1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
|
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import copy
from itertools import tee
import logging
from rdkit import Chem
from rdkit.Chem.rdchem import BondType, BondStereo, BondDir
__author__ = 'Matt Swain'
__email__ = 'm.swain@me.com'
__license__ = 'MIT'
log = logging.getLogger('tautomer')
BONDMAP = {'-': BondType.SINGLE, '=': BondType.DOUBLE, '#': BondType.TRIPLE, ':': BondType.AROMATIC}
CHARGEMAP = {'+': 1, '0': 0, '-': -1}
tautomer_transforms = [
{'name': '1,3 (thio)keto/enol f', 'smarts': '[CX4!H0][C]=[O,S,Se,Te;X1]'},
{'name': '1,3 (thio)keto/enol r', 'smarts': '[O,S,Se,Te;X2!H0][C]=[C]'},
{'name': '1,5 (thio)keto/enol f', 'smarts': '[CX4,NX3;!H0][C]=[C][CH0]=[O,S,Se,Te;X1]'},
{'name': '1,5 (thio)keto/enol r', 'smarts': '[O,S,Se,Te;X2!H0][CH0]=,:[C][C]=,:[C,N]'},
{'name': 'aliphatic imine f', 'smarts': '[CX4!H0][C]=[NX2]'},
{'name': 'aliphatic imine r', 'smarts': '[NX3!H0][C]=[CX3]'},
{'name': 'special imine f', 'smarts': '[N!H0][C]=[CX3R0]'},
{'name': 'special imine r', 'smarts': '[CX4!H0][c]=,:[n]'},
{'name': '1,3 aromatic heteroatom H shift f', 'smarts': '[#7!H0][#6R1]=[O,#7X2]'},
{'name': '1,3 aromatic heteroatom H shift r', 'smarts': '[O,#7;!H0][#6R1]=,:[#7X2]'},
{'name': '1,3 heteroatom H shift', 'smarts': '[#7,S,O,Se,Te;!H0][#7X2,#6,#15]=[#7,#16,#8,Se,Te]'},
{'name': '1,5 aromatic heteroatom H shift', 'smarts': '[n,s,o;!H0]:[c,n]:[c]:[c,n]:[n,s,o;H0]'},
{'name': '1,5 aromatic heteroatom H shift f', 'smarts': '[#7,#16,#8,Se,Te;!H0][#6,nX2]=,:[#6,nX2][#6,#7X2]=,:[#7X2,S,O,Se,Te]'},
{'name': '1,5 aromatic heteroatom H shift r', 'smarts': '[#7,S,O,Se,Te;!H0][#6,#7X2]=,:[#6,nX2][#6,nX2]=,:[#7,#16,#8,Se,Te]'},
{'name': '1,7 aromatic heteroatom H shift f', 'smarts': '[#7,#8,#16,Se,Te;!H0][#6,#7X2]=,:[#6,#7X2][#6,#7X2]=,:[#6][#6,#7X2]=,:[#7X2,S,O,Se,Te,CX3]'},
{'name': '1,7 aromatic heteroatom H shift r', 'smarts': '[#7,S,O,Se,Te,CX4;!H0][#6,#7X2]=,:[#6][#6,#7X2]=,:[#6,#7X2][#6,#7X2]=,:[NX2,S,O,Se,Te]'},
{'name': '1,9 aromatic heteroatom H shift f', 'smarts': '[#7,O;!H0][#6,#7X2]=,:[#6,#7X2][#6,#7X2]=,:[#6,#7X2][#6,#7X2]=,:[#6,#7X2][#6,#7X2]=,:[#7,O]'},
{'name': '1,11 aromatic heteroatom H shift f', 'smarts': '[#7,O;!H0][#6,nX2]=,:[#6,nX2][#6,nX2]=,:[#6,nX2][#6,nX2]=,:[#6,nX2][#6,nX2]=,:[#6,nX2][#6,nX2]=,:[#7X2,O]'},
{'name': 'furanone f', 'smarts': '[O,S,N;!H0][#6X3r5;$([#6][!#6])]=,:[#6X3r5]'},
{'name': 'furanone r', 'smarts': '[#6r5!H0][#6X3r5;$([#6][!#6])]=[O,S,N]'},
{'name': 'keten/ynol f', 'smarts': '[C!H0]=[C]=[O,S,Se,Te;X1]', 'bonds': '#-'},
{'name': 'keten/ynol r', 'smarts': '[O,S,Se,Te;!H0X2][C]#[C]', 'bonds': '=='},
{'name': 'ionic nitro/aci-nitro f', 'smarts': '[C!H0][N+;$([N][O-])]=[O]'},
{'name': 'ionic nitro/aci-nitro r', 'smarts': '[O!H0][N+;$([N][O-])]=[C]'},
{'name': 'oxim/nitroso f', 'smarts': '[O!H0][N]=[C]'},
{'name': 'oxim/nitroso r', 'smarts': '[C!H0][N]=[O]'},
{'name': 'oxim/nitroso via phenol f', 'smarts': '[O!H0][N]=[C][C]=[C][C]=[OH0]'},
{'name': 'oxim/nitroso via phenol r', 'smarts': '[O!H0][c]:[c]:[c]:[c][N]=[OH0]'},
{'name': 'cyano/iso-cyanic acid f', 'smarts': '[O!H0][C]#[N]', 'bonds': '=='},
{'name': 'cyano/iso-cyanic acid r', 'smarts': '[N!H0]=[C]=[O]', 'bonds': '#-'},
{'name': 'formamidinesulfinic acid f', 'smarts': '[O,N;!H0][C][S,Se,Te]=[O]', 'bonds': '=--'},
{'name': 'formamidinesulfinic acid r', 'smarts': '[O!H0][S,Se,Te][C]=[O,N]', 'bonds': '=--'},
{'name': 'isocyanide f', 'smarts': '[C-0!H0]#[N+0]', 'bonds': '#', 'charges': '-+'},
{'name': 'isocyanide r', 'smarts': '[N+!H0]#[C-]', 'bonds': '#', 'charges': '-+'},
{'name': 'phosphonic acid f', 'smarts': '[OH][PH0]', 'bonds': '='},
{'name': 'phosphonic acid r', 'smarts': '[PH]=[O]', 'bonds': '-'}
]
for transform in tautomer_transforms:
transform['smarts'] = Chem.MolFromSmarts(transform['smarts'].encode('utf8'))
tautomer_scores = [
{'name': 'benzoquinone', 'smarts': '[#6]1([#6]=[#6][#6]([#6]=[#6]1)=,:[N,S,O])=,:[N,S,O]', 'score': 25},
{'name': 'oxim', 'smarts': '[#6]=[N][OH]', 'score': 4},
{'name': 'C=O', 'smarts': '[#6]=,:[#8]', 'score': 2},
{'name': 'N=O', 'smarts': '[#7]=,:[#8]', 'score': 2},
{'name': 'P=O', 'smarts': '[#15]=,:[#8]', 'score': 2},
{'name': 'C=hetero', 'smarts': '[#6]=[!#1;!#6]', 'score': 1},
{'name': 'methyl', 'smarts': '[CX4H3]', 'score': 1},
{'name': 'guanidine terminal=N', 'smarts': '[#7][#6](=[NR0])[#7H0]', 'score': 1},
{'name': 'guanidine endocyclic=N', 'smarts': '[#7;R][#6;R]([N])=[#7;R]', 'score': 2},
{'name': 'aci-nitro', 'smarts': '[#6]=[N+]([O-])[OH]', 'score': -4},
]
for tscore in tautomer_scores:
tscore['smarts'] = Chem.MolFromSmarts(tscore['smarts'])
def tautomer_score(mol):
smiles = Chem.MolToSmiles(mol, isomericSmiles=True)
log.debug('Tautomer: %s', smiles)
score = 0
# Add aromatic ring scores
ssr = Chem.GetSymmSSSR(mol)
for ring in ssr:
btypes = {mol.GetBondBetweenAtoms(*pair).GetBondType() for pair in _pairwise(ring)}
elements = {mol.GetAtomWithIdx(idx).GetAtomicNum() for idx in ring}
if btypes == {BondType.AROMATIC}:
log.debug('Score +100 (aromatic ring)')
score += 100
if elements == {6}:
log.debug('Score +150 (carbocyclic aromatic ring)')
score += 150
# Add SMARTS scores
for tscore in tautomer_scores:
for match in mol.GetSubstructMatches(tscore['smarts']):
log.debug('Score %+d (%s)', tscore['score'], tscore['name'])
score += tscore['score']
# Add (P,S,Se,Te)-H scores
for atom in mol.GetAtoms():
if atom.GetAtomicNum() in {15, 16, 34, 52}:
hs = atom.GetTotalNumHs()
if hs:
log.debug('Score %+d (%s-H bonds)', -hs, atom.GetSymbol())
score -= hs
return score
def canonical_tautomer(mol, max_tautomers=1000):
"""Enumerate all possible tautomers and return a canonical tautomer based on a scoring system.
:param mol: An RDKit Mol object.
:param max_tautomers: The maximum number of tautomers to enumerate (limit to prevent combinatorial explosion)
"""
tautomers = enumerate_tautomers(mol, max_tautomers)
if len(tautomers) == 1:
return tautomers[0]
# Calculate score for each tautomer
highest = None
for t in tautomers:
smiles = Chem.MolToSmiles(t, isomericSmiles=True)
log.debug('Tautomer: %s', smiles)
score = 0
# Add aromatic ring scores
ssr = Chem.GetSymmSSSR(t)
for ring in ssr:
btypes = {t.GetBondBetweenAtoms(*pair).GetBondType() for pair in _pairwise(ring)}
elements = {t.GetAtomWithIdx(idx).GetAtomicNum() for idx in ring}
if btypes == {BondType.AROMATIC}:
log.debug('Score +100 (aromatic ring)')
score += 100
if elements == {6}:
log.debug('Score +150 (carbocyclic aromatic ring)')
score += 150
# Add SMARTS scores
for tscore in tautomer_scores:
for match in t.GetSubstructMatches(tscore['smarts']):
log.debug('Score %+d (%s)', tscore['score'], tscore['name'])
score += tscore['score']
# Add (P,S,Se,Te)-H scores
for atom in t.GetAtoms():
if atom.GetAtomicNum() in {15, 16, 34, 52}:
hs = atom.GetTotalNumHs()
if hs:
log.debug('Score %+d (%s-H bonds)', -hs, atom.GetSymbol())
score -= hs
# Set as highest if score higher or if score equal and smiles comes first alphabetically
if not highest or highest['score'] < score or (highest['score'] == score and smiles < highest['smiles']):
log.debug('New highest tautomer: %s (%s)', smiles, score)
highest = {'smiles': smiles, 'tautomer': t, 'score': score}
return highest['tautomer']
def enumerate_tautomers(mol, max_tautomers=1000):
"""Enumerate all possible tautomers and return them as a list.
:param mol: An RDKit Mol object.
:param max_tautomers: The maximum number of tautomers to enumerate (limit to prevent combinatorial explosion)
"""
tautomers = {Chem.MolToSmiles(mol, isomericSmiles=True): copy.deepcopy(mol)}
done = set()
while len(tautomers) < max_tautomers:
for tsmiles in sorted(tautomers):
if tsmiles in done:
continue
for transform in tautomer_transforms:
for match in tautomers[tsmiles].GetSubstructMatches(transform['smarts']):
# Adjust hydrogens
product = copy.deepcopy(tautomers[tsmiles])
first = product.GetAtomWithIdx(match[0])
last = product.GetAtomWithIdx(match[-1])
first.SetNumExplicitHs(max(0, first.GetNumExplicitHs() - 1))
last.SetNumExplicitHs(last.GetTotalNumHs() + 1)
# Adjust bond orders
for bi, pair in enumerate(_pairwise(match)):
if 'bonds' in transform:
product.GetBondBetweenAtoms(*pair).SetBondType(BONDMAP[transform['bonds'][bi]])
else:
product.GetBondBetweenAtoms(*pair).SetBondType(BondType.DOUBLE if bi % 2 == 0 else BondType.SINGLE)
# Adjust charges
if 'charges' in transform:
for ci, idx in enumerate(match):
atom = product.GetAtomWithIdx(idx)
atom.SetFormalCharge(atom.GetFormalCharge() + CHARGEMAP[transform['charges'][ci]])
try:
Chem.SanitizeMol(product)
smiles = Chem.MolToSmiles(product, isomericSmiles=True)
log.debug('Applied rule: %s to %s', transform['name'], tsmiles)
if smiles not in tautomers:
log.debug('New tautomer produced: %s' % smiles)
tautomers[smiles] = product
else:
log.debug('Previous tautomer produced again: %s' % smiles)
except ValueError:
log.debug('ValueError')
done.add(tsmiles)
if len(tautomers) == len(done):
break
else:
log.warn('Tautomer enumeration stopped at maximum %s', max_tautomers)
# Clean up stereochemistry
for tautomer in tautomers.values():
Chem.AssignStereochemistry(tautomer, force=True, cleanIt=True)
for bond in tautomer.GetBonds():
if bond.GetBondType() == BondType.DOUBLE and bond.GetStereo() > BondStereo.STEREOANY:
begin = bond.GetBeginAtomIdx()
end = bond.GetEndAtomIdx()
for othertautomer in tautomers.values():
if not othertautomer.GetBondBetweenAtoms(begin, end).GetBondType() == BondType.DOUBLE:
neighbours = tautomer.GetAtomWithIdx(begin).GetBonds() + tautomer.GetAtomWithIdx(end).GetBonds()
for otherbond in neighbours:
if otherbond.GetBondDir() in {BondDir.ENDUPRIGHT, BondDir.ENDDOWNRIGHT}:
otherbond.SetBondDir(BondDir.NONE)
Chem.AssignStereochemistry(tautomer, force=True, cleanIt=True)
log.debug('Removed stereochemistry from unfixed double bond')
break
return tautomers.values()
def _pairwise(iterable):
"""Utility function to iterate in a pairwise fashion."""
a, b = tee(iterable)
next(b, None)
return zip(a, b)
tautomer_enumeration_tests = [
('1,3 keto/enol tautomer', 'C1(=CCCCC1)O', {'OC1=CCCCC1', 'O=C1CCCCC1'}),
('1,3 keto/enol tautomer', 'C1(CCCCC1)=O', {'OC1=CCCCC1', 'O=C1CCCCC1'}),
('Acetophenone keto/enol tautomer', 'C(=C)(O)C1=CC=CC=C1', {'C=C(O)c1ccccc1', 'CC(=O)c1ccccc1'}),
('Acetone keto/enol tautomer', 'CC(C)=O', {'CC(C)=O', 'C=C(C)O'}),
('keto/enol tautomer', 'OC(C)=C(C)C', {'C=C(O)C(C)C', 'CC(C)=C(C)O', 'CC(=O)C(C)C'}),
('1-phenyl-2-propanone enol/keto', 'c1(ccccc1)CC(=O)C', {'C=C(O)Cc1ccccc1', 'CC(=O)Cc1ccccc1', 'CC(O)=Cc1ccccc1'}),
('1,5 keto/enol tautomer', 'Oc1nccc2cc[nH]c(=N)c12', {'Nc1nccc2ccnc(O)c12', 'N=c1nccc2cc[nH]c(O)c1-2', 'Nc1[nH]ccc2ccnc(=O)c1-2', 'N=c1[nH]ccc2ccnc(O)c21', 'Nc1nccc2cc[nH]c(=O)c12', 'N=c1[nH]ccc2cc[nH]c(=O)c21'}),
('1,5 keto/enol tautomer', 'C1(C=CCCC1)=O', {'O=C1C=CCCC1', 'OC1=CCC=CC1', 'OC1=CC=CCC1', 'O=C1CC=CCC1', 'OC1=CCCC=C1'}),
('1,5 keto/enol tautomer', 'C1(=CC=CCC1)O', {'O=C1C=CCCC1', 'OC1=CCC=CC1', 'OC1=CC=CCC1', 'O=C1CC=CCC1', 'OC1=CCCC=C1'}),
('aliphatic imine tautomer', 'C1(CCCCC1)=N', {'N=C1CCCCC1', 'NC1=CCCCC1'}),
('aliphatic imine tautomer', 'C1(=CCCCC1)N', {'N=C1CCCCC1', 'NC1=CCCCC1'}),
('special imine tautomer', 'C1(C=CC=CN1)=CC', {'CC=C1C=CC=CN1', 'CCc1ccccn1', 'CC=C1C=CCC=N1'}),
('special imine tautomer', 'C1(=NC=CC=C1)CC', {'CC=C1C=CC=CN1', 'CCc1ccccn1', 'CC=C1C=CCC=N1'}),
('1,3 aromatic heteroatom H shift', 'O=c1cccc[nH]1', {'Oc1ccccn1', 'O=c1cccc[nH]1'}),
('1,3 aromatic heteroatom H shift', 'Oc1ccccn1', {'Oc1ccccn1', 'O=c1cccc[nH]1'}),
('1,3 aromatic heteroatom H shift', 'Oc1ncc[nH]1', {'Oc1ncc[nH]1', 'O=c1[nH]cc[nH]1'}),
('1,3 heteroatom H shift', 'OC(C)=NC', {'CN=C(C)O', 'CNC(C)=O', 'C=C(O)NC'}),
('1,3 heteroatom H shift', 'CNC(C)=O', {'CN=C(C)O', 'CNC(C)=O', 'C=C(O)NC'}),
('1,3 heteroatom H shift', 'S=C(N)N', {'N=C(N)S', 'NC(N)=S'}),
('1,3 heteroatom H shift', 'SC(N)=N', {'N=C(N)S', 'NC(N)=S'}),
('1,3 heteroatom H shift', 'N=c1[nH]ccn(C)1', {'Cn1ccnc1N', 'Cn1cc[nH]c1=N'}),
('1,3 heteroatom H shift', 'CN=c1[nH]cncc1', {'CN=c1ccnc[nH]1', 'CNc1ccncn1', 'CN=c1cc[nH]cn1'}),
('1,5 aromatic heteroatom H shift', 'Oc1cccc2ccncc12', {'O=c1cccc2cc[nH]cc1-2', 'Oc1cccc2ccncc12'}),
('1,5 aromatic heteroatom H shift', 'O=c1cccc2cc[nH]cc1-2', {'O=c1cccc2cc[nH]cc1-2', 'Oc1cccc2ccncc12'}),
('1,5 aromatic heteroatom H shift', 'Cc1n[nH]c2ncnn12', {'C=C1NNc2ncnn21', 'Cc1n[nH]c2ncnn12', 'Cc1nnc2[nH]cnn12', 'C=C1NN=C2N=CNN12', 'Cc1nnc2nc[nH]n12', 'C=C1NN=C2NC=NN12'}),
('1,5 aromatic heteroatom H shift', 'Cc1nnc2nc[nH]n12', {'C=C1NNc2ncnn21', 'Cc1n[nH]c2ncnn12', 'Cc1nnc2[nH]cnn12', 'C=C1NN=C2N=CNN12', 'Cc1nnc2nc[nH]n12', 'C=C1NN=C2NC=NN12'}),
('1,5 aromatic heteroatom H shift', 'Oc1ccncc1', {'Oc1ccncc1', 'O=c1cc[nH]cc1'}),
('1,5 aromatic heteroatom H shift', 'Oc1c(cccc3)c3nc2ccncc12', {'Oc1c2ccccc2nc2ccncc12', 'O=c1c2ccccc2nc2cc[nH]cc1-2', 'O=c1c2ccccc2[nH]c2ccncc21'}),
('1,3 and 1,5 aromatic heteroatom H shift', 'Oc1ncncc1', {'Oc1ccncn1', 'O=c1ccnc[nH]1', 'O=c1cc[nH]cn1'}),
('1,5 aromatic heteroatom H shift', 'C2(=C1C(=NC=N1)[NH]C(=N2)N)O', {'N=c1[nH]c2ncnc-2c(O)[nH]1', 'Nc1nc2nc[nH]c2c(O)n1', 'N=c1nc(O)c2nc[nH]c2[nH]1', 'N=c1[nH]c2[nH]cnc2c(=O)[nH]1', 'Nc1nc2ncnc-2c(O)[nH]1', 'N=c1nc2nc[nH]c2c(O)[nH]1', 'N=c1nc(O)c2[nH]cnc2[nH]1', 'Nc1nc(O)c2ncnc-2[nH]1', 'Nc1nc(=O)c2nc[nH]c2[nH]1', 'Nc1nc(=O)c2[nH]cnc2[nH]1', 'Nc1nc2[nH]cnc2c(O)n1', 'N=c1nc2[nH]cnc2c(O)[nH]1', 'Nc1nc2[nH]cnc2c(=O)[nH]1', 'Nc1nc2nc[nH]c2c(=O)[nH]1', 'N=c1[nH]c2nc[nH]c2c(=O)[nH]1'}),
('1,5 aromatic heteroatom H shift', 'C2(C1=C([NH]C=N1)[NH]C(=N2)N)=O', {'N=c1[nH]c2ncnc-2c(O)[nH]1', 'Nc1nc2nc[nH]c2c(O)n1', 'N=c1nc(O)c2nc[nH]c2[nH]1', 'N=c1[nH]c2[nH]cnc2c(=O)[nH]1', 'Nc1nc2ncnc-2c(O)[nH]1', 'N=c1nc2nc[nH]c2c(O)[nH]1', 'N=c1nc(O)c2[nH]cnc2[nH]1', 'Nc1nc(O)c2ncnc-2[nH]1', 'Nc1nc(=O)c2nc[nH]c2[nH]1', 'Nc1nc(=O)c2[nH]cnc2[nH]1', 'Nc1nc2[nH]cnc2c(O)n1', 'N=c1nc2[nH]cnc2c(O)[nH]1', 'Nc1nc2[nH]cnc2c(=O)[nH]1', 'Nc1nc2nc[nH]c2c(=O)[nH]1', 'N=c1[nH]c2nc[nH]c2c(=O)[nH]1'}),
('1,5 aromatic heteroatom H shift', 'Oc1n(C)ncc1', {'Cn1nccc1O', 'CN1N=CCC1=O', 'Cn1[nH]ccc1=O'}),
('1,5 aromatic heteroatom H shift', 'O=c1nc2[nH]ccn2cc1', {'O=c1ccn2cc[nH]c2n1', 'Oc1ccn2ccnc2n1', 'O=c1ccn2ccnc2[nH]1'}),
('1,5 aromatic heteroatom H shift', 'N=c1nc[nH]cc1', {'N=c1cc[nH]cn1', 'N=c1ccnc[nH]1', 'Nc1ccncn1'}),
('1,5 aromatic heteroatom H shift', 'N=c(c1)ccn2cc[nH]c12', {'N=c1ccn2cc[nH]c2c1', 'Nc1ccn2ccnc2c1'}),
('1,5 aromatic heteroatom H shift', 'CN=c1nc[nH]cc1', {'CN=c1ccnc[nH]1', 'CNc1ccncn1', 'CN=c1cc[nH]cn1'}),
('1,7 aromatic heteroatom H shift', 'c1ccc2[nH]c(-c3nc4ccccc4[nH]3)nc2c1', {'c1ccc2c(c1)=NC(C1=NC3C=CC=CC3=N1)N=2', 'c1ccc2[nH]c(-c3nc4ccccc4[nH]3)nc2c1', 'c1ccc2[nH]c(C3=NC4C=CC=CC4=N3)nc2c1', 'c1ccc2[nH]c(C3N=c4ccccc4=N3)nc2c1', 'c1ccc2c(c1)=NC(=C1N=C3C=CC=CC3N1)N=2', 'c1ccc2c(c1)NC(=C1N=c3ccccc3=N1)N2'}),
('1,7 aromatic heteroatom H shift', 'c1ccc2c(c1)NC(=C1N=c3ccccc3=N1)N2', {'c1ccc2c(c1)=NC(C1=NC3C=CC=CC3=N1)N=2', 'c1ccc2[nH]c(-c3nc4ccccc4[nH]3)nc2c1', 'c1ccc2[nH]c(C3=NC4C=CC=CC4=N3)nc2c1', 'c1ccc2[nH]c(C3N=c4ccccc4=N3)nc2c1', 'c1ccc2c(c1)=NC(=C1N=C3C=CC=CC3N1)N=2', 'c1ccc2c(c1)NC(=C1N=c3ccccc3=N1)N2'}),
('1,9 aromatic heteroatom H shift', 'CNc1ccnc2ncnn21', {'CN=c1cc[nH]c2ncnn21', 'CN=c1ccnc2[nH]cnn21', 'CN=c1ccnc2nc[nH]n21', 'CNc1ccnc2ncnn21'}),
('1,9 aromatic heteroatom H shift', 'CN=c1ccnc2nc[nH]n21', {'CN=c1cc[nH]c2ncnn21', 'CN=c1ccnc2[nH]cnn21', 'CN=c1ccnc2nc[nH]n21', 'CNc1ccnc2ncnn21'}),
('1,11 aromatic heteroatom H shift', 'Nc1ccc(C=C2C=CC(=O)C=C2)cc1', {'Nc1ccc(C=C2C=CC(=O)C=C2)cc1', 'N=C1C=CC(=CC2C=CC(=O)C=C2)C=C1', 'N=C1C=CC(=Cc2ccc(O)cc2)C=C1', 'N=C1C=CC(C=C2C=CC(=O)C=C2)C=C1'}),
('1,11 aromatic heteroatom H shift', 'N=C1C=CC(=Cc2ccc(O)cc2)C=C1', {'Nc1ccc(C=C2C=CC(=O)C=C2)cc1', 'N=C1C=CC(=CC2C=CC(=O)C=C2)C=C1', 'N=C1C=CC(=Cc2ccc(O)cc2)C=C1', 'N=C1C=CC(C=C2C=CC(=O)C=C2)C=C1'}),
('heterocyclic tautomer', 'n1ccc2ccc[nH]c12', {'c1cc2cccnc2[nH]1', 'c1cc2ccc[nH]c-2n1'}),
('heterocyclic tautomer', 'c1cc(=O)[nH]c2nccn12', {'O=c1ccn2cc[nH]c2n1', 'Oc1ccn2ccnc2n1', 'O=c1ccn2ccnc2[nH]1'}),
('heterocyclic tautomer', 'c1cnc2c[nH]ccc12', {'c1cc2cc[nH]cc-2n1', 'c1cc2ccncc2[nH]1'}),
('heterocyclic tautomer', 'n1ccc2c[nH]ccc12', {'c1cc2cnccc2[nH]1', 'c1cc2c[nH]ccc-2n1'}),
('heterocyclic tautomer', 'c1cnc2ccc[nH]c12', {'c1cc2[nH]cccc-2n1', 'c1cc2ncccc2[nH]1'}),
('furanone tautomer', 'C1=CC=C(O1)O', {'Oc1ccco1', 'O=C1CC=CO1'}),
('furanone tautomer', 'O=C1CC=CO1', {'Oc1ccco1', 'O=C1CC=CO1'}),
('keten/ynol tautomer', 'CC=C=O', {'CC=C=O', 'CC#CO'}),
('keten/ynol tautomer', 'CC#CO', {'CC=C=O', 'CC#CO'}),
('ionic nitro/aci-nitro tautomer', 'C([N+](=O)[O-])C', {'CC[N+](=O)[O-]', 'CC=[N+]([O-])O'}),
('ionic nitro/aci-nitro tautomer', 'C(=[N+](O)[O-])C', {'CC[N+](=O)[O-]', 'CC=[N+]([O-])O'}),
('oxim nitroso tautomer', 'CC(C)=NO', {'CC(C)N=O', 'CC(C)=NO', 'C=C(C)NO'}),
('oxim nitroso tautomer', 'CC(C)N=O', {'CC(C)N=O', 'CC(C)=NO', 'C=C(C)NO'}),
('oxim/nitroso tautomer via phenol', 'O=Nc1ccc(O)cc1', {'O=NC1C=CC(=O)C=C1', 'O=C1C=CC(=NO)C=C1', 'O=Nc1ccc(O)cc1'}),
('oxim/nitroso tautomer via phenol', 'O=C1C=CC(=NO)C=C1', {'O=NC1C=CC(=O)C=C1', 'O=C1C=CC(=NO)C=C1', 'O=Nc1ccc(O)cc1'}),
('cyano/iso-cyanic acid tautomer', 'C(#N)O', {'N#CO', 'N=C=O'}),
('cyano/iso-cyanic acid tautomer', 'C(=N)=O', {'N#CO', 'N=C=O'}),
('isocyanide tautomer', 'C#N', {'[C-]#[NH+]', 'C#N'}),
('isocyanide tautomer', '[C-]#[NH+]', {'[C-]#[NH+]', 'C#N'}),
('Remove stereochemistry from mobile double bonds', 'c1(ccccc1)/C=C(/O)\\C', {'C=C(O)Cc1ccccc1', 'CC(O)=Cc1ccccc1', 'CC(=O)Cc1ccccc1'}),
('Remove stereochemistry from mobile double bonds', 'C/C=C/C(C)=O', {'C=C(O)C=CC', 'C=CCC(=C)O', 'CC=CC(C)=O', 'C=CCC(C)=O', 'C=CC=C(C)O'}),
('Remove stereochemistry from mobile double bonds', r'C/C=C\C(C)=O', {'C=C(O)C=CC', 'C=CCC(=C)O', 'CC=CC(C)=O', 'C=CCC(C)=O', 'C=CC=C(C)O'}),
]
tautomer_canonicalization_tests = [
('1,3 keto/enol tautomer', 'C1(=CCCCC1)O', 'O=C1CCCCC1'),
('1,3 keto/enol tautomer', 'C1(CCCCC1)=O', 'O=C1CCCCC1'),
('Acetophenone keto/enol tautomer', 'C(=C)(O)C1=CC=CC=C1', 'CC(=O)c1ccccc1'),
('Acetone keto/enol tautomer', 'CC(C)=O', 'CC(C)=O'),
('keto/enol tautomer', 'OC(C)=C(C)C', 'CC(=O)C(C)C'),
('1-phenyl-2-propanone enol/keto', 'c1(ccccc1)CC(=O)C', 'CC(=O)Cc1ccccc1'),
('1,5 keto/enol tautomer', 'Oc1nccc2cc[nH]c(=N)c12', 'N=c1[nH]ccc2cc[nH]c(=O)c21'),
('1,5 keto/enol tautomer', 'C1(C=CCCC1)=O', 'O=C1C=CCCC1'),
('1,5 keto/enol tautomer', 'C1(=CC=CCC1)O', 'O=C1C=CCCC1'),
('aliphatic imine tautomer', 'C1(CCCCC1)=N', 'N=C1CCCCC1'),
('aliphatic imine tautomer', 'C1(=CCCCC1)N', 'N=C1CCCCC1'),
('special imine tautomer', 'C1(C=CC=CN1)=CC', 'CCc1ccccn1'),
('special imine tautomer', 'C1(=NC=CC=C1)CC', 'CCc1ccccn1'),
('1,3 aromatic heteroatom H shift', 'O=c1cccc[nH]1', 'O=c1cccc[nH]1'),
('1,3 aromatic heteroatom H shift', 'Oc1ccccn1', 'O=c1cccc[nH]1'),
('1,3 aromatic heteroatom H shift', 'Oc1ncc[nH]1', 'O=c1[nH]cc[nH]1'),
('1,3 heteroatom H shift', 'OC(C)=NC', 'CNC(C)=O'),
('1,3 heteroatom H shift', 'CNC(C)=O', 'CNC(C)=O'),
('1,3 heteroatom H shift', 'S=C(N)N', 'NC(N)=S'),
('1,3 heteroatom H shift', 'SC(N)=N', 'NC(N)=S'),
('1,3 heteroatom H shift', 'N=c1[nH]ccn(C)1', 'Cn1cc[nH]c1=N'),
('1,3 heteroatom H shift', 'CN=c1[nH]cncc1', 'CN=c1cc[nH]cn1'),
('1,5 aromatic heteroatom H shift', 'Oc1cccc2ccncc12', 'Oc1cccc2ccncc12'),
('1,5 aromatic heteroatom H shift', 'O=c1cccc2cc[nH]cc1-2', 'Oc1cccc2ccncc12'),
('1,5 aromatic heteroatom H shift', 'Cc1n[nH]c2ncnn12', 'Cc1n[nH]c2ncnn12'),
('1,5 aromatic heteroatom H shift', 'Cc1nnc2nc[nH]n12', 'Cc1n[nH]c2ncnn12'),
('1,5 aromatic heteroatom H shift', 'Oc1ccncc1', 'O=c1cc[nH]cc1'),
('1,5 aromatic heteroatom H shift', 'Oc1c(cccc3)c3nc2ccncc12', 'O=c1c2ccccc2[nH]c2ccncc21'),
('1,3 and 1,5 aromatic heteroatom H shift', 'Oc1ncncc1', 'O=c1cc[nH]cn1'),
('1,5 aromatic heteroatom H shift', 'C2(=C1C(=NC=N1)[NH]C(=N2)N)O', 'N=c1[nH]c2[nH]cnc2c(=O)[nH]1'),
('1,5 aromatic heteroatom H shift', 'C2(C1=C([NH]C=N1)[NH]C(=N2)N)=O', 'N=c1[nH]c2[nH]cnc2c(=O)[nH]1'),
('1,5 aromatic heteroatom H shift', 'Oc1n(C)ncc1', 'Cn1[nH]ccc1=O'),
('1,5 aromatic heteroatom H shift', 'O=c1nc2[nH]ccn2cc1', 'O=c1ccn2cc[nH]c2n1'),
('1,5 aromatic heteroatom H shift', 'N=c1nc[nH]cc1', 'N=c1cc[nH]cn1'),
('1,5 aromatic heteroatom H shift', 'N=c(c1)ccn2cc[nH]c12', 'N=c1ccn2cc[nH]c2c1'),
('1,5 aromatic heteroatom H shift', 'CN=c1nc[nH]cc1', 'CN=c1cc[nH]cn1'),
('1,7 aromatic heteroatom H shift', 'c1ccc2[nH]c(-c3nc4ccccc4[nH]3)nc2c1', 'c1ccc2[nH]c(-c3nc4ccccc4[nH]3)nc2c1'),
('1,7 aromatic heteroatom H shift', 'c1ccc2c(c1)NC(=C1N=c3ccccc3=N1)N2', 'c1ccc2[nH]c(-c3nc4ccccc4[nH]3)nc2c1'),
('1,9 aromatic heteroatom H shift', 'CNc1ccnc2ncnn21', 'CN=c1cc[nH]c2ncnn21'),
('1,9 aromatic heteroatom H shift', 'CN=c1ccnc2nc[nH]n21', 'CN=c1cc[nH]c2ncnn21'),
('1,11 aromatic heteroatom H shift', 'Nc1ccc(C=C2C=CC(=O)C=C2)cc1', 'Nc1ccc(C=C2C=CC(=O)C=C2)cc1'),
('1,11 aromatic heteroatom H shift', 'N=C1C=CC(=Cc2ccc(O)cc2)C=C1', 'Nc1ccc(C=C2C=CC(=O)C=C2)cc1'),
('heterocyclic tautomer', 'n1ccc2ccc[nH]c12', 'c1cc2cccnc2[nH]1'),
('heterocyclic tautomer', 'c1cc(=O)[nH]c2nccn12', 'O=c1ccn2cc[nH]c2n1'),
('heterocyclic tautomer', 'c1cnc2c[nH]ccc12', 'c1cc2ccncc2[nH]1'),
('heterocyclic tautomer', 'n1ccc2c[nH]ccc12', 'c1cc2cnccc2[nH]1'),
('heterocyclic tautomer', 'c1cnc2ccc[nH]c12', 'c1cc2ncccc2[nH]1'),
('furanone tautomer', 'C1=CC=C(O1)O', 'Oc1ccco1'),
('furanone tautomer', 'O=C1CC=CO1', 'Oc1ccco1'),
('keten/ynol tautomer', 'CC=C=O', 'CC=C=O'),
('keten/ynol tautomer', 'CC#CO', 'CC=C=O'),
('ionic nitro/aci-nitro tautomer', 'C([N+](=O)[O-])C', 'CC[N+](=O)[O-]'),
('ionic nitro/aci-nitro tautomer', 'C(=[N+](O)[O-])C', 'CC[N+](=O)[O-]'),
('oxim nitroso tautomer', 'CC(C)=NO', 'CC(C)=NO'),
('oxim nitroso tautomer', 'CC(C)N=O', 'CC(C)=NO'),
('oxim/nitroso tautomer via phenol', 'O=Nc1ccc(O)cc1', 'O=Nc1ccc(O)cc1'),
('oxim/nitroso tautomer via phenol', 'O=C1C=CC(=NO)C=C1', 'O=Nc1ccc(O)cc1'),
('cyano/iso-cyanic acid tautomer', 'C(#N)O', 'N=C=O'),
('cyano/iso-cyanic acid tautomer', 'C(=N)=O', 'N=C=O'),
('formamidinesulfinic acid tautomer', '[S](=O)(=O)C(N)N', 'N=C(N)S(=O)O'),
('formamidinesulfinic acid tautomer', '[S](=O)(O)C(=N)N', 'N=C(N)S(=O)O'),
('isocyanide tautomer', 'C#N', 'C#N'),
('isocyanide tautomer', '[C-]#[NH+]', 'C#N'),
]
if __name__ == '__main__':
logging.basicConfig(level=logging.DEBUG)
for desc, smiles, tautomers in tautomer_enumeration_tests:
mol = Chem.MolFromSmiles(smiles)
Chem.SanitizeMol(mol)
assert {Chem.MolToSmiles(t, isomericSmiles=True) for t in enumerate_tautomers(mol)} == tautomers
log.info('%s => %s', smiles, tautomers)
for desc, smiles, tautomer in tautomer_canonicalization_tests:
mol = Chem.MolFromSmiles(smiles)
Chem.SanitizeMol(mol)
assert Chem.MolToSmiles(canonical_tautomer(mol), isomericSmiles=True) == tautomer
log.info('%s => %s', smiles, tautomer)
|