1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
|
/* render1.c
*
* By Byron C. Darrah
* 4/28/94, Thursday
*
* render1 renders simple lists of polygons. render1 keeps an aggregate
* list of all polygons submitted to it, and also keeps an index to this
* list keyed by object ID numbers, so that it knows which polygons
* belong to which objects.
*/
/* Here is the implementation of the renderer called render1. */
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <assert.h>
#include <string.h>
#include "render1.h"
#include "display_list.h"
typedef float rend_matrix_t[4][4];
rend_matrix_t camera_transformation;
float perspective,
default_perspective = DEFAULT_PERSPECTIVE;
polygon_node_t ag_polygon_list; /* A dummy node to be the head of list */
/* Here is the structure for the nodes of the object ID index to the
* aggregate list.
*/
typedef struct obj_ki_struct
{
struct obj_ki_struct *next;
int obj_id;
polygon_node_t *pnodes; /* array of polygon nodes. */
int npolygons; /* size of above array. */
} obj_node_t;
obj_node_t obj_id_index; /* This list also has a dummy node for a head */
/*---------------------------------------------------------------------------*/
/*---------------------- INTERNAL FUNCTION PROTOTYPES -----------------------*/
/*---------------------------------------------------------------------------*/
void rend_agg_poly_insert(polygon_node_t *pnode);
obj_node_t *rend_obj_lookup(int obj_id);
void mtx_mult_4x4(rend_matrix_t f1, rend_matrix_t f2,
rend_matrix_t product);
void mtx_transform_pt(real_point_t *pos, rend_matrix_t m1,
real_point_t *new_pos);
void mtx_transform_pg(polygon_node_t *polygon_node);
/*---------------------------------------------------------------------------*/
/*--------------------------- EXPORTED FUNCTIONS ----------------------------*/
/*---------------------------------------------------------------------------*/
/* This sets the camera matrix to a default value, initializes the
* polygon lists, and the display.
*/
void rend_init(int *argc, char *argv[], float init_perspect)
{
real_point_t c_position = {0.0, 0.0, -20.0}; /* Camera positon */
real_point_t c_focus = {0.0, 0.0, 0.0}, /* Camera focus direction */
c_up = {0.0, 10.0, 0.0}; /* Camera up direction */
int i, color = 1;
/* Scan for the -mono option in the argument list */
for(i = 0; i < *argc; i++)
{
if(color)
{
if(!strcmp(argv[i], "-mono"))
{
color = 0;
(*argc)--;
if(i < *argc)
argv[i] = argv[i+1];
}
}
else
argv[i] = argv[i+1];
}
/* Initialize the display */
disp_init(argc, argv, color);
ag_polygon_list.next = NULL;
ag_polygon_list.prev = NULL;
obj_id_index.next = NULL;
obj_id_index.pnodes = NULL;
obj_id_index.npolygons = 0;
rend_set_camera(&c_position, &c_focus, &c_up);
/* Initialize the perspective. If no perspective value was given,
* set it to the default perspective.
*/
if (init_perspect != 0.0) default_perspective = init_perspect;
/* Now work in a fudge-factor to cause points to be scaled according
* to the display window size. */
if (disp_x_scale < disp_y_scale)
perspective = default_perspective * disp_x_scale;
else
perspective = default_perspective * disp_y_scale;
}
/*---------------------------------------------------------------------------*/
void rend_end(void)
{
disp_end();
}
/*---------------------------------------------------------------------------*/
/* Synchronize the scale of drawing operations with the size of the
* actual output window, and redraw the output frame.
*/
void rend_setsize(void)
{
unsigned short width, height;
disp_getsize(&width, &height);
disp_setsize(width, height);
/* Now work in a fudge-factor to cause points to be scaled according
* to the display window size. */
if (disp_x_scale < disp_y_scale)
perspective = default_perspective * disp_x_scale;
else
perspective = default_perspective * disp_y_scale;
/* Now that the drawing size has been adjusted, redraw the output */
rend_transform_update_all();
rend_frame();
}
/*---------------------------------------------------------------------------*/
/* This is used to set the camera matrix, which describes the position
* and orientation of the POV. Whenever the camera matrix is changed,
* the entire list of polygons must be recomputed.
*
* The position and orientation of the camera determines what gets displayed
* (obviously). As a result, the camera's orientation is used to determine
* a transformation which will be applied to all points to map them
* to screen coordinates. For more information, see "Faster 3-D Drawing"
* by Brian Carmichael, in The AmigaWorld Tech Journal, pg 20, January/February
* 1992, or any decent 3-D rendering text.
*
* Whenever the camera is moved, the aggregate polygon list must be
* recomputed (because the mapping of sim-space to screen-space is
* changed). This can be done by calling rend_transform_update_all().
* This is an time-expensive operation, so it is good if the calling
* application can remove from the aggregate list any objects that are going
* to resubmit their polygons before the next frame-render, so these objects
* will not have to be redundantly transformed.
*/
void rend_set_camera(real_point_t *position,
real_point_t *focus,
real_point_t *up)
{
rend_matrix_t m1, m2, m3;
float cosAy, sinAy, cosAx, sinAx, cosAz, sinAz;
float Dxz, Dyz, Dxy;
real_point_t new_pos;
/* let m1 be the transformation matrix for the translation, which moves
* the camera's focus point to the origin.
*/
m1[0][0] = 1; m1[0][1] = m1[0][2] = m1[0][3] = 0;
m1[1][0] = 0; m1[1][1] = 1; m1[1][2] = m1[1][3] = 0;
m1[2][0] = m1[2][1] = 0; m1[2][2] = 1; m1[2][3] = 0;
m1[3][0] = -position->x;
m1[3][1] = -position->y;
m1[3][2] = -position->z;
m1[3][3] = 1;
/* Compute the camera focus relative to the position.
*/
new_pos.x = focus->x - position->x;
new_pos.y = focus->y - position->y;
new_pos.z = focus->z - position->z;
/* Now compute the cosine and sine of the y-rotation angle, Ay,
* between the focus vector and the zy plane.
*/
Dxz = sqrt((double)(new_pos.x * new_pos.x + new_pos.z * new_pos.z));
if (Dxz != 0.0)
{
cosAy = new_pos.z / Dxz;
sinAy = -new_pos.x / Dxz;
}
else /* Uh-oh - handle indeterminate case */
{
cosAy = 1.0;
sinAy = 0.0;
}
/* let m2 be the transformation matrix for rotating the focus point about
* the y-axis onto the zy plane.
*/
m2[0][0] = cosAy; m2[0][1] = 0; m2[0][2] = -sinAy; m2[0][3] = 0;
m2[1][0] = 0; m2[1][1] = 1; m2[1][2] = 0; m2[1][3] = 0;
m2[2][0] = sinAy; m2[2][1] = 0; m2[2][2] = cosAy; m2[2][3] = 0;
m2[3][0] = 0; m2[3][1] = 0; m2[3][2] = 0; m2[3][3] = 1;
/* let m3 be the product of m1 and m2 */
mtx_mult_4x4(m1, m2, m3);
/* Update the focus pos by multiplying it by m2. */
new_pos.x = new_pos.x * cosAy + new_pos.z * sinAy;
new_pos.z = new_pos.x * -sinAy + new_pos.z * cosAy;
/* Now compute the cosine and sine of the x-rotation angle, Ax */
Dyz = sqrt((double)(new_pos.y * new_pos.y + new_pos.z * new_pos.z));
cosAx = new_pos.z/Dyz;
sinAx = new_pos.y/Dyz;
/* let m2 be the transformation matrix for rotating the focus point about
* the x-axis onto the +z-axis.
*/
m2[0][0] = 1; m2[0][1] = 0; m2[0][2] = 0; m2[0][3] = 0;
m2[1][0] = 0; m2[1][1] = cosAx; m2[1][2] = sinAx; m2[1][3] = 0;
m2[2][0] = 0; m2[2][1] = -sinAx; m2[2][2] = cosAx; m2[2][3] = 0;
m2[3][0] = 0; m2[3][1] = 0; m2[3][2] = 0; m2[3][3] = 1;
/* let m1 be the product of m3 and m2 */
mtx_mult_4x4(m3, m2, m1);
/* Update the "up" point pos by multiplying it by m1 */
mtx_transform_pt(up, m1, &new_pos);
/* Now compute the cosine and sine of the z-axis rotation angle, Az */
Dxy = sqrt((double)(new_pos.x * new_pos.x + new_pos.y * new_pos.y));
cosAz = new_pos.y/Dxy;
sinAz = new_pos.x/Dxy;
/* let m2 be the transformation matrix for rotating the up point about
* the z-axis onto the zy-plane.
*/
m2[0][0] = cosAz; m2[0][1] = sinAz; m2[0][2] = 0; m2[0][3] = 0;
m2[1][0] = -sinAz; m2[1][1] = cosAz; m2[1][2] = 0; m2[1][3] = 0;
m2[2][0] = 0; m2[2][1] = 0; m2[2][2] = 1; m2[2][3] = 0;
m2[3][0] = 0; m2[3][1] = 0; m2[3][2] = 0; m2[3][3] = 1;
/* Now the final multiplication gives us the camera transformation: */
mtx_mult_4x4(m1, m2, camera_transformation);
/* If you want to debug by printing out the camera matrix, uncomment this. */
/* fprintf(stderr, "---Camera Matrix---\n");
{
int row, col;
for(row = 0; row < 4; row++)
{
for(col = 0; col < 4; col++)
fprintf(stderr, "%6.2f ", camera_transformation[row][col]);
printf("\n");
}
}
fprintf(stderr, "-------------------\n");
*/
}
/*---------------------------------------------------------------------------*/
/* rend_register_obj is called by objects that wish to use the display.
* An object that calls this function is "registered", and may submit
* lists of polygons for display.
*
*/
void rend_register_obj(int obj_id, int npolygons)
{
polygon_node_t *newlist;
obj_node_t *newobj;
if ((newlist = (polygon_node_t *)malloc(sizeof(polygon_node_t) * npolygons))
== NULL)
{
fprintf(stderr, "rend_register_obj: out of memory");
assert(0);
}
if ((newobj = (obj_node_t *)malloc(sizeof(obj_node_t))) == NULL)
{
fprintf(stderr, "rend_register_obj: out of memory");
assert(0);
}
/* Add the new object to the object ID index list */
newobj->next = obj_id_index.next;
obj_id_index.next = newobj;
/* Now fill in the data for this object node */
newobj->obj_id = obj_id;
newobj->pnodes = newlist;
newobj->npolygons = npolygons;
}
/*---------------------------------------------------------------------------*/
/* An object calls this function to submit an updatedlist of polygons
* to the renderer. Render1 knows how many polygons to expect, from
* when the object was registered by rend_register_obj. It transforms
* the object's polygons to screen space, and adds them to the aggregate
* list. Note: An object must be sure that it has removed it's polygons
* before resubmitting them, or else the aggregate list will get messed up.
*/
int rend_submit_plist(int obj_id, polygon_t *polygons)
{
obj_node_t *obj_record;
int i;
polygon_node_t *pnode;
if((obj_record = rend_obj_lookup(obj_id)) == NULL)
{
fprintf(stderr, "rend_submit_plist: unknown object %d.\n", obj_id);
return (R1_OBJ_UNKNOWN);
}
/* Add the object's polygons */
for(i = 0; i < obj_record->npolygons; i++)
{
pnode = obj_record->pnodes+i;
pnode->polygon = polygons+i;
/* transform the polygons and add them to the aggregate list */
mtx_transform_pg(pnode);
rend_agg_poly_insert(pnode);
}
return(R1_NORMAL);
}
/*---------------------------------------------------------------------------*/
/* remove an object's polygons from the aggregate display list */
int rend_rm_plist(int obj_id)
{
obj_node_t *obj_node;
polygon_node_t *poly_array;
int i;
if ((obj_node = rend_obj_lookup(obj_id)) == NULL)
return(R1_OBJ_UNKNOWN);
poly_array = obj_node->pnodes;
/* Since the polygon list is a doubly-linked list, polygons can be
* removed from it by simply removing the pointers to them in the
* previous and next nodes. The following loop does this.
*/
for (i = 0; i < obj_node->npolygons; i++)
{
if (poly_array[i].next) poly_array[i].next->prev = poly_array[i].prev;
poly_array[i].prev->next = poly_array[i].next;
poly_array[i].next = poly_array[i].prev = NULL;
}
return(R1_NORMAL);
}
/*---------------------------------------------------------------------------*/
/* Update the entire list of polygons --
* perform transformations on all polygons and rebuild the aggregate
* polygon display list in z-sorted order.
*/
void rend_transform_update_all(void)
{
polygon_node_t *templist;
polygon_node_t *curnode;
/* Make a copy of the aggregate polygon list, then clear it */
templist = ag_polygon_list.next;
ag_polygon_list.next = NULL;
curnode = templist;
while(curnode)
{
templist = curnode->next;
mtx_transform_pg(curnode); /* Transform polygon to screen space. */
rend_agg_poly_insert(curnode); /* Insert the node to the agg. list. */
curnode = templist; /* Get the next node from the templist. */
}
}
/*---------------------------------------------------------------------------*/
/* Render a display frame --
* This outputs the aggregate polygon list to the display device.
*/
void rend_frame(void)
{
disp_polygons(ag_polygon_list.next);
}
/*---------------------------------------------------------------------------*/
/* Ring the audio bell. */
void rend_bell(void)
{
disp_bell();
}
/*---------------------------------------------------------------------------*/
/* Freeze the image as is. Returns when either the specified interval has
* expired, or a mouseclick has occurred in the image window.
*/
int rend_freeze(unsigned long interval)
{
int reason;
while(1)
{
if ((reason = disp_freeze(interval)) == RESIZE)
rend_setsize();
else
return(reason);
}
}
/*---------------------------------------------------------------------------*/
/*--------------------------- INTERNAL FUNCTIONS ----------------------------*/
/*---------------------------------------------------------------------------*/
/* Given a pointer to a polygon_node_t, insert the node into the aggregate
* polygon display list.
*/
void rend_agg_poly_insert(polygon_node_t *pnode)
{
polygon_node_t *curnode = &ag_polygon_list;
/* Find the node that pnode should be inserted after */
while(curnode->next && (curnode->next->k > pnode->k))
curnode = curnode->next;
/* Insert the pnode into the aggregate list */
if(curnode->next) curnode->next->prev = pnode;
pnode->next = curnode->next;
curnode->next = pnode;
pnode->prev = curnode;
}
/*---------------------------------------------------------------------------*/
/* Given an object id, look up the object's entry in the object list.
* NULL is returned if the end of the list is reached before the
* object id is found.
*/
obj_node_t *rend_obj_lookup(int obj_id)
{
obj_node_t *curnode = obj_id_index.next;
for(;curnode && curnode->obj_id != obj_id; curnode = curnode->next)
;
return(curnode);
}
/*---------------------------------------------------------------------------*/
/* mtx_mult_4x4 is a function which multiplies two 4x4 matrices and gives the
* result.
*/
void mtx_mult_4x4(rend_matrix_t f1, rend_matrix_t f2, rend_matrix_t product)
{
int i, row, col;
float sum;
for (row = 0; row < 4; row++)
for (col = 0; col < 4; col++)
{
sum = f1[row][0] * f2[0][col];
for(i = 1; i < 4; i++)
sum += f1[row][i] * f2[i][col];
product[row][col] = sum;
}
}
/*---------------------------------------------------------------------------*/
/* mtx_transform_pt transforms a point by the specified matrix. This is used
* by other functions to map a point in simulation space to screen space.
*
* This routine is optimized based on the assumption that a point is a 1x4
* matrix with the first three elements equal to the x,y,z of the point, and
* the last element always equal to one.
*/
void mtx_transform_pt(real_point_t *pos, rend_matrix_t m1,
real_point_t *new_pos)
{
new_pos->x = pos->x * m1[0][0] + pos->y * m1[1][0] + pos->z * m1[2][0]
+ m1[3][0];
new_pos->y = pos->x * m1[0][1] + pos->y * m1[1][1] + pos->z * m1[2][1]
+ m1[3][1];
new_pos->z = pos->x * m1[0][2] + pos->y * m1[1][2] + pos->z * m1[2][2]
+ m1[3][2];
}
/*---------------------------------------------------------------------------*/
/* Given a polygon, transform it to screen space */
void mtx_transform_pg(polygon_node_t *polygon_node)
{
int i;
int clipped = 0;
float scale;
float d_sum = 0.0;
polygon_t *polygon = polygon_node->polygon;
for (i = polygon->npoints-1; i >= 0; i--)
{
real_point_t scrn_pt;
int_point_t *int_pt = polygon->int_points+i;
/* Tanslate and rotate each point in the polygon into screen space */
mtx_transform_pt(polygon->sim_points+i, camera_transformation,
&scrn_pt);
/* Perform perspective scaling adjustment on each point */
if (scrn_pt.z > 0.0)
{
scale = perspective / scrn_pt.z;
int_pt->x = Gfx_X_Origin + (int)(scrn_pt.x * scale);
int_pt->y = Gfx_Y_Origin - (int)(scrn_pt.y * scale);
}
/* Keep track of the z-sum */
if (scrn_pt.z > 0.0)
{
d_sum += (float) sqrt((double)(scrn_pt.x*scrn_pt.x +
scrn_pt.y*scrn_pt.y +
scrn_pt.z*scrn_pt.z));
}
else /* Uh-oh: this point is behind the focus -- clip it */
{
d_sum = 0.0;
clipped = 1;
break;
}
}
/* Store the z-center of the polygon, which is used to determine where
* the polygon will fit into the aggregate list.
*/
if (!clipped)
polygon_node->k = d_sum/((float)polygon->npoints);
else
polygon_node->k = 0.0;
}
/*---------------------------------------------------------------------------*/
|