File: plot_benchmarks.py

package info (click to toggle)
contourpy 1.3.3-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 16,688 kB
  • sloc: python: 7,998; cpp: 6,241; makefile: 13
file content (339 lines) | stat: -rw-r--r-- 13,144 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
from __future__ import annotations

import re
from typing import TYPE_CHECKING, Any

from asv.util import human_value
from loader import Loader
import matplotlib.pyplot as plt
import numpy as np

from contourpy import FillType, LineType

if TYPE_CHECKING:
    from matplotlib.axes import Axes
    from matplotlib.patches import Rectangle


# Default fill/line types that exist in all algorithms.
default_fill_type = FillType.OuterCode
default_line_type = LineType.SeparateCode


def capital_letters_to_newlines(text: str) -> str:
    return re.sub(r"([a-z0-9])([A-Z])", r"\1\n\2", text)


def get_corner_mask_label(corner_mask: bool | str) -> str:
    if corner_mask == "no mask":
        return "no mask"
    else:
        return f"corner_mask={corner_mask}"


def get_style(name: str, corner_mask: bool | str) -> tuple[str, str, str, float]:
    # Colors from Paul Tol's colorblind friendly light scheme (https://personal.sron.nl/~pault)
    colors = {
        "mpl2005": "#eedd88",   # light yellow.
        "mpl2014": "#ee8866",   # orange.
        "serial": "#77aadd",    # light blue.
        "threaded": "#99ddff",  # light cyan.
    }

    hatches = {
        "no mask": "",
        False: "---",
        True: "///",
    }

    edge_color = "#222222"

    return colors[name], edge_color, hatches[corner_mask], 0.5


def with_time_units(value: float, error: float | None = None) -> str:
    # ASV's human_value() doesn't put a space between numbers and units.
    # See e.g. https://physics.nist.gov/cuu/Units/checklist.html
    with_units = human_value(value, "seconds", error)
    return re.sub(r"(?<=\S)([a-zA-Z]+)$", r" \1", with_units)


def by_name_and_type(loader: Loader, filled: bool, dataset: str, render: bool, n: int) -> None:
    show_error = False
    corner_masks: list[str | bool] = ["no mask", False, True]
    filled_str = "filled" if filled else "lines"
    title = f"{filled_str} {dataset} n={n} {'(calculate and render)' if render else ''}"

    nbars = 3
    width = 1.0 / (nbars + 1)
    ntypes = len(FillType.__members__) if filled else len(LineType.__members__)
    cache = {}  # Results cache

    for mode in ["light", "dark"]:
        plt.style.use("default" if mode == "light" else "dark_background")

        fig, ax = plt.subplots(figsize=(8.5, 6))
        xticklabels = []

        for name in ["mpl2005", "mpl2014", "serial"]:
            bname = "serial" if name == "serial" else "mpl20xx"
            benchmarks_name = f"time_{filled_str}_{bname}{'_render' if render else ''}"

            if name == "serial":
                xs = 2 + np.arange(ntypes)
            else:
                xs = np.array(0 if name == "mpl2005" else 1)

            i = 0
            for corner_mask in corner_masks:
                kwargs = {"name": name, "dataset": dataset, "corner_mask": corner_mask, "n": n}

                results = loader.get(benchmarks_name, **kwargs)
                if results["name"] != name:
                    raise RuntimeError(f"Loader returning wrong name: {name} != {results['name']}")

                if results["mean"] is None:
                    continue

                name = results["name"]
                mean = results["mean"]
                error = results["error"]
                types = results["fill_type" if filled else "line_type"]
                if not isinstance(types, list):
                    types = [types]

                if mode == "light":
                    for m, t in zip(mean, types):
                        cache[(name, t, corner_mask)] = m

                color, edge_color, hatch, line_width = get_style(name, corner_mask)
                offset = width*(i - 0.5*(nbars - 1))
                label = f"{name} {get_corner_mask_label(corner_mask)}"
                yerr = error if show_error else None
                mean = np.asarray(mean, dtype=np.float64)  # None -> nan.
                if corner_mask == "no mask":
                    xticklabels += [name + str(t).split(".")[1] for t in types]

                rects = ax.bar(
                    xs + offset, mean, width, yerr=yerr, color=color, edgecolor=edge_color,
                    hatch=hatch, linewidth=line_width, capsize=4, label=label, zorder=3)
                if show_error:
                    labels = [with_time_units(m, s) for m, s in zip(mean, error)]
                else:
                    labels = [with_time_units(m) for m in mean]
                ax.bar_label(rects, labels, padding=5, rotation="vertical", size="medium")

                i += 1

        if filled and not render:
            if dataset == "random":
                ax.set_ylim(0, 3.3)
            else:
                ax.set_ylim(0, 0.27)
        elif filled and render and dataset == "simple":
            ax.set_ylim(0, 0.41)
        elif not filled and render and dataset == "simple":
            ax.set_ylim(0, 0.38)
        else:
            ax.set_ylim(0, ax.get_ylim()[1]*1.1)  # Magic number.

        loc: str | tuple[float, float] = "best"
        if not filled and render and dataset == "random":
            loc = "lower left"
        elif render and dataset == "simple":
            loc = "lower right"
        elif filled and render and dataset == "random":
            loc = (0.51, 0.6)
        ax.legend(loc=loc, framealpha=0.9)

        ax.grid(axis="y", c="k" if mode == "light" else "w", alpha=0.2)
        ax.set_xticks(np.arange(ntypes+2))
        xticklabels = list(map(capital_letters_to_newlines, xticklabels))
        ax.set_xticklabels(xticklabels)
        ax.set_ylabel("Time (seconds)")
        ax.set_title(title)
        for spine in ax.spines.values():
            spine.set_zorder(5)
        fig.tight_layout()

        filename = f"{filled_str}_{dataset}_{n}{'_render' if render else ''}_{mode}.svg"
        #print(f"Saving {filename}")
        fig.savefig(filename, transparent=True)

    # Print comparison of different algorithms using mpl default type.
    print(f"Times and speedups: {filled_str} dataset={dataset} render={render}")
    default_type = FillType.OuterCode if filled else LineType.SeparateCode
    for target in ["mpl2005", "mpl2014"]:
        names = ["serial", target]
        for m in ("no mask", False, True):
            if names[1] == "mpl2005" and m is True:
                continue
            times = [cache[(name, default_type, m)] for name in names]
            ratio = times[0]/times[1]
            print(f"  {ratio:.3f}, {1.0/ratio:.3f}, {names[0]}:{names[1]}, {default_type}, {m}")
        print()

    # Print comparison of different line/fill types for serial algorithm.
    name = "serial"
    for t in (FillType.__members__.values() if filled else LineType.__members__.values()):
        if t == default_type:
            continue
        for m in ("no mask", False, True):
            times = [cache[(name, t, m)], cache[(name, default_type, m)]]
            ratio = times[0]/times[1]
            print(f"  {ratio:.3f}, {1.0/ratio:.3f}, {name}, {t}:{default_type}, {m}")
    print()


def comparison_two_benchmarks(
    loader: Loader, filled: bool, dataset: str, varying: str, varying_values: list[float],
) -> None:
    if varying == "thread_count":
        file_prefix = "threaded"
    elif varying == "total_chunk_count":
        file_prefix = "chunk"
    else:
        raise RuntimeError(f"Invalid varying field '{varying}'")

    show_error = False
    show_speedups = (varying == "thread_count")
    n = 1000
    corner_mask = "no mask"

    filled_str = "filled" if filled else "lines"
    kwargs: dict[str, Any] = {"dataset":dataset, "corner_mask": corner_mask, "n": n}
    if varying == "thread_count":
        kwargs["total_chunk_count"] = 40

    name0 = "serial"
    name1 = "threaded" if varying == "thread_count" else "serial"

    kwargs["name"] = name0
    if varying == "thread_count":
        benchmarks_name = f"time_{filled_str}_{name0}_chunk"
    else:
        benchmarks_name = f"time_{filled_str}_{name0}"
    results = loader.get(benchmarks_name, **kwargs)
    fill_or_line_type = results["fill_type"] if filled else results["line_type"]
    ntype = len(fill_or_line_type)
    mean0 = results["mean"]
    error0 = results["error"]

    kwargs["name"] = name1
    kwargs[varying] = varying_values
    if varying == "thread_count":
        benchmarks_name = f"time_{filled_str}_{name1}"
    else:
        benchmarks_name = f"time_{filled_str}_{name1}_chunk"
    results = loader.get(benchmarks_name, **kwargs)
    mean1 = results["mean"]
    error1 = results["error"]

    varying_count = len(varying_values)
    xs = np.arange(ntype*(varying_count+2))
    xs.reshape((ntype, varying_count+2))

    speedups = np.expand_dims(mean0, axis=1) / np.reshape(mean1, (ntype, varying_count))
    speedups_flat = speedups.ravel()

    def in_bar_label(ax: Axes, rect: Rectangle, value: str) -> None:
        kwargs: dict[str, Any] = {"fontsize": "medium", "ha": "center", "va": "bottom",
                                  "color": "k"}
        if varying != "thread_count":
            kwargs["rotation"] = "vertical"
        ax.annotate(value, (rect.xy[0] + 0.5*rect.get_width(), rect.xy[1]), **kwargs)

    for mode in ["light", "dark"]:
        plt.style.use("default" if mode == "light" else "dark_background")
        fig, ax = plt.subplots(figsize=(8.5, 6))

        # Serial bars.
        color, edge_color, hatch, line_width = get_style(name0, corner_mask)
        if varying == "thread_count":
            label = f"{name0} {get_corner_mask_label(corner_mask)}"
        else:
            label = None
        rects = ax.bar(xs[:, 0], mean0, width=1, color=color, edgecolor=edge_color, hatch=hatch,
                       linewidth=line_width, label=label, zorder=3)
        if show_error:
            labels = [with_time_units(m, s) for m, s in zip(mean0, error0)]
        else:
            labels = [with_time_units(m) for m in mean0]
        ax.bar_label(rects, labels, padding=5, rotation="vertical", size="medium")
        if varying != "thread_count":
            for rect in rects:
                in_bar_label(ax, rect, " 1")

        # Threaded bars.
        color, edge_color, hatch, line_width = get_style(name1, corner_mask)
        label = varying.replace("_", " ")
        label = f"{name1} {get_corner_mask_label(corner_mask)}\n({label} shown at bottom of bar)"
        rects = ax.bar(xs[:, 1:-1].ravel(), mean1, width=1, color=color, edgecolor=edge_color,
                       hatch=hatch, linewidth=line_width, label=label, zorder=3)
        labels = []
        for i, (mean, error, speedup) in enumerate(zip(mean1, error1, speedups_flat)):
            if show_error:
                label = with_time_units(mean, error)
            else:
                label = with_time_units(mean)
            if show_speedups and i % varying_count > 0:
                label += f" (x {speedup:.2f})"
            labels.append(label)
        ax.bar_label(rects, labels, padding=5, rotation="vertical", size="medium")
        for rect, value in zip(rects, np.tile(varying_values, ntype)):
            in_bar_label(ax, rect, f" {value}")

        if dataset == "random":
            ymax = 1.9 if filled else 1.4
        elif varying == "thread_count":
            ymax = ax.get_ylim()[1]*1.32
        else:
            ymax = ax.get_ylim()[1]*1.25
        ax.set_ylim(0, ymax)

        ax.set_xticks(xs[:, 0] + 0.5*varying_count)
        xticklabels = [str(t).split(".")[1] for t in fill_or_line_type]
        xticklabels = list(map(capital_letters_to_newlines, xticklabels))
        ax.set_xticklabels(xticklabels)

        ax.legend(loc="upper right", framealpha=0.9)
        ax.grid(axis="y", c="k" if mode == "light" else "w", alpha=0.2)
        ax.set_ylabel("Time (seconds)")
        ax.set_title(f"{filled_str} {dataset} n={n}")
        fig.tight_layout()

        filename = f"{file_prefix}_{filled_str}_{dataset}_{mode}.svg"
        #print(f"Saving {filename}")
        fig.savefig(filename, transparent=True)

    if varying == "total_chunk_count":
        # Print comparison of different algorithms using mpl default type.
        print(f"Times and speedups: varying={varying} {filled_str} dataset={dataset}")
        for i, t in enumerate(fill_or_line_type):
            min_, max_ = speedups[i].min(), speedups[i].max()
            print(f"  {1.0/max_:.3f}-{1.0/min_:.3f}, {min_:.3f}-{max_:.3f}, {t}")
        print()


def main() -> None:
    loader = Loader()

    print(f"Saving benchmark plots for machine={loader.machine} commit={loader.commit[:7]}")

    for render in [False, True]:
        for filled in [False, True]:
            for dataset in ["simple", "random"]:
                by_name_and_type(loader, filled, dataset, render, 1000)

    for filled in [False, True]:
        for dataset in ["simple", "random"]:
            comparison_two_benchmarks(loader, filled, dataset, "total_chunk_count",
                                      [4, 12, 40, 120])

    for filled in [False, True]:
        for dataset in ["simple", "random"]:
            comparison_two_benchmarks(loader, filled, dataset, "thread_count", [1, 2, 4, 6])


if __name__ == "__main__":
    main()