File: tautomer.py

package info (click to toggle)
coot 1.1.15%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 198,064 kB
  • sloc: cpp: 487,366; python: 34,637; ansic: 26,046; lisp: 22,737; sh: 13,097; makefile: 2,663; awk: 441; xml: 188; csh: 14
file content (370 lines) | stat: -rw-r--r-- 25,154 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import copy
from itertools import tee
import logging
from rdkit import Chem
from rdkit.Chem.rdchem import BondType, BondStereo, BondDir


__author__ = 'Matt Swain'
__email__ = 'm.swain@me.com'
__license__ = 'MIT'

log = logging.getLogger('tautomer')

BONDMAP = {'-': BondType.SINGLE, '=': BondType.DOUBLE, '#': BondType.TRIPLE, ':': BondType.AROMATIC}
CHARGEMAP = {'+': 1, '0': 0, '-': -1}

tautomer_transforms = [
    {'name': '1,3 (thio)keto/enol f', 'smarts': '[CX4!H0][C]=[O,S,Se,Te;X1]'},
    {'name': '1,3 (thio)keto/enol r', 'smarts': '[O,S,Se,Te;X2!H0][C]=[C]'},
    {'name': '1,5 (thio)keto/enol f', 'smarts': '[CX4,NX3;!H0][C]=[C][CH0]=[O,S,Se,Te;X1]'},
    {'name': '1,5 (thio)keto/enol r', 'smarts': '[O,S,Se,Te;X2!H0][CH0]=,:[C][C]=,:[C,N]'},
    {'name': 'aliphatic imine f', 'smarts': '[CX4!H0][C]=[NX2]'},
    {'name': 'aliphatic imine r', 'smarts': '[NX3!H0][C]=[CX3]'},
    {'name': 'special imine f', 'smarts': '[N!H0][C]=[CX3R0]'},
    {'name': 'special imine r', 'smarts': '[CX4!H0][c]=,:[n]'},
    {'name': '1,3 aromatic heteroatom H shift f', 'smarts': '[#7!H0][#6R1]=[O,#7X2]'},
    {'name': '1,3 aromatic heteroatom H shift r', 'smarts': '[O,#7;!H0][#6R1]=,:[#7X2]'},
    {'name': '1,3 heteroatom H shift', 'smarts': '[#7,S,O,Se,Te;!H0][#7X2,#6,#15]=[#7,#16,#8,Se,Te]'},
    {'name': '1,5 aromatic heteroatom H shift', 'smarts': '[n,s,o;!H0]:[c,n]:[c]:[c,n]:[n,s,o;H0]'},
    {'name': '1,5 aromatic heteroatom H shift f', 'smarts': '[#7,#16,#8,Se,Te;!H0][#6,nX2]=,:[#6,nX2][#6,#7X2]=,:[#7X2,S,O,Se,Te]'},
    {'name': '1,5 aromatic heteroatom H shift r', 'smarts': '[#7,S,O,Se,Te;!H0][#6,#7X2]=,:[#6,nX2][#6,nX2]=,:[#7,#16,#8,Se,Te]'},
    {'name': '1,7 aromatic heteroatom H shift f', 'smarts': '[#7,#8,#16,Se,Te;!H0][#6,#7X2]=,:[#6,#7X2][#6,#7X2]=,:[#6][#6,#7X2]=,:[#7X2,S,O,Se,Te,CX3]'},
    {'name': '1,7 aromatic heteroatom H shift r', 'smarts': '[#7,S,O,Se,Te,CX4;!H0][#6,#7X2]=,:[#6][#6,#7X2]=,:[#6,#7X2][#6,#7X2]=,:[NX2,S,O,Se,Te]'},
    {'name': '1,9 aromatic heteroatom H shift f', 'smarts': '[#7,O;!H0][#6,#7X2]=,:[#6,#7X2][#6,#7X2]=,:[#6,#7X2][#6,#7X2]=,:[#6,#7X2][#6,#7X2]=,:[#7,O]'},
    {'name': '1,11 aromatic heteroatom H shift f', 'smarts': '[#7,O;!H0][#6,nX2]=,:[#6,nX2][#6,nX2]=,:[#6,nX2][#6,nX2]=,:[#6,nX2][#6,nX2]=,:[#6,nX2][#6,nX2]=,:[#7X2,O]'},
    {'name': 'furanone f', 'smarts': '[O,S,N;!H0][#6X3r5;$([#6][!#6])]=,:[#6X3r5]'},
    {'name': 'furanone r', 'smarts': '[#6r5!H0][#6X3r5;$([#6][!#6])]=[O,S,N]'},
    {'name': 'keten/ynol f', 'smarts': '[C!H0]=[C]=[O,S,Se,Te;X1]', 'bonds': '#-'},
    {'name': 'keten/ynol r', 'smarts': '[O,S,Se,Te;!H0X2][C]#[C]', 'bonds': '=='},
    {'name': 'ionic nitro/aci-nitro f', 'smarts': '[C!H0][N+;$([N][O-])]=[O]'},
    {'name': 'ionic nitro/aci-nitro r', 'smarts': '[O!H0][N+;$([N][O-])]=[C]'},
    {'name': 'oxim/nitroso f', 'smarts': '[O!H0][N]=[C]'},
    {'name': 'oxim/nitroso r', 'smarts': '[C!H0][N]=[O]'},
    {'name': 'oxim/nitroso via phenol f', 'smarts': '[O!H0][N]=[C][C]=[C][C]=[OH0]'},
    {'name': 'oxim/nitroso via phenol r', 'smarts': '[O!H0][c]:[c]:[c]:[c][N]=[OH0]'},
    {'name': 'cyano/iso-cyanic acid f', 'smarts': '[O!H0][C]#[N]', 'bonds': '=='},
    {'name': 'cyano/iso-cyanic acid r', 'smarts': '[N!H0]=[C]=[O]', 'bonds': '#-'},
    {'name': 'formamidinesulfinic acid f', 'smarts': '[O,N;!H0][C][S,Se,Te]=[O]', 'bonds': '=--'},
    {'name': 'formamidinesulfinic acid r', 'smarts': '[O!H0][S,Se,Te][C]=[O,N]', 'bonds': '=--'},
    {'name': 'isocyanide f', 'smarts': '[C-0!H0]#[N+0]', 'bonds': '#', 'charges': '-+'},
    {'name': 'isocyanide r', 'smarts': '[N+!H0]#[C-]', 'bonds': '#', 'charges': '-+'},
    {'name': 'phosphonic acid f', 'smarts': '[OH][PH0]', 'bonds': '='},
    {'name': 'phosphonic acid r', 'smarts': '[PH]=[O]', 'bonds': '-'}
]
for transform in tautomer_transforms:
    transform['smarts'] = Chem.MolFromSmarts(transform['smarts'].encode('utf8'))

tautomer_scores = [
    {'name': 'benzoquinone', 'smarts': '[#6]1([#6]=[#6][#6]([#6]=[#6]1)=,:[N,S,O])=,:[N,S,O]', 'score': 25},
    {'name': 'oxim', 'smarts': '[#6]=[N][OH]', 'score': 4},
    {'name': 'C=O', 'smarts': '[#6]=,:[#8]', 'score': 2},
    {'name': 'N=O', 'smarts': '[#7]=,:[#8]', 'score': 2},
    {'name': 'P=O', 'smarts': '[#15]=,:[#8]', 'score': 2},
    {'name': 'C=hetero', 'smarts': '[#6]=[!#1;!#6]', 'score': 1},
    {'name': 'methyl', 'smarts': '[CX4H3]', 'score': 1},
    {'name': 'guanidine terminal=N', 'smarts': '[#7][#6](=[NR0])[#7H0]', 'score': 1},
    {'name': 'guanidine endocyclic=N', 'smarts': '[#7;R][#6;R]([N])=[#7;R]', 'score': 2},
    {'name': 'aci-nitro', 'smarts': '[#6]=[N+]([O-])[OH]', 'score': -4},
]
for tscore in tautomer_scores:
    tscore['smarts'] = Chem.MolFromSmarts(tscore['smarts'])

def tautomer_score(mol):

    smiles = Chem.MolToSmiles(mol, isomericSmiles=True)
    log.debug('Tautomer: %s', smiles)
    score = 0
    # Add aromatic ring scores
    ssr = Chem.GetSymmSSSR(mol)
    for ring in ssr:
        btypes = {mol.GetBondBetweenAtoms(*pair).GetBondType() for pair in _pairwise(ring)}
        elements = {mol.GetAtomWithIdx(idx).GetAtomicNum() for idx in ring}
        if btypes == {BondType.AROMATIC}:
            log.debug('Score +100 (aromatic ring)')
            score += 100
            if elements == {6}:
                log.debug('Score +150 (carbocyclic aromatic ring)')
                score += 150
    # Add SMARTS scores
    for tscore in tautomer_scores:
        for match in mol.GetSubstructMatches(tscore['smarts']):
            log.debug('Score %+d (%s)', tscore['score'], tscore['name'])
            score += tscore['score']
    # Add (P,S,Se,Te)-H scores
    for atom in mol.GetAtoms():
        if atom.GetAtomicNum() in {15, 16, 34, 52}:
            hs = atom.GetTotalNumHs()
            if hs:
                log.debug('Score %+d (%s-H bonds)', -hs, atom.GetSymbol())
                score -= hs

    return score


def canonical_tautomer(mol, max_tautomers=1000):
    """Enumerate all possible tautomers and return a canonical tautomer based on a scoring system.

    :param mol: An RDKit Mol object.
    :param max_tautomers: The maximum number of tautomers to enumerate (limit to prevent combinatorial explosion)
    """
    tautomers = enumerate_tautomers(mol, max_tautomers)
    if len(tautomers) == 1:
        return tautomers[0]
    # Calculate score for each tautomer
    highest = None
    for t in tautomers:
        smiles = Chem.MolToSmiles(t, isomericSmiles=True)
        log.debug('Tautomer: %s', smiles)
        score = 0
        # Add aromatic ring scores
        ssr = Chem.GetSymmSSSR(t)
        for ring in ssr:
            btypes = {t.GetBondBetweenAtoms(*pair).GetBondType() for pair in _pairwise(ring)}
            elements = {t.GetAtomWithIdx(idx).GetAtomicNum() for idx in ring}
            if btypes == {BondType.AROMATIC}:
                log.debug('Score +100 (aromatic ring)')
                score += 100
                if elements == {6}:
                    log.debug('Score +150 (carbocyclic aromatic ring)')
                    score += 150
        # Add SMARTS scores
        for tscore in tautomer_scores:
            for match in t.GetSubstructMatches(tscore['smarts']):
                log.debug('Score %+d (%s)', tscore['score'], tscore['name'])
                score += tscore['score']
        # Add (P,S,Se,Te)-H scores
        for atom in t.GetAtoms():
            if atom.GetAtomicNum() in {15, 16, 34, 52}:
                hs = atom.GetTotalNumHs()
                if hs:
                    log.debug('Score %+d (%s-H bonds)', -hs, atom.GetSymbol())
                    score -= hs
        # Set as highest if score higher or if score equal and smiles comes first alphabetically
        if not highest or highest['score'] < score or (highest['score'] == score and smiles < highest['smiles']):
            log.debug('New highest tautomer: %s (%s)', smiles, score)
            highest = {'smiles': smiles, 'tautomer': t, 'score': score}
    return highest['tautomer']


def enumerate_tautomers(mol, max_tautomers=1000):
    """Enumerate all possible tautomers and return them as a list.

    :param mol: An RDKit Mol object.
    :param max_tautomers: The maximum number of tautomers to enumerate (limit to prevent combinatorial explosion)
    """
    tautomers = {Chem.MolToSmiles(mol, isomericSmiles=True): copy.deepcopy(mol)}
    done = set()
    while len(tautomers) < max_tautomers:
        for tsmiles in sorted(tautomers):
            if tsmiles in done:
                continue
            for transform in tautomer_transforms:
                for match in tautomers[tsmiles].GetSubstructMatches(transform['smarts']):
                    # Adjust hydrogens
                    product = copy.deepcopy(tautomers[tsmiles])
                    first = product.GetAtomWithIdx(match[0])
                    last = product.GetAtomWithIdx(match[-1])
                    first.SetNumExplicitHs(max(0, first.GetNumExplicitHs() - 1))
                    last.SetNumExplicitHs(last.GetTotalNumHs() + 1)
                    # Adjust bond orders
                    for bi, pair in enumerate(_pairwise(match)):
                        if 'bonds' in transform:
                            product.GetBondBetweenAtoms(*pair).SetBondType(BONDMAP[transform['bonds'][bi]])
                        else:
                            product.GetBondBetweenAtoms(*pair).SetBondType(BondType.DOUBLE if bi % 2 == 0 else BondType.SINGLE)
                    # Adjust charges
                    if 'charges' in transform:
                        for ci, idx in enumerate(match):
                            atom = product.GetAtomWithIdx(idx)
                            atom.SetFormalCharge(atom.GetFormalCharge() + CHARGEMAP[transform['charges'][ci]])
                    try:
                        Chem.SanitizeMol(product)
                        smiles = Chem.MolToSmiles(product, isomericSmiles=True)
                        log.debug('Applied rule: %s to %s', transform['name'], tsmiles)
                        if smiles not in tautomers:
                            log.debug('New tautomer produced: %s' % smiles)
                            tautomers[smiles] = product
                        else:
                            log.debug('Previous tautomer produced again: %s' % smiles)
                    except ValueError:
                        log.debug('ValueError')
            done.add(tsmiles)
        if len(tautomers) == len(done):
            break
    else:
        log.warn('Tautomer enumeration stopped at maximum %s', max_tautomers)
    # Clean up stereochemistry
    for tautomer in tautomers.values():
        Chem.AssignStereochemistry(tautomer, force=True, cleanIt=True)
        for bond in tautomer.GetBonds():
            if bond.GetBondType() == BondType.DOUBLE and bond.GetStereo() > BondStereo.STEREOANY:
                begin = bond.GetBeginAtomIdx()
                end = bond.GetEndAtomIdx()
                for othertautomer in tautomers.values():
                    if not othertautomer.GetBondBetweenAtoms(begin, end).GetBondType() == BondType.DOUBLE:
                        neighbours = tautomer.GetAtomWithIdx(begin).GetBonds() + tautomer.GetAtomWithIdx(end).GetBonds()
                        for otherbond in neighbours:
                            if otherbond.GetBondDir() in {BondDir.ENDUPRIGHT, BondDir.ENDDOWNRIGHT}:
                                otherbond.SetBondDir(BondDir.NONE)
                        Chem.AssignStereochemistry(tautomer, force=True, cleanIt=True)
                        log.debug('Removed stereochemistry from unfixed double bond')
                        break
    return tautomers.values()


def _pairwise(iterable):
    """Utility function to iterate in a pairwise fashion."""
    a, b = tee(iterable)
    next(b, None)
    return zip(a, b)


tautomer_enumeration_tests = [
    ('1,3 keto/enol tautomer', 'C1(=CCCCC1)O', {'OC1=CCCCC1', 'O=C1CCCCC1'}),
    ('1,3 keto/enol tautomer', 'C1(CCCCC1)=O', {'OC1=CCCCC1', 'O=C1CCCCC1'}),
    ('Acetophenone keto/enol tautomer', 'C(=C)(O)C1=CC=CC=C1', {'C=C(O)c1ccccc1', 'CC(=O)c1ccccc1'}),
    ('Acetone keto/enol tautomer', 'CC(C)=O', {'CC(C)=O', 'C=C(C)O'}),
    ('keto/enol tautomer', 'OC(C)=C(C)C', {'C=C(O)C(C)C', 'CC(C)=C(C)O', 'CC(=O)C(C)C'}),
    ('1-phenyl-2-propanone enol/keto', 'c1(ccccc1)CC(=O)C', {'C=C(O)Cc1ccccc1', 'CC(=O)Cc1ccccc1', 'CC(O)=Cc1ccccc1'}),
    ('1,5 keto/enol tautomer', 'Oc1nccc2cc[nH]c(=N)c12', {'Nc1nccc2ccnc(O)c12', 'N=c1nccc2cc[nH]c(O)c1-2', 'Nc1[nH]ccc2ccnc(=O)c1-2', 'N=c1[nH]ccc2ccnc(O)c21', 'Nc1nccc2cc[nH]c(=O)c12', 'N=c1[nH]ccc2cc[nH]c(=O)c21'}),
    ('1,5 keto/enol tautomer', 'C1(C=CCCC1)=O', {'O=C1C=CCCC1', 'OC1=CCC=CC1', 'OC1=CC=CCC1', 'O=C1CC=CCC1', 'OC1=CCCC=C1'}),
    ('1,5 keto/enol tautomer', 'C1(=CC=CCC1)O', {'O=C1C=CCCC1', 'OC1=CCC=CC1', 'OC1=CC=CCC1', 'O=C1CC=CCC1', 'OC1=CCCC=C1'}),
    ('aliphatic imine tautomer', 'C1(CCCCC1)=N', {'N=C1CCCCC1', 'NC1=CCCCC1'}),
    ('aliphatic imine tautomer', 'C1(=CCCCC1)N', {'N=C1CCCCC1', 'NC1=CCCCC1'}),
    ('special imine tautomer', 'C1(C=CC=CN1)=CC', {'CC=C1C=CC=CN1', 'CCc1ccccn1', 'CC=C1C=CCC=N1'}),
    ('special imine tautomer', 'C1(=NC=CC=C1)CC', {'CC=C1C=CC=CN1', 'CCc1ccccn1', 'CC=C1C=CCC=N1'}),
    ('1,3 aromatic heteroatom H shift', 'O=c1cccc[nH]1', {'Oc1ccccn1', 'O=c1cccc[nH]1'}),
    ('1,3 aromatic heteroatom H shift', 'Oc1ccccn1', {'Oc1ccccn1', 'O=c1cccc[nH]1'}),
    ('1,3 aromatic heteroatom H shift', 'Oc1ncc[nH]1', {'Oc1ncc[nH]1', 'O=c1[nH]cc[nH]1'}),
    ('1,3 heteroatom H shift', 'OC(C)=NC', {'CN=C(C)O', 'CNC(C)=O', 'C=C(O)NC'}),
    ('1,3 heteroatom H shift', 'CNC(C)=O', {'CN=C(C)O', 'CNC(C)=O', 'C=C(O)NC'}),
    ('1,3 heteroatom H shift', 'S=C(N)N', {'N=C(N)S', 'NC(N)=S'}),
    ('1,3 heteroatom H shift', 'SC(N)=N', {'N=C(N)S', 'NC(N)=S'}),
    ('1,3 heteroatom H shift', 'N=c1[nH]ccn(C)1', {'Cn1ccnc1N', 'Cn1cc[nH]c1=N'}),
    ('1,3 heteroatom H shift', 'CN=c1[nH]cncc1', {'CN=c1ccnc[nH]1', 'CNc1ccncn1', 'CN=c1cc[nH]cn1'}),
    ('1,5 aromatic heteroatom H shift', 'Oc1cccc2ccncc12', {'O=c1cccc2cc[nH]cc1-2', 'Oc1cccc2ccncc12'}),
    ('1,5 aromatic heteroatom H shift', 'O=c1cccc2cc[nH]cc1-2', {'O=c1cccc2cc[nH]cc1-2', 'Oc1cccc2ccncc12'}),
    ('1,5 aromatic heteroatom H shift', 'Cc1n[nH]c2ncnn12', {'C=C1NNc2ncnn21', 'Cc1n[nH]c2ncnn12', 'Cc1nnc2[nH]cnn12', 'C=C1NN=C2N=CNN12', 'Cc1nnc2nc[nH]n12', 'C=C1NN=C2NC=NN12'}),
    ('1,5 aromatic heteroatom H shift', 'Cc1nnc2nc[nH]n12', {'C=C1NNc2ncnn21', 'Cc1n[nH]c2ncnn12', 'Cc1nnc2[nH]cnn12', 'C=C1NN=C2N=CNN12', 'Cc1nnc2nc[nH]n12', 'C=C1NN=C2NC=NN12'}),
    ('1,5 aromatic heteroatom H shift', 'Oc1ccncc1', {'Oc1ccncc1', 'O=c1cc[nH]cc1'}),
    ('1,5 aromatic heteroatom H shift', 'Oc1c(cccc3)c3nc2ccncc12', {'Oc1c2ccccc2nc2ccncc12', 'O=c1c2ccccc2nc2cc[nH]cc1-2', 'O=c1c2ccccc2[nH]c2ccncc21'}),
    ('1,3 and 1,5 aromatic heteroatom H shift', 'Oc1ncncc1', {'Oc1ccncn1', 'O=c1ccnc[nH]1', 'O=c1cc[nH]cn1'}),
    ('1,5 aromatic heteroatom H shift', 'C2(=C1C(=NC=N1)[NH]C(=N2)N)O', {'N=c1[nH]c2ncnc-2c(O)[nH]1', 'Nc1nc2nc[nH]c2c(O)n1', 'N=c1nc(O)c2nc[nH]c2[nH]1', 'N=c1[nH]c2[nH]cnc2c(=O)[nH]1', 'Nc1nc2ncnc-2c(O)[nH]1', 'N=c1nc2nc[nH]c2c(O)[nH]1', 'N=c1nc(O)c2[nH]cnc2[nH]1', 'Nc1nc(O)c2ncnc-2[nH]1', 'Nc1nc(=O)c2nc[nH]c2[nH]1', 'Nc1nc(=O)c2[nH]cnc2[nH]1', 'Nc1nc2[nH]cnc2c(O)n1', 'N=c1nc2[nH]cnc2c(O)[nH]1', 'Nc1nc2[nH]cnc2c(=O)[nH]1', 'Nc1nc2nc[nH]c2c(=O)[nH]1', 'N=c1[nH]c2nc[nH]c2c(=O)[nH]1'}),
    ('1,5 aromatic heteroatom H shift', 'C2(C1=C([NH]C=N1)[NH]C(=N2)N)=O', {'N=c1[nH]c2ncnc-2c(O)[nH]1', 'Nc1nc2nc[nH]c2c(O)n1', 'N=c1nc(O)c2nc[nH]c2[nH]1', 'N=c1[nH]c2[nH]cnc2c(=O)[nH]1', 'Nc1nc2ncnc-2c(O)[nH]1', 'N=c1nc2nc[nH]c2c(O)[nH]1', 'N=c1nc(O)c2[nH]cnc2[nH]1', 'Nc1nc(O)c2ncnc-2[nH]1', 'Nc1nc(=O)c2nc[nH]c2[nH]1', 'Nc1nc(=O)c2[nH]cnc2[nH]1', 'Nc1nc2[nH]cnc2c(O)n1', 'N=c1nc2[nH]cnc2c(O)[nH]1', 'Nc1nc2[nH]cnc2c(=O)[nH]1', 'Nc1nc2nc[nH]c2c(=O)[nH]1', 'N=c1[nH]c2nc[nH]c2c(=O)[nH]1'}),
    ('1,5 aromatic heteroatom H shift', 'Oc1n(C)ncc1', {'Cn1nccc1O', 'CN1N=CCC1=O', 'Cn1[nH]ccc1=O'}),
    ('1,5 aromatic heteroatom H shift', 'O=c1nc2[nH]ccn2cc1', {'O=c1ccn2cc[nH]c2n1', 'Oc1ccn2ccnc2n1', 'O=c1ccn2ccnc2[nH]1'}),
    ('1,5 aromatic heteroatom H shift', 'N=c1nc[nH]cc1', {'N=c1cc[nH]cn1', 'N=c1ccnc[nH]1', 'Nc1ccncn1'}),
    ('1,5 aromatic heteroatom H shift', 'N=c(c1)ccn2cc[nH]c12', {'N=c1ccn2cc[nH]c2c1', 'Nc1ccn2ccnc2c1'}),
    ('1,5 aromatic heteroatom H shift', 'CN=c1nc[nH]cc1', {'CN=c1ccnc[nH]1', 'CNc1ccncn1', 'CN=c1cc[nH]cn1'}),
    ('1,7 aromatic heteroatom H shift', 'c1ccc2[nH]c(-c3nc4ccccc4[nH]3)nc2c1', {'c1ccc2c(c1)=NC(C1=NC3C=CC=CC3=N1)N=2', 'c1ccc2[nH]c(-c3nc4ccccc4[nH]3)nc2c1', 'c1ccc2[nH]c(C3=NC4C=CC=CC4=N3)nc2c1', 'c1ccc2[nH]c(C3N=c4ccccc4=N3)nc2c1', 'c1ccc2c(c1)=NC(=C1N=C3C=CC=CC3N1)N=2', 'c1ccc2c(c1)NC(=C1N=c3ccccc3=N1)N2'}),
    ('1,7 aromatic heteroatom H shift', 'c1ccc2c(c1)NC(=C1N=c3ccccc3=N1)N2', {'c1ccc2c(c1)=NC(C1=NC3C=CC=CC3=N1)N=2', 'c1ccc2[nH]c(-c3nc4ccccc4[nH]3)nc2c1', 'c1ccc2[nH]c(C3=NC4C=CC=CC4=N3)nc2c1', 'c1ccc2[nH]c(C3N=c4ccccc4=N3)nc2c1', 'c1ccc2c(c1)=NC(=C1N=C3C=CC=CC3N1)N=2', 'c1ccc2c(c1)NC(=C1N=c3ccccc3=N1)N2'}),
    ('1,9 aromatic heteroatom H shift', 'CNc1ccnc2ncnn21', {'CN=c1cc[nH]c2ncnn21', 'CN=c1ccnc2[nH]cnn21', 'CN=c1ccnc2nc[nH]n21', 'CNc1ccnc2ncnn21'}),
    ('1,9 aromatic heteroatom H shift', 'CN=c1ccnc2nc[nH]n21', {'CN=c1cc[nH]c2ncnn21', 'CN=c1ccnc2[nH]cnn21', 'CN=c1ccnc2nc[nH]n21', 'CNc1ccnc2ncnn21'}),
    ('1,11 aromatic heteroatom H shift', 'Nc1ccc(C=C2C=CC(=O)C=C2)cc1', {'Nc1ccc(C=C2C=CC(=O)C=C2)cc1', 'N=C1C=CC(=CC2C=CC(=O)C=C2)C=C1', 'N=C1C=CC(=Cc2ccc(O)cc2)C=C1', 'N=C1C=CC(C=C2C=CC(=O)C=C2)C=C1'}),
    ('1,11 aromatic heteroatom H shift', 'N=C1C=CC(=Cc2ccc(O)cc2)C=C1', {'Nc1ccc(C=C2C=CC(=O)C=C2)cc1', 'N=C1C=CC(=CC2C=CC(=O)C=C2)C=C1', 'N=C1C=CC(=Cc2ccc(O)cc2)C=C1', 'N=C1C=CC(C=C2C=CC(=O)C=C2)C=C1'}),
    ('heterocyclic tautomer', 'n1ccc2ccc[nH]c12', {'c1cc2cccnc2[nH]1', 'c1cc2ccc[nH]c-2n1'}),
    ('heterocyclic tautomer', 'c1cc(=O)[nH]c2nccn12', {'O=c1ccn2cc[nH]c2n1', 'Oc1ccn2ccnc2n1', 'O=c1ccn2ccnc2[nH]1'}),
    ('heterocyclic tautomer', 'c1cnc2c[nH]ccc12', {'c1cc2cc[nH]cc-2n1', 'c1cc2ccncc2[nH]1'}),
    ('heterocyclic tautomer', 'n1ccc2c[nH]ccc12', {'c1cc2cnccc2[nH]1', 'c1cc2c[nH]ccc-2n1'}),
    ('heterocyclic tautomer', 'c1cnc2ccc[nH]c12', {'c1cc2[nH]cccc-2n1', 'c1cc2ncccc2[nH]1'}),
    ('furanone tautomer', 'C1=CC=C(O1)O', {'Oc1ccco1', 'O=C1CC=CO1'}),
    ('furanone tautomer', 'O=C1CC=CO1', {'Oc1ccco1', 'O=C1CC=CO1'}),
    ('keten/ynol tautomer', 'CC=C=O', {'CC=C=O', 'CC#CO'}),
    ('keten/ynol tautomer', 'CC#CO', {'CC=C=O', 'CC#CO'}),
    ('ionic nitro/aci-nitro tautomer', 'C([N+](=O)[O-])C', {'CC[N+](=O)[O-]', 'CC=[N+]([O-])O'}),
    ('ionic nitro/aci-nitro tautomer', 'C(=[N+](O)[O-])C', {'CC[N+](=O)[O-]', 'CC=[N+]([O-])O'}),
    ('oxim nitroso tautomer', 'CC(C)=NO', {'CC(C)N=O', 'CC(C)=NO', 'C=C(C)NO'}),
    ('oxim nitroso tautomer', 'CC(C)N=O', {'CC(C)N=O', 'CC(C)=NO', 'C=C(C)NO'}),
    ('oxim/nitroso tautomer via phenol', 'O=Nc1ccc(O)cc1', {'O=NC1C=CC(=O)C=C1', 'O=C1C=CC(=NO)C=C1', 'O=Nc1ccc(O)cc1'}),
    ('oxim/nitroso tautomer via phenol', 'O=C1C=CC(=NO)C=C1', {'O=NC1C=CC(=O)C=C1', 'O=C1C=CC(=NO)C=C1', 'O=Nc1ccc(O)cc1'}),
    ('cyano/iso-cyanic acid tautomer', 'C(#N)O', {'N#CO', 'N=C=O'}),
    ('cyano/iso-cyanic acid tautomer', 'C(=N)=O', {'N#CO', 'N=C=O'}),
    ('isocyanide tautomer', 'C#N', {'[C-]#[NH+]', 'C#N'}),
    ('isocyanide tautomer', '[C-]#[NH+]', {'[C-]#[NH+]', 'C#N'}),
    ('Remove stereochemistry from mobile double bonds', 'c1(ccccc1)/C=C(/O)\\C', {'C=C(O)Cc1ccccc1', 'CC(O)=Cc1ccccc1', 'CC(=O)Cc1ccccc1'}),
    ('Remove stereochemistry from mobile double bonds', 'C/C=C/C(C)=O', {'C=C(O)C=CC', 'C=CCC(=C)O', 'CC=CC(C)=O', 'C=CCC(C)=O', 'C=CC=C(C)O'}),
    ('Remove stereochemistry from mobile double bonds', r'C/C=C\C(C)=O', {'C=C(O)C=CC', 'C=CCC(=C)O', 'CC=CC(C)=O', 'C=CCC(C)=O', 'C=CC=C(C)O'}),
]

tautomer_canonicalization_tests = [
    ('1,3 keto/enol tautomer', 'C1(=CCCCC1)O', 'O=C1CCCCC1'),
    ('1,3 keto/enol tautomer', 'C1(CCCCC1)=O', 'O=C1CCCCC1'),
    ('Acetophenone keto/enol tautomer', 'C(=C)(O)C1=CC=CC=C1', 'CC(=O)c1ccccc1'),
    ('Acetone keto/enol tautomer', 'CC(C)=O', 'CC(C)=O'),
    ('keto/enol tautomer', 'OC(C)=C(C)C', 'CC(=O)C(C)C'),
    ('1-phenyl-2-propanone enol/keto', 'c1(ccccc1)CC(=O)C', 'CC(=O)Cc1ccccc1'),
    ('1,5 keto/enol tautomer', 'Oc1nccc2cc[nH]c(=N)c12', 'N=c1[nH]ccc2cc[nH]c(=O)c21'),
    ('1,5 keto/enol tautomer', 'C1(C=CCCC1)=O', 'O=C1C=CCCC1'),
    ('1,5 keto/enol tautomer', 'C1(=CC=CCC1)O', 'O=C1C=CCCC1'),
    ('aliphatic imine tautomer', 'C1(CCCCC1)=N', 'N=C1CCCCC1'),
    ('aliphatic imine tautomer', 'C1(=CCCCC1)N', 'N=C1CCCCC1'),
    ('special imine tautomer', 'C1(C=CC=CN1)=CC', 'CCc1ccccn1'),
    ('special imine tautomer', 'C1(=NC=CC=C1)CC', 'CCc1ccccn1'),
    ('1,3 aromatic heteroatom H shift', 'O=c1cccc[nH]1', 'O=c1cccc[nH]1'),
    ('1,3 aromatic heteroatom H shift', 'Oc1ccccn1', 'O=c1cccc[nH]1'),
    ('1,3 aromatic heteroatom H shift', 'Oc1ncc[nH]1', 'O=c1[nH]cc[nH]1'),
    ('1,3 heteroatom H shift', 'OC(C)=NC', 'CNC(C)=O'),
    ('1,3 heteroatom H shift', 'CNC(C)=O', 'CNC(C)=O'),
    ('1,3 heteroatom H shift', 'S=C(N)N', 'NC(N)=S'),
    ('1,3 heteroatom H shift', 'SC(N)=N', 'NC(N)=S'),
    ('1,3 heteroatom H shift', 'N=c1[nH]ccn(C)1', 'Cn1cc[nH]c1=N'),
    ('1,3 heteroatom H shift', 'CN=c1[nH]cncc1', 'CN=c1cc[nH]cn1'),
    ('1,5 aromatic heteroatom H shift', 'Oc1cccc2ccncc12', 'Oc1cccc2ccncc12'),
    ('1,5 aromatic heteroatom H shift', 'O=c1cccc2cc[nH]cc1-2', 'Oc1cccc2ccncc12'),
    ('1,5 aromatic heteroatom H shift', 'Cc1n[nH]c2ncnn12', 'Cc1n[nH]c2ncnn12'),
    ('1,5 aromatic heteroatom H shift', 'Cc1nnc2nc[nH]n12', 'Cc1n[nH]c2ncnn12'),
    ('1,5 aromatic heteroatom H shift', 'Oc1ccncc1', 'O=c1cc[nH]cc1'),
    ('1,5 aromatic heteroatom H shift', 'Oc1c(cccc3)c3nc2ccncc12', 'O=c1c2ccccc2[nH]c2ccncc21'),
    ('1,3 and 1,5 aromatic heteroatom H shift', 'Oc1ncncc1', 'O=c1cc[nH]cn1'),
    ('1,5 aromatic heteroatom H shift', 'C2(=C1C(=NC=N1)[NH]C(=N2)N)O', 'N=c1[nH]c2[nH]cnc2c(=O)[nH]1'),
    ('1,5 aromatic heteroatom H shift', 'C2(C1=C([NH]C=N1)[NH]C(=N2)N)=O', 'N=c1[nH]c2[nH]cnc2c(=O)[nH]1'),
    ('1,5 aromatic heteroatom H shift', 'Oc1n(C)ncc1', 'Cn1[nH]ccc1=O'),
    ('1,5 aromatic heteroatom H shift', 'O=c1nc2[nH]ccn2cc1', 'O=c1ccn2cc[nH]c2n1'),
    ('1,5 aromatic heteroatom H shift', 'N=c1nc[nH]cc1', 'N=c1cc[nH]cn1'),
    ('1,5 aromatic heteroatom H shift', 'N=c(c1)ccn2cc[nH]c12', 'N=c1ccn2cc[nH]c2c1'),
    ('1,5 aromatic heteroatom H shift', 'CN=c1nc[nH]cc1', 'CN=c1cc[nH]cn1'),
    ('1,7 aromatic heteroatom H shift', 'c1ccc2[nH]c(-c3nc4ccccc4[nH]3)nc2c1', 'c1ccc2[nH]c(-c3nc4ccccc4[nH]3)nc2c1'),
    ('1,7 aromatic heteroatom H shift', 'c1ccc2c(c1)NC(=C1N=c3ccccc3=N1)N2', 'c1ccc2[nH]c(-c3nc4ccccc4[nH]3)nc2c1'),
    ('1,9 aromatic heteroatom H shift', 'CNc1ccnc2ncnn21', 'CN=c1cc[nH]c2ncnn21'),
    ('1,9 aromatic heteroatom H shift', 'CN=c1ccnc2nc[nH]n21', 'CN=c1cc[nH]c2ncnn21'),
    ('1,11 aromatic heteroatom H shift', 'Nc1ccc(C=C2C=CC(=O)C=C2)cc1', 'Nc1ccc(C=C2C=CC(=O)C=C2)cc1'),
    ('1,11 aromatic heteroatom H shift', 'N=C1C=CC(=Cc2ccc(O)cc2)C=C1', 'Nc1ccc(C=C2C=CC(=O)C=C2)cc1'),
    ('heterocyclic tautomer', 'n1ccc2ccc[nH]c12', 'c1cc2cccnc2[nH]1'),
    ('heterocyclic tautomer', 'c1cc(=O)[nH]c2nccn12', 'O=c1ccn2cc[nH]c2n1'),
    ('heterocyclic tautomer', 'c1cnc2c[nH]ccc12', 'c1cc2ccncc2[nH]1'),
    ('heterocyclic tautomer', 'n1ccc2c[nH]ccc12', 'c1cc2cnccc2[nH]1'),
    ('heterocyclic tautomer', 'c1cnc2ccc[nH]c12', 'c1cc2ncccc2[nH]1'),
    ('furanone tautomer', 'C1=CC=C(O1)O', 'Oc1ccco1'),
    ('furanone tautomer', 'O=C1CC=CO1', 'Oc1ccco1'),
    ('keten/ynol tautomer', 'CC=C=O', 'CC=C=O'),
    ('keten/ynol tautomer', 'CC#CO', 'CC=C=O'),
    ('ionic nitro/aci-nitro tautomer', 'C([N+](=O)[O-])C', 'CC[N+](=O)[O-]'),
    ('ionic nitro/aci-nitro tautomer', 'C(=[N+](O)[O-])C', 'CC[N+](=O)[O-]'),
    ('oxim nitroso tautomer', 'CC(C)=NO', 'CC(C)=NO'),
    ('oxim nitroso tautomer', 'CC(C)N=O', 'CC(C)=NO'),
    ('oxim/nitroso tautomer via phenol', 'O=Nc1ccc(O)cc1', 'O=Nc1ccc(O)cc1'),
    ('oxim/nitroso tautomer via phenol', 'O=C1C=CC(=NO)C=C1', 'O=Nc1ccc(O)cc1'),
    ('cyano/iso-cyanic acid tautomer', 'C(#N)O', 'N=C=O'),
    ('cyano/iso-cyanic acid tautomer', 'C(=N)=O', 'N=C=O'),
    ('formamidinesulfinic acid tautomer', '[S](=O)(=O)C(N)N', 'N=C(N)S(=O)O'),
    ('formamidinesulfinic acid tautomer', '[S](=O)(O)C(=N)N', 'N=C(N)S(=O)O'),
    ('isocyanide tautomer', 'C#N', 'C#N'),
    ('isocyanide tautomer', '[C-]#[NH+]', 'C#N'),
]

if __name__ == '__main__':
    logging.basicConfig(level=logging.DEBUG)
    for desc, smiles, tautomers in tautomer_enumeration_tests:
        mol = Chem.MolFromSmiles(smiles)
        Chem.SanitizeMol(mol)
        assert {Chem.MolToSmiles(t, isomericSmiles=True) for t in enumerate_tautomers(mol)} == tautomers
        log.info('%s => %s', smiles, tautomers)

    for desc, smiles, tautomer in tautomer_canonicalization_tests:
        mol = Chem.MolFromSmiles(smiles)
        Chem.SanitizeMol(mol)
        assert Chem.MolToSmiles(canonical_tautomer(mol), isomericSmiles=True) == tautomer
        log.info('%s => %s', smiles, tautomer)