "light" else "w", alpha=0.2)
ax.set_ylabel("Time (seconds)")
ax.set_title(f"{filled_str} {dataset} n={n}")
fig.tight_layout()
filename = f"{file_prefix}_{filled_str}_{dataset}_{mode}.svg"
#print(f"Saving {filename}")
fig.savefig(filename, transparent=True)
if varying == "total_chunk_count":
# Print comparison of different algorithms using mpl default type.
print(f"Times and speedups: varying={varying} {filled_str} dataset={dataset}")
for i, t in enumerate(fill_or_line_type):
min_, max_ = speedups[i].min(), speedups[i].max()
print(f" {1.0/max_:.3f}-{1.0/min_:.3f}, {min_:.3f}-{max_:.3f}, {t}")
print()
def main() -> None:
loader = Loader()
print(f"Saving benchmark plots for machine={loader.machine} commit={loader.commit[:7]}")
for render in [False, True]:
for filled in [False, True]:
for dataset in ["simple", "random"]:
by_name_and_type(loader, filled, dataset, render, 1000)
for filled in [False, True]:
for dataset in ["simple", "random"]:
comparison_two_benchmarks(loader, filled, dataset, "total_chunk_count",
[4, 12, 40, 120])
for filled in [False, True]:
for dataset in ["simple", "random"]:
comparison_two_benchmarks(loader, filled, dataset, "thread_count", [1, 2, 4, 6])
if __name__ == "__main__":
main()
|