1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834
|
Require Import ssreflect CSetoids CSetoidFun
CFields CPolynomials Program
Omega Equivalence Morphisms
Wf Morphisms CRings
CRing_Homomorphisms Rational Setoid
CPoly_NthCoeff CPoly_Degree CReals Intervals
CauchySeq IntervalFunct MoreIntervals
MoreFunctions Composition.
Require Import seq.
Open Scope program_scope.
(**
* The sq(uash) and unsq(uash) tricks are just
* hacks because we are dealing with a flaw in
* the Program Fixpoint construct. Bas and other
* people are working on this. It is assumed that
* this construct will not be required in the
* final version of this proof.
*)
Inductive sq (A : Type) : Prop :=
insq : A -> (sq A).
Axiom unsq : forall A : Type, (sq A) -> A.
(**
* A 'fresh' sequence is a sequence where no two
* elements are the same. Therefore, we know that
* for elements a, b in such a sequence it holds
* that a - b =/= 0. The following section deals
* with fresh sequences.
*)
Section FreshSeq.
Variable A : CSetoid.
(**
* Freshness of a sequence relative to one
* element.
*)
Lemma fresh (s : seq A) : A -> Type.
intro s.
induction s as [a|b s fresh_s].
exact (fun _ => True).
exact (fun a => (b [#] a) and (fresh_s a)).
Defined.
(**
* 'Squashed' version of the freshness property.
* For more information, read the Type vs. Prop
* discussion above.
*)
Definition sqfresh (s : seq A) (a : A) :=
(sq (fresh s a)).
(**
* A fresh sequence is a sequence where every
* two elements lie apart. It is similar to the
* normal sequence type.
*)
Inductive fresh_seq : seq A -> Prop :=
| fresh_nil : fresh_seq nil
| fresh_cons : forall x s,
sqfresh s x -> fresh_seq s ->
fresh_seq (x :: s).
(**
* If we an element a is fresh (relative to a
* sequence s), then a is also fresh relative
* to any subsequence of s.
*)
Lemma take_fresh : forall (n : nat)
(s : seq A) (a : A), fresh s a ->
fresh (take n s) a.
Proof.
intro n; induction n.
intros s a H; rewrite take0; simpl; auto.
intros s a H; destruct s; simpl; auto.
simpl; split.
by inversion H.
apply IHn; by inversion H.
Defined.
(**
* Any subsequence we take from the beginning of a fresh
* sequence is still fresh.
*)
Lemma take_fresh_seq : forall (n : nat)
(s : seq A), fresh_seq s ->
fresh_seq (take n s).
Proof.
intro n; induction n.
intros s H; simpl; rewrite take0; exact fresh_nil.
intros s H; destruct s; simpl; auto.
simpl; apply fresh_cons.
unfold sqfresh; apply insq; apply take_fresh.
apply unsq; by inversion H.
apply IHn; by inversion H.
Defined.
(**
* If an element is fresh with respect to a certain
* sequence, it results in a fresh sequence if we add
* this element to the rear of this sequence.
*)
Lemma rcons_fresh : forall (s : seq A)
(a t : A), fresh (t :: s) a -> fresh (rcons s t) a.
Proof.
intros s a t H; induction s.
simpl; by inversion H.
simpl; inversion H; inversion X0; split.
auto.
apply IHs; simpl; by split.
Defined.
(**
* The inverse of the previous theorem. If an element
* added to the rear of a sequence results in a fresh
* sequence, we might instead add this element in the
* front and still come up with a fresh sequence.
*)
Lemma fresh_rcons : forall (s : seq A)
(a t : A), fresh (rcons s t) a -> fresh (t :: s) a.
Proof.
intros s a t H; induction s.
simpl; by inversion H.
simpl; simpl in H; split.
apply IHs; by inversion H.
split.
by inversion H.
apply IHs; by inversion H.
Defined.
(**
* Freshness remains if we reverse a sequence.
*)
Lemma rev_fresh : forall (s : seq A) (a : A),
fresh s a -> fresh (rev s) a.
Proof.
intros s a H; induction s.
auto.
rewrite rev_cons; apply rcons_fresh; simpl; split.
by inversion H.
apply IHs; by inversion H.
Defined.
(**
* If we have a fresh sequence with one element on front,
* the sequence remains fresh if we add this element to
* the rear.
*)
Lemma rcons_fresh_seq : forall (s : seq A)
(a : A), fresh_seq (a :: s) ->
fresh_seq (rcons s a).
Proof.
intros s a H; induction s.
auto.
simpl; apply fresh_cons.
unfold sqfresh; inversion H; apply insq.
apply rcons_fresh; simpl; unfold sqfresh in H2.
assert (fresh (t :: s) a).
by apply unsq.
inversion X.
split.
algebra.
assert (sq (fresh s t)).
inversion H3; auto.
by apply unsq in H4.
apply IHs; inversion H; apply fresh_cons.
inversion H2; inversion X; unfold sqfresh; by apply insq.
by inversion H3.
Defined.
(**
* If a sequence with a specific element on its rear is
* fresh, the sequence is still fresh if we would have
* added this element in the front.
*)
Lemma fresh_seq_rcons : forall (s : seq A)
(a : A), fresh_seq (rcons s a) ->
fresh_seq (a :: s).
Proof.
intros; induction s. auto.
simpl in H; inversion H; apply fresh_cons.
unfold sqfresh; apply insq.
assert (fresh (a :: s) t); apply fresh_rcons.
unfold sqfresh in H2; by apply unsq in H2.
simpl; simpl in X; inversion X; apply unsq; inversion H.
assert (fresh_seq (a :: s)).
by apply IHs.
apply insq; apply rcons_fresh; simpl; split.
algebra.
apply unsq; inversion H8.
unfold sqfresh in H11; apply unsq in H11; by apply insq.
apply fresh_cons; unfold sqfresh in H2; apply unsq in H2.
apply fresh_rcons in H2; inversion H2; unfold sqfresh.
by apply insq.
assert (fresh_seq (a :: s)).
by apply IHs.
by inversion H4.
Defined.
(**
* If a sequence is fresh, it remains fresh if we completely
* reverse it.
*)
Lemma rev_fresh_seq : forall (s : seq A),
fresh_seq s -> fresh_seq (rev s).
Proof.
intros; induction s. auto.
rewrite rev_cons; apply rcons_fresh_seq; apply fresh_cons.
inversion H; unfold sqfresh; apply insq; apply rev_fresh.
unfold sqfresh in H2; by apply unsq.
apply IHs; by inversion H.
Defined.
Hint Constructors fresh_seq.
End FreshSeq.
(**
* The definitions and lemmas for Newton
* polynomials hold for polynomials over an
* arbitrary field K. We will later confine
* this K to the real numbers R.
*)
Section NewtonPolynomials.
Variable K : CField.
Variable f : K -> K.
(**
* The definition of the divided differences
* follows here. This is the function f [..]
* as described in the paper written by Bas.
* To avoid any confusion, the notation f ()
* is used for the polynomial subject to
* interpolation.
*)
Program Fixpoint dd (s : seq K) (P : fresh_seq K s)
{measure (size s)} : K :=
match s with
| nil => Zero
| (a :: nil) => (f a)
| (a :: b :: s') =>
((dd (a :: s') _) [-] (dd (b :: s') _) [/]
(a [-] b) [//] _)
end.
Next Obligation.
apply fresh_cons; inversion P; inversion H1.
inversion X; unfold sqfresh; by apply insq.
inversion P; by inversion H2.
Qed.
Next Obligation.
by inversion P.
Qed.
Next Obligation.
apply minus_ap_zero; apply unsq; inversion P; inversion H1.
inversion X; apply insq; algebra.
Qed.
(**
* Now that we have solved all obligations for
* the definition of divided differences, we
* continue with our definitions of the functions
* N, alpha and eta.
*)
Variable s : seq K.
Variable k : nat.
Hypothesis fresh_s : fresh_seq K s.
(**
* This definition still uses the bigopsClass, but it will be
* replaced by a fold until the problems in bigopsClass are
* resolved. This definition of eta corresponds to the
* definition of n_j(x) in the paper written by Bas.
*
* TODO: Replace bigopsClass definitions by folds
*)
Require Export bigopsClass.
Definition eta (j : nat) : cpoly_cring K :=
\big[(cpoly_mult_cs K)/(cpoly_one K)]_(x_i <- take j s)
(cpoly_linear _ ([--] x_i) (cpoly_one _)).
(**
* This definition corresponds to the definition of a_j in
* the paper. It is basically a direct call to the definition
* of divided differences using the vector x_j, ..., x_0.
*)
Definition alpha (j : nat) : K :=
dd (rev (take (j + 1) s))
((rev_fresh_seq K (take (j + 1) s))
(take_fresh_seq K (j + 1) s fresh_s)).
(**
* This is the definition of N from the paper. The mkseq
* construct creates an increasing sequence.
*
* TODO: Replace bigopsClass definitions by folds.
*)
Definition N : cpoly_cring K :=
\big[cpoly_plus_cs K/(cpoly_zero K)]_(j <-
(mkseq (fun x => x) (k + 1)) | (fun x => true) j)
(_C_ (alpha j) [*] (eta j)).
End NewtonPolynomials.
Section BigopsTheory.
Variable K : CField.
Variable f : K -> K.
(**
* This is proof independence of divided differences with
* respect to freshness.
*)
Lemma dd_indep : forall (l1 l2 : seq K) (P1 : fresh_seq K l1)
(P2 : fresh_seq K l2), l1 = l2 ->
dd K f l1 P1 [=] dd K f l2 P2.
Proof.
intros.
unfold dd.
replace (existT (fun s : seq K => fresh_seq K s) l2 P2) with
(existT (fun s : seq K => fresh_seq K s) l1 P1).
reflexivity.
by apply subsetT_eq_compat.
Qed.
(**
* Equality of CPolynomials over a field K is reflexive,
* symmetric and transitive according to the following
* three type class instances.
*)
Instance cpoly_eq_refl : Reflexive (cpoly_eq K).
unfold Reflexive; by reflexivity. Qed.
Instance cpoly_eq_symm : Symmetric (cpoly_eq K).
unfold Symmetric; by symmetry. Qed.
Instance cpoly_eq_trans : Transitive (cpoly_eq K).
unfold Transitive; intros x y z; by transitivity y. Qed.
Instance eqv_cpoly : Equivalence (cpoly_eq K).
Instance eqv_K : Equivalence (@st_eq K).
(**
* TODO: This definition is not required because we have
* an equivalent construct in the type class system.
*)
Add Parametric Relation : (cpoly_cring K) (cpoly_eq K)
reflexivity proved by cpoly_eq_refl
symmetry proved by cpoly_eq_symm
transitivity proved by cpoly_eq_trans
as cpeq.
(**
* This is meant to prove that addition of polynomials
* is a morphism with respect to equality. However, I
* cannot complete the proof because it somehow seems
* that this exact morphism is required to finish the
* proof.
*
* TODO: Fix this proof.
*)
Instance morph_cpoly : Proper ((cpoly_eq K) ==> (cpoly_eq K) ==>
(cpoly_eq K)) (cpoly_plus_cs K).
Admitted.
(**
* Multiplication of polynomials is also a morphism with
* respect to equality. However, the same problem as in
* the previous proof arises here.
*
* TODO: Complete this proof.
*)
Instance morph_cpoly_mult : Proper ((cpoly_eq K) ==> (cpoly_eq K) ==>
(cpoly_eq K)) (cpoly_mult_cs K).
Admitted.
(**
* Multiplication in an arbitrary field K is a morphism with
* respect to the standard equality defined in K.
*
* TODO: Are definitions like these really required? Aren't
* they already defined in the CoRN libraries?
*)
Instance morph_K_mult : Proper ((@st_eq K) ==> (@st_eq K) ==> (@st_eq K))
cr_mult.
unfold Proper; unfold respectful.
intros x y H x0 y0 H0; rewrite H H0; reflexivity.
Qed.
(**
* Addition in a field K is a morphism with respect to the
* standard equality defined on K.
*)
Instance morph_K_plus : Proper ((@st_eq K) ==> (@st_eq K) ==> (@st_eq K))
csg_op.
unfold Proper; unfold respectful.
intros x y H x0 y0 H0; rewrite H H0; reflexivity.
Qed.
(**
* Addition of polynomials is associative.
*
* TODO: As OperationClasses is no longer compiling, this
* has to be replaced with another construct.
*)
Instance assoc_cpoly : @OperationClasses.associative (cpoly_cring K)
(cpoly_eq K) eqv_cpoly (cpoly_plus_cs K).
unfold OperationClasses.associative.
intros x y z; red.
set cpoly_plus_associative.
unfold associative in a; simpl in a; apply a.
Qed.
(**
* Multiplication of polynomials is associatve.
*
* TODO: Fix usage of OperationClasses.
*)
Instance assoc_cpoly_mult : @OperationClasses.associative (cpoly_cring K)
(cpoly_eq K) eqv_cpoly (cpoly_mult_cs K).
unfold OperationClasses.associative.
intros x y z; red.
set cpoly_mult_assoc.
unfold associative in a; simpl in a; apply a.
Qed.
(**
* Multiplication is associative in any field K
*
* TODO: This should be replaced by a standard lemma from
* the CoRN libraries.
*)
Instance assoc_K_mult : @OperationClasses.associative K
(@st_eq K) eqv_K cr_mult.
unfold OperationClasses.associative.
intros x y z; red; algebra.
Qed.
(**
* Addition is associative in any field K
*
* TODO: This is very probably already somewhere in the
* libraries.
*)
Instance assoc_K_plus : @OperationClasses.associative K
(@st_eq K) eqv_K csg_op.
unfold OperationClasses.associative.
intros x y z; red; algebra.
Qed.
(**
* The zero-polynomial is a left-unit element with respect
* to addition.
*
* TODO: Fix OperationClasses usage.
*)
Instance left_unit_cpoly : @OperationClasses.left_unit (cpoly_cring K)
(cpoly_eq K) eqv_cpoly (cpoly_plus_cs K) (cpoly_zero K).
intro x; red.
simpl; reflexivity.
Qed.
(**
* The one-polynomial is a left-unit element with respect
* to multiplication.
*
* TODO: Fix OperationClasses usage.
*)
Instance left_unit_cpoly_mult : @OperationClasses.left_unit (cpoly_cring K)
(cpoly_eq K) eqv_cpoly (cpoly_mult_cs K) (cpoly_one K).
intro x; red.
rewrite cpoly_mult_commutative.
rewrite cpoly_mult_one.
reflexivity.
Qed.
(**
* TODO: Deprecated, do not use OperationClasses.
*)
Instance left_unit_K_mult : @OperationClasses.left_unit K
(@st_eq K) eqv_K cr_mult (One:K).
intro x; red; algebra.
Qed.
(**
* TODO: Deprecated, do not use Operationclasses.
*)
Instance left_unit_K_plus : @OperationClasses.left_unit K
(@st_eq K) eqv_K csg_op (Zero:K).
intro x; red; algebra.
Qed.
(**
* The zero-polynomial is a right-unit element with respect
* to to addition of polynomials.
*
* TODO: Get rid of OperationClasses code.
*)
Instance right_unit_cpoly : @OperationClasses.right_unit (cpoly_cring K)
(cpoly_eq K) eqv_cpoly (cpoly_plus_cs K) (cpoly_zero K).
intro x; red.
rewrite cpoly_plus_commutative; simpl; reflexivity.
Qed.
(**
* The one-polynomial is a right-unit element with respect
* to multiplication of polynomials.
*
* TODO: Get rid of OperationClasses code.
*)
Instance right_unit_cpoly_mult : @OperationClasses.right_unit (cpoly_cring K)
(cpoly_eq K) eqv_cpoly (cpoly_mult_cs K) (cpoly_one K).
intro x; red.
rewrite cpoly_mult_one; reflexivity.
Qed.
(**
* TODO: Deprecated, do not use OperationClasses code.
*)
Instance right_unit_K_mult : @OperationClasses.right_unit K
(@st_eq K) eqv_K cr_mult (One:K).
intro x; red; algebra.
Qed.
(**
* TODO: Deprecated, do not use OperationClasses code.
*)
Instance right_unit_K_plus : @OperationClasses.right_unit K
(@st_eq K) eqv_K csg_op (Zero:K).
intro x; red; algebra.
Qed.
(**
* Application of polynomials (over K) is a morphism with
* respect to the standard equality defined on K.
*
* TODO: Fix this proof. To be honest, I have no clue why
* this cannot be done. Will take a look at it later.
*)
Add Parametric Morphism : (@cpoly_apply K) with
signature (@cpoly_eq K) ==> (@st_eq K) ==> (@st_eq K) as cpoly_apply_mor.
Admitted.
(**
* Multiplication of polynomials is a morphism with respect
* to the equality defined on polynomials.
*
* TODO: Replace with type class instance.
*)
Add Parametric Morphism : (@cpoly_mult_cs K) with
signature (@cpoly_eq K) ==> (@cpoly_eq K) ==> (@cpoly_eq K) as cpoly_mult_mor.
intros x y H x0 y0 H0.
rewrite H; rewrite H0; reflexivity.
Qed.
(**
* TODO: Replace with type class instance.
*)
Add Parametric Morphism : (@polyconst K) with
signature (@st_eq K) ==> (@cpoly_eq K) as cpoly_const_mor.
intros x y H; rewrite H; reflexivity.
Qed.
(**
* Multiplication of a polynomial (over any field K) and an
* element from K is invariant under both equality over poly(K)
* and K.
*
* TODO: Fix this proof. Seems to mutually depend on a previous
* morphism for polynomial-multiplication.
*)
Add Parametric Morphism : (@cpoly_mult_cr_cs K) with
signature (@cpoly_eq K) ==> (@st_eq K) ==> (cpoly_eq K) as cpoly_mult_cr_mor.
intros x y H x0 y0 H0.
Admitted.
(**
* TODO: Replace with corresponding type class instance.
*)
Add Parametric Morphism : (@cg_minus K) with
signature (@st_eq K) ==> (@st_eq K) ==> (@st_eq K) as cg_minus_mor.
intros x y H x0 y0 H0; rewrite H; rewrite H0; reflexivity.
Qed.
(**
* Getting the nth coefficient of a polynomial is a morphism
* with respect to equality over nat.
*
* TODO: Fix this proof. Should not be very difficult. Will
* take a look at it later.
*)
Add Parametric Morphism : (@nth_coeff K) with
signature (@eq nat) ==> (@cpoly_eq K) ==> (@st_eq K) as nth_coeff_mor.
intros y x y0 H.
Admitted.
(**
* TODO: Replace with corresponding type class instance
*)
Add Parametric Morphism : (@csg_op K) with
signature (@st_eq K) ==> (@st_eq K) ==> (@st_eq K) as csg_op_mor.
intros x y H x0 y0 H0; rewrite H H0; reflexivity.
Qed.
(**
* TODO: Replace with corresponding type class instance
*)
Add Parametric Morphism : (@cg_inv K) with
signature (@st_eq K) ==> (@st_eq K) as cg_inv_mor.
intros x y H; rewrite H; reflexivity.
Qed.
(**
* The equality on K can be continued to an equality on
* polynomials. However, it was not immediately clear how
* to prove this.
*
* TODO: Replace with corresponding definition from the
* CoRN libraries.
*)
Add Parametric Morphism : (@cpoly_linear K) with
signature (@st_eq K) ==> (@cpoly_eq K) ==> (@cpoly_eq K) as cpoly_lin_mor.
intros x y H x0 y0 H0.
Admitted.
(**
* I have not been able to get rings to work for polynomials.
*
* TODO: Fix this because it makes many proofs easier to
* understand.
*
* Add Ring cpolyk_th : (CRing_Ring (cpoly_cring K)).
* Add Ring cring_K : (CRing_Ring K).
*
*)
(**
* If a bigops-expression results in a polynomial, and if
* this expression is therefore applied to a particular
* value, the application results in the same value as if
* the application was done inside the bigops-expression.
*
* TODO: This should be more general.
* TODO: Replace the bigops expression with a corresponding
* fold.
*)
Lemma apply_bigops : forall (r : seq K) F x,
(\big[cpoly_mult_cs K/cpoly_one K]_(i <- r) F i) ! x [=]
\big[cr_mult/(One:K)]_(i <- r) ((F i) ! x).
Proof.
intros r F x; destruct r; simpl.
rewrite cring_mult_zero; algebra.
induction r.
simpl; rewrite mult_one; rewrite cpoly_mult_one.
reflexivity.
repeat rewrite big_cons; simpl in IHr; rewrite mult_assoc.
rewrite (mult_commutes K (cpoly_apply K (F s) x)
(cpoly_apply K (F t) x)).
rewrite <- mult_assoc; rewrite <- IHr.
set (@mult_apply); simpl in s0; rewrite <- s0.
rewrite cpoly_mult_fast_equiv.
set (@cpoly_mult_assoc); unfold CSetoids.associative in a.
simpl in a; repeat rewrite a.
rewrite (cpoly_mult_commutative K (F s) (F t)).
reflexivity.
Qed.
(**
* If we take a subsequence from (the start of)
* another sequence, it does not matter if this
* sequence was already the result of a 'take' operation.
*)
Lemma take_nest_redun : forall (n m : nat)
(s : seq K), m <= n -> m <= size s ->
take m (take n s) = take m s.
Proof.
intro n; induction n.
intros m s H H0; rewrite take0; inversion H.
repeat rewrite take0; reflexivity.
intros m s H H0. destruct s. simpl; reflexivity.
assert (take (S n) (s :: s0) = s :: take n s0) by auto.
rewrite H1; destruct m. simpl; reflexivity.
simpl; rewrite IHn. reflexivity. omega.
inversion H0. auto. omega.
Qed.
(**
* This lemma effectively says that:
*
* x_0, x_1, ..., x_(k+1) = x_0, x_1, ..., x_i, x_(i+1),
* ..., x_(k+1)
*
* TODO: Perhaps all these takes, nths and drops can be
* set up a bit more clearer.
*)
Lemma take_nth_drop : forall (i k : nat) (s : seq K),
i <= k -> k < size s ->
take (S k) s = take i s ++ (nth Zero s i) ::
(take (k - i) (drop (i + 1) s)).
Proof.
intro i; induction i.
intros k s H H0; destruct s.
inversion H0; simpl.
replace (k - 0) with k by omega; simpl.
rewrite drop0; reflexivity.
intros k s H H0; destruct s.
inversion H0; simpl.
replace (k - S i) with ((k - 1) - i) by omega.
simpl; rewrite <- IHi.
replace (S (k - 1)) with k by omega; reflexivity.
omega. inversion H0.
assert (1 <= k) by omega; omega.
assert (1 <= k) by omega; omega.
Qed.
(**
* This lemma asserts that the repeated multiplication
* of an expression (-x_i) + x_i is equal to zero.
*)
Lemma lem11a : forall i s k,
size s > 1 -> k < size s -> i <= k ->
\big[cr_mult/(One:K)]_(x_i <- take (S k) s)
(cpoly_linear K [--]x_i (cpoly_one K)) ! (nth Zero s i) [=] Zero.
Proof.
intros.
rewrite (@eq_big_idx_seq K (@st_eq K)
eqv_K (cr_mult) (One:K) morph_K_mult
right_unit_K_mult (One:K) K
(take (S k) s) _
(fun x : K => (cpoly_linear K [--]x (cpoly_one K)) !
(nth Zero s i)) right_unit_K_mult).
assert (take (S k) s = (take i s) ++ ((nth Zero s i) ::
(take (k - i) (drop (i + 1) s)))).
apply take_nth_drop.
omega.
exact H0.
rewrite H2.
rewrite (@big_cat K (@st_eq K) eqv_K
cr_mult (One:K) morph_K_mult
assoc_K_mult left_unit_K_mult
K (take i s) (nth Zero s i :: take (k - i) (drop (i + 1) s))
(fun x : K => true)).
rewrite big_cons.
assert ((cpoly_linear K [--](nth Zero s i) (cpoly_one K)) !
(nth Zero s i) [=] Zero).
simpl.
rewrite cring_mult_zero.
rewrite cm_rht_unit_unfolded.
rewrite mult_one.
rewrite cg_lft_inv_unfolded.
reflexivity.
rewrite H3.
rewrite mult_assoc.
rewrite cring_mult_zero.
rewrite mult_commutes.
rewrite cring_mult_zero.
reflexivity.
destruct s.
inversion H.
simpl; auto.
Qed.
(**
* If we have a fresh sequence s, it is clear that the kth
* element is fresh with respect to a subsequence of s.
*)
Lemma nth_fresh : forall (s : seq K) (k c : nat),
k < size s -> fresh_seq K s ->
fresh K (take (k - c) s) (nth Zero s k).
Proof.
intros.
induction c.
assert (k - 0 = k) by omega.
rewrite H1.
assert (fresh_seq K (take (k + 1) s)).
apply take_fresh_seq.
exact H0.
cut (take (k + 1) s = take k s ++ [:: nth Zero s k]).
intro.
rewrite H3 in H2.
assert (fresh_seq K ((nth Zero s k) ::
take k s)).
apply fresh_seq_rcons.
rewrite <- cat_rcons in H2.
rewrite cats0 in H2.
exact H2.
apply unsq.
inversion H4.
unfold sqfresh in H7.
exact H7.
rewrite <- cat_rcons.
rewrite cats0.
rewrite <- take_nth.
replace (S k) with (k + 1) by omega.
reflexivity.
apply (ssrbool.introT (P := S k <= size s)).
apply ssrnat.leP.
omega.
cut (take (k - S c) s = take (k - S c)
(take (k - c) s)).
intro.
rewrite H1.
apply take_fresh.
exact IHc.
rewrite take_nest_redun.
reflexivity.
omega.
omega.
Qed.
(**
* If a sequence of elements is fresh, than any two
* elements from this sequence lie apart. This is not
* immediately clear from the definition (although it
* seems so) because of difficulty with the definition
* of nth.
*
* TODO: This proof can be made a bit shorter.
*)
Lemma ap_fresh_nth : forall (s : seq K)
(k c : nat), 0 < k -> c < k -> k < size s ->
fresh_seq K s ->
(nth Zero s k) [-] (nth Zero s (k - S c)) [#] Zero.
Proof.
intros.
apply minus_ap_zero.
assert (fresh K (take (k - c) s) (nth Zero s k)).
apply nth_fresh.
exact H1.
exact H2.
assert (take (k - c) s = take (k - S c) s ++
[:: nth Zero s (k - S c)]).
rewrite <- cat_rcons.
rewrite <- take_nth.
replace (S (k - S c)) with (k - c) by omega.
rewrite cats0.
reflexivity.
apply (ssrbool.introT (P := S (k - S c) <= size s)).
apply ssrnat.leP.
omega.
rewrite H3 in X.
rewrite <- cat_rcons in X.
rewrite cats0 in X.
apply fresh_rcons in X.
inversion X.
algebra.
Qed.
(**
* This lemma is essentially a one-step reduction in the
* definition of divided differences. However, it is not
* as straightforwardly provable as it might seem.
*
* TODO: Fix this proof.
*)
Lemma dd_reduce : forall (s : seq K) (a b : K)
(P1 : fresh_seq K (a :: b :: s))
(P2 : fresh_seq K (a :: s))
(P3 : fresh_seq K (b :: s))
(P4 : a [-] b [#] Zero),
(dd K f (a :: b :: s) P1) =
(((dd K f (a :: s) P2) [-] (dd K f (b :: s) P3))
[/] (a [-] b) [//] P4).
Proof.
intros.
Admitted.
(**
* This rather complicated lemma states that if we have a
* one-step reduction for divided differences, we also have
* an n-step reduction according to a specific pattern.
*
* TODO: This lemma is very unreadable. Perhaps this can be
* made more clear using appropriate syntax elements.
*)
Lemma dd_reduce_nth : forall (s : seq K) (k c : nat)
(P : fresh_seq K
(nth Zero s k :: rev (take (k - c) s)))
(Q : fresh_seq K
(nth Zero s k :: rev (take (k - S c) s)))
(R : fresh_seq K (rev (take (k - c) s)))
(X : (nth Zero s k) [-] (nth Zero s (k - S c))
[#] Zero),
0 < k -> c < k -> k < size s -> fresh_seq K s ->
(dd K f (nth Zero s k :: rev (take (k - c) s)) P) [=]
((dd K f (nth Zero s k :: rev (take (k - S c) s)) Q)[-]
(dd K f (rev (take (k - c) s)) R)[/]
(nth Zero s k[-]nth Zero s (k - S c))[//]X).
Proof.
intros.
assert (fresh_seq K
(nth Zero s k :: nth Zero s (k - S c) ::
rev (take (k - S c) s))).
apply fresh_cons.
unfold sqfresh.
apply insq.
simpl.
split.
apply zero_minus_apart.
algebra.
apply rev_fresh.
apply nth_fresh.
exact H1.
exact H2.
apply fresh_cons.
unfold sqfresh.
apply insq.
assert (forall k, k < size s ->
fresh K (rev (take k s))
(nth Zero s k)).
intros.
apply rev_fresh.
assert (take k0 s = take (k0 - 0) s).
replace (k0 - 0) with k0 by omega; reflexivity.
rewrite H4.
apply nth_fresh.
exact H3.
exact H2.
apply X0.
omega.
apply rev_fresh_seq.
apply take_fresh_seq.
exact H2.
assert (rev (take (k - c) s) =
nth Zero s (k - S c) :: rev (take (k - S c) s)).
assert (k - c = (S (k - S c))) by omega.
rewrite H4.
set (@take_nth).
rewrite (@take_nth K Zero (k - S c) s).
rewrite rev_rcons; reflexivity.
apply (ssrbool.introT (P := S (k - S c) <= size s)).
apply ssrnat.leP.
omega.
assert ((dd K f (nth Zero s k :: rev (take (k - c) s)) P) [=]
(dd K f [:: nth Zero s k, nth Zero s (k - S c) &
rev (take (k - S c) s)] H3)).
apply dd_indep.
rewrite H4; reflexivity.
rewrite H5.
assert (fresh_seq K ((nth Zero s (k - S c)) ::
rev (take (k - S c) s))).
inversion H3.
exact H9.
assert ((dd K f (rev (take (k - c) s)) R) [=]
(dd K f (nth Zero s (k - S c) :: rev (take (k - S c) s)) H6)).
apply dd_indep.
rewrite H4; reflexivity.
unfold cf_div.
rewrite H7.
set (dd_reduce (rev (take (k - S c) s))
(nth Zero s k) (nth Zero s (k - S c))
H3 Q H6 X).
unfold cf_div in e.
rewrite e.
reflexivity.
Qed.
(**
* The Newton polynomial coincides with the Lagrange
* polynomial. This lemma essentially proves this.
*
* TODO: Replace bigopsClass operators with corresponding
* folds.
*)
Lemma lem11b : forall (k c : nat) (s : seq K)
(Q : fresh_seq K s)
(R : fresh_seq K ((nth Zero s k) ::
(rev (take (k - c) s)))),
0 < k -> c <= k -> k < size s ->
(N K f s k Q) ! (nth Zero s k) [=]
(\big[(cpoly_plus_cs K)/(cpoly_zero K)]_(j <- (mkseq (fun x => x) (k - c)) | (fun x => true) j)
(_C_ (alpha K f s Q j) [*] (eta K s j)))
! (nth Zero s k) [+]
(dd K f ((nth Zero s k) ::
(rev (take (k - c) s))) R) [*]
(eta K s (k - c)) ! (nth Zero s k).
Proof.
intros.
induction c.
assert (k - 0 = k) by omega.
assert (mkseq ssrfun.id (k - 0) =
mkseq ssrfun.id k).
rewrite H2; reflexivity.
rewrite H3.
clear H2 H3.
assert (fresh_seq K (rev (take k s))).
apply rev_fresh_seq.
apply take_fresh_seq.
exact Q.
assert (dd K f (nth Zero s k ::
rev (take (k - 0) s)) R [=]
alpha K f s Q k).
unfold alpha.
apply dd_indep.
rewrite <- cat1s.
assert (rev [:: nth Zero s k] = [:: nth Zero s k]).
auto.
rewrite <- H3.
rewrite <- rev_cat.
assert (take (k - 0) s ++ [:: nth Zero s k] =
take (k + 1) s).
rewrite cats1.
assert (k - 0 = k) by omega.
rewrite H4.
rewrite <- take_nth.
assert (S k = k + 1) by omega.
rewrite H5.
reflexivity.
apply (ssrbool.introT (P := S k <= size s)).
apply ssrnat.leP.
auto.
rewrite H4.
reflexivity.
rewrite H3.
rewrite <- c_mult_apply.
rewrite <- plus_apply.
assert (k - 0 = k) by omega.
rewrite H4.
rewrite <- (@big_seq1 (cpoly K) (cpoly_eq K)
eqv_cpoly (cpoly_plus_cs K) (cpoly_zero K)
right_unit_cpoly nat k
(fun x => cr_mult (_C_ (alpha K f s Q x)) (eta K s x))).
rewrite <- (@big_cat (cpoly K) (cpoly_eq K)
(eqv_cpoly) (cpoly_plus_cs K) (cpoly_zero K)
morph_cpoly assoc_cpoly left_unit_cpoly nat
(mkseq ssrfun.id k) ([:: k])
(fun x => true) (fun x => cr_mult (_C_ (alpha K f s Q x)) (eta K s x))
).
simpl.
assert (mkseq ssrfun.id k ++ [:: k] =
mkseq ssrfun.id (k + 1)).
unfold mkseq.
assert ([:: k] = map ssrfun.id [:: k]).
auto.
rewrite H5.
rewrite <- map_cat.
assert ([:: k] = iota k 1).
auto.
rewrite H6.
rewrite <- iota_add.
auto.
rewrite H5.
reflexivity.
assert (fresh_seq K (nth Zero s k ::
rev (take (k - c) s))).
apply fresh_cons.
unfold sqfresh.
apply insq.
apply rev_fresh.
apply nth_fresh.
exact H1.
exact Q.
apply rev_fresh_seq.
apply take_fresh_seq.
exact Q.
rewrite (IHc H2).
assert (mkseq ssrfun.id (k - c) =
mkseq ssrfun.id (k - S c) ++
[:: (k - S c)]).
unfold mkseq.
assert ([:: k - S c] =
map ssrfun.id (iota (k - S c) 1))
by auto.
rewrite H3.
rewrite <- map_cat.
assert (iota (k - S c) 1 =
iota (0 + (k - S c)) 1) by auto.
rewrite H4.
rewrite <- iota_add.
assert (ssrnat.addn (k - S c) 1 = k - c).
rewrite ssrnat.addn1.
omega.
rewrite H5; reflexivity.
rewrite H3.
rewrite (@big_cat (cpoly K) (cpoly_eq K)
eqv_cpoly (cpoly_plus_cs K) (cpoly_zero K)
morph_cpoly assoc_cpoly left_unit_cpoly nat
(mkseq ssrfun.id (k - S c)) [:: k - S c]
).
rewrite plus_apply.
set (CSemiGroups.plus_assoc K).
unfold associative in a.
rewrite <- a.
rewrite (@big_seq1 (cpoly K) (cpoly_eq K)
eqv_cpoly (cpoly_plus_cs K) (cpoly_zero K)
right_unit_cpoly nat (k - S c)).
assert (fresh_seq K (rev (take (k - c) s))).
apply rev_fresh_seq.
apply take_fresh_seq.
exact Q.
assert ((nth Zero s k) [-] (nth Zero s (k - S c)) [#]
Zero).
apply ap_fresh_nth.
omega.
omega.
exact H1.
exact Q.
assert ((dd K f (nth Zero s k ::
rev (take (k - c) s)) H2) [=]
(((dd K f (nth Zero s k ::
rev (take (k - S c) s)) R) [-]
(dd K f (rev (take (k - c) s)) H4)) [/]
((nth Zero s k) [-] (nth Zero s (k - S c))) [//]
X)).
apply dd_reduce_nth.
exact H.
omega.
exact H1.
exact Q.
rewrite H5.
unfold eta at 3.
assert (\big[cpoly_mult_cs K/cpoly_one K]_(x_i <- take (k - c) s)
(cpoly_linear K (cg_inv x_i) (cpoly_one K)) [=]
\big[cpoly_mult_cs K/cpoly_one K]_(x_i <- (take (k - S c) s) ++ [:: nth Zero s (k - S c)])
(cpoly_linear K (cg_inv x_i) (cpoly_one K))).
assert (take (k - c) s = take (k - S c) s ++
[:: nth Zero s (k - S c)]).
rewrite <- cat_rcons.
rewrite <- take_nth.
assert (k - c = S (k - S c)) by omega.
rewrite H6.
rewrite cats0; reflexivity.
apply (ssrbool.introT (P := S (k - S c) <= size s)).
apply ssrnat.leP.
omega.
rewrite H6.
reflexivity.
rewrite H6.
rewrite (@big_cat (cpoly K) (cpoly_eq K)
eqv_cpoly (cpoly_mult_cs K) (cpoly_one K)
morph_cpoly_mult assoc_cpoly_mult
left_unit_cpoly_mult K (take (k - S c) s)
[:: nth Zero s (k - S c)]).
rewrite (@big_seq1 (cpoly K) (cpoly_eq K)
eqv_cpoly (cpoly_mult_cs K) (cpoly_one K)
right_unit_cpoly_mult K (nth Zero s (k - S c))).
rewrite (mult_apply K _
(cpoly_linear K (cg_inv (nth Zero s (k - S c)))
(cpoly_one K))).
assert (cpoly_apply_fun (cpoly_linear K
(cg_inv (nth Zero s (k - S c))) (cpoly_one K))
(nth Zero s k) [=] nth Zero s k [-]
nth Zero s (k - S c)).
simpl.
rewrite cring_mult_zero.
rewrite cm_rht_unit_unfolded.
rewrite mult_one.
rewrite cg_minus_unfolded.
algebra.
rewrite H7.
rewrite (mult_commutes K _
(nth Zero s k [-] nth Zero s (k - S c))).
rewrite mult_assoc.
rewrite div_1.
rewrite (mult_commutes K (_ [-] _) _).
rewrite ring_dist_minus.
unfold alpha at 2.
assert (dd K f (rev (take (k - S c + 1) s))
(rev_fresh_seq K (take (k - S c + 1) s)
(take_fresh_seq K (k - S c + 1) s Q)) [=]
dd K f (rev (take (k - c) s)) H4).
apply dd_indep.
assert (k - S c + 1 = k - c) by omega.
rewrite H8.
reflexivity.
rewrite H8.
rewrite cg_minus_unfolded.
rewrite (cag_commutes K _ (cg_inv _)).
rewrite (a _ (cg_inv _)).
unfold eta at 2.
rewrite c_mult_apply.
rewrite (mult_commutes K _ (dd _ _ _ H4)).
rewrite cg_rht_inv_unfolded.
rewrite cm_lft_unit_unfolded.
rewrite (mult_commutes K (dd _ _ _ _) _).
unfold eta at 3.
reflexivity.
omega.
Qed.
(**
* This lemma corresponds with lemma 13 in the paper as
* sent to me on january 11th. It is called 'lem11' here
* because it was based on a previous version of the paper.
* It relies on lemmas 11a and 11b (see before).
*)
Lemma lem11 : forall (k i : nat) (s : seq K) (P : i <= k)
(Q : fresh_seq K s), k < size s ->
f (nth Zero s i) [=] (N K f s k Q) ! (nth Zero s i).
Proof.
intros.
induction k.
inversion P.
destruct s.
inversion H.
simpl.
unfold alpha.
assert (fresh_seq K [:: s]).
apply fresh_cons.
unfold sqfresh.
apply insq.
simpl; auto.
apply fresh_nil.
assert (dd K f (rev (take (0 + 1) (s :: s0)))
(rev_fresh_seq K (take (0 + 1) (s :: s0))
(take_fresh_seq K (0 + 1) (s :: s0) Q)) [=]
dd K f [:: s] H1).
apply dd_indep.
simpl.
rewrite take0.
reflexivity.
rewrite H2.
assert (f s [=] dd K f [:: s] H1).
algebra.
rewrite <- H3.
rewrite cring_mult_zero.
rewrite cm_rht_unit_unfolded.
rewrite cm_rht_unit_unfolded.
algebra.
inversion P.
assert (fresh_seq K (nth Zero s (S k) ::
rev (take (S k - S k) s))).
assert (S k - S k = 0) by omega.
rewrite H1.
rewrite take0.
apply fresh_cons.
unfold sqfresh.
apply insq.
simpl; auto.
apply rev_fresh_seq.
apply fresh_nil.
rewrite (lem11b (S k) (S k) _ _ H1).
assert (mkseq ssrfun.id (S k - S k) =
Nil nat).
assert (S k - S k = 0) by omega.
rewrite H2.
auto.
rewrite H2.
rewrite big_nil.
assert (fresh_seq K [:: nth Zero s (S k)]).
apply fresh_cons.
unfold sqfresh.
apply insq.
simpl; auto.
apply fresh_nil.
setoid_replace (dd K f (nth Zero s (S k) ::
(rev (take (S k - S k) s))) H1) with
(dd K f [:: nth Zero s (S k)] H3).
assert (cpoly_apply_fun (cpoly_zero K)
(nth Zero s (S k)) [=] Zero).
algebra.
rewrite H4.
rewrite cm_lft_unit_unfolded.
unfold eta.
assert (take (S k - S k) s = Nil K).
assert (S k - S k = 0) by omega.
rewrite H5.
rewrite take0; reflexivity.
rewrite H5.
rewrite apply_bigops.
rewrite big_nil.
rewrite mult_one.
algebra.
apply dd_indep.
assert (S k - S k = 0) by omega.
rewrite H4.
rewrite take0.
auto.
omega.
auto.
omega.
unfold N.
rewrite (@eq_big_idx_seq (cpoly K) (cpoly_eq K)
eqv_cpoly (cpoly_plus_cs K) (cpoly_zero K)
morph_cpoly
right_unit_cpoly (cpoly_zero K) nat
(mkseq ssrfun.id (S k + 1)) (fun x : nat => true)
(fun x : nat => cr_mult (_C_ (alpha K f s Q x)) (eta K s x))
right_unit_cpoly).
assert (mkseq ssrfun.id (S (k + 1)) =
(mkseq ssrfun.id (S k)) ++ [:: S k]).
unfold mkseq.
replace (S (S k)) with (S k + 1).
rewrite (iota_add 0 (S k) 1).
rewrite map_cat; auto.
omega.
rewrite H2.
clear H2.
rewrite (@big_cat (cpoly K) (cpoly_eq K) eqv_cpoly
(cpoly_plus_cs K) (cpoly_zero K) morph_cpoly assoc_cpoly
left_unit_cpoly nat
(mkseq ssrfun.id (S k)) ([:: S k]) (fun x : nat => true)
(fun x : nat => _C_ (alpha K f s Q x) [*] (eta K s x))).
unfold N in IHk.
rewrite (@big_seq1 (cpoly K) (cpoly_eq K) eqv_cpoly
(cpoly_plus_cs K) (cpoly_zero K) right_unit_cpoly nat (S k)
(fun x : nat => _C_ (alpha K f s Q x) [*] (eta K s x))).
rewrite (@plus_apply K
((\big[cpoly_plus_cs K/cpoly_zero K]_(i0 <- mkseq ssrfun.id (S k))
(_C_ (alpha K f s Q i0) [*] (eta K s i0))))
(_C_ (alpha K f s Q (S k)) [*] (eta K s (S k)))
(nth Zero s i)).
assert ((_C_ (alpha K f s Q (S k)) [*] (eta K s (S k))) !
(nth Zero s i) [=] Zero).
rewrite c_mult_apply.
unfold eta.
rewrite (@apply_bigops (take (S k) s)).
rewrite lem11a.
rewrite cring_mult_zero.
reflexivity.
omega.
omega.
exact H1.
rewrite H2.
rewrite IHk.
assert (S k = k + 1) by omega.
rewrite H3.
rewrite cm_rht_unit_unfolded.
reflexivity.
exact H1.
omega.
auto.
Qed.
(**
* Getting the nth coefficient of a polynomial can be done
* outside a bigop, as well as inside, resulting in the
* same value (with the bigop applied in the latter case,
* of course).
*
* TODO: Generalise to arbitrary bigop.
* TODO: Replace bigopsClass construct with corresponding
* folds.
*)
Lemma nth_coeff_bigops : forall (k : nat) (r : seq nat) F,
nth_coeff k (\big[cpoly_plus_cs K/cpoly_zero K]_(i <- r) F i) [=]
\big[csg_op/(Zero:K)]_(i <- r) (nth_coeff k (F i)).
Proof.
intros.
induction r.
rewrite big_nil.
simpl; reflexivity.
rewrite big_cons.
rewrite nth_coeff_plus.
rewrite IHr.
rewrite big_cons.
reflexivity.
Qed.
(**
* A small lemma to ascertain compatibility between two
* types of multiplication between polynomials and constant
* values.
*)
Lemma cpoly_mult_cr_c_ : forall p c,
(cpoly_mult_cr K p c [=] p [*] _C_ c).
Proof.
intros.
simpl.
induction p.
simpl; auto.
simpl.
split.
rewrite cm_rht_unit_unfolded.
rewrite mult_commutes.
reflexivity.
rewrite IHp.
reflexivity.
Qed.
(**
* This corrolary corresponds to corrolary 14 in the PDF as
* e-mailed to me on january 11th. It states that the divided
* difference f[a_1, ..., a_n] is the coefficient of x^n in
* the (Newton) polynomial that interpolates f at a_1, ..., a_n.
*
* TODO: Fix usage of bigopsClass constructs.
* TODO: Shorten proof.
*)
Lemma cor12 : forall (k : nat) (s : seq K)
(Q : fresh_seq K s), k < size s ->
nth_coeff k (N K f s k Q) [=] alpha K f s Q k.
Proof.
intros.
unfold N.
cut (mkseq ssrfun.id (k + 1) =
mkseq ssrfun.id k ++ [:: k]).
intro.
rewrite H0.
rewrite (@big_cat (cpoly K) (cpoly_eq K)
eqv_cpoly (cpoly_plus_cs K) (cpoly_zero K)
morph_cpoly assoc_cpoly left_unit_cpoly).
rewrite (@big_seq1 (cpoly K) (cpoly_eq K)
eqv_cpoly (cpoly_plus_cs K) (cpoly_zero K)
right_unit_cpoly).
rewrite nth_coeff_plus.
rewrite nth_coeff_c_mult_p.
assert (nth_coeff k (eta K s k) [=] One).
unfold eta.
clear H0.
induction k.
rewrite take0.
simpl; reflexivity.
cut (take (S k) s = take k s ++
[:: nth Zero s k]).
intro.
rewrite H0.
rewrite (@big_cat (cpoly K) (cpoly_eq K)
eqv_cpoly (cpoly_mult_cs K) (cpoly_one K)
morph_cpoly_mult assoc_cpoly_mult left_unit_cpoly_mult).
rewrite (@big_seq1 (cpoly K) (cpoly_eq K)
eqv_cpoly (cpoly_mult_cs K) (cpoly_one K)
right_unit_cpoly_mult).
rewrite cpoly_mult_lin.
rewrite nth_coeff_plus.
rewrite coeff_Sm_lin.
rewrite cpoly_mult_one.
rewrite IHk.
unfold cpoly_mult_cr_cs.
rewrite cpoly_mult_cr_c_.
rewrite nth_coeff_p_mult_c_.
assert (degree_le k
(\big[cpoly_mult_cs K/cpoly_one K]_(i <- take k s)
cpoly_linear K (cg_inv i) (cpoly_one K))).
clear IHk H0.
induction k.
rewrite take0.
unfold degree_le.
intros.
rewrite big_nil.
destruct m.
inversion H0.
simpl; reflexivity.
cut (take (S k) s = take k s ++
[:: nth Zero s k]).
intro.
rewrite H0.
unfold degree_le.
intros.
rewrite (@big_cat (cpoly K) (cpoly_eq K)
eqv_cpoly (cpoly_mult_cs K) (cpoly_one K)
morph_cpoly_mult assoc_cpoly_mult left_unit_cpoly_mult).
set degree_mult_aux.
simpl in s0.
destruct m.
inversion H1.
replace (S m) with (m + 1) by omega.
rewrite <- cpoly_mult_fast_equiv.
rewrite s0.
simpl.
rewrite mult_one.
rewrite cm_rht_unit_unfolded.
rewrite mult_one.
unfold degree_le in IHk.
rewrite IHk.
reflexivity.
omega.
omega.
unfold degree_le in IHk.
unfold degree_le.
intros.
rewrite IHk.
reflexivity.
omega.
omega.
unfold degree_le.
intros.
destruct m0.
inversion H2.
destruct m0.
inversion H2.
inversion H4.
simpl.
reflexivity.
rewrite cats1.
rewrite <- take_nth.
reflexivity.
apply (ssrbool.introT (P := S k <= size s)).
apply ssrnat.leP.
omega.
unfold degree_le in H1.
rewrite H1.
rewrite mult_commutes.
rewrite cring_mult_zero.
algebra.
omega.
omega.
rewrite cats1.
rewrite <- take_nth.
reflexivity.
apply (ssrbool.introT (P := S k <= size s)).
apply ssrnat.leP.
omega.
rewrite H1.
rewrite mult_one.
assert (degree_le (k - 1)
(\big[cpoly_plus_cs K/cpoly_zero K]_(i <- mkseq ssrfun.id k)
cr_mult (_C_ (alpha K f s Q i)) (eta K s i))).
unfold degree_le.
clear H0 H1.
induction k.
simpl.
intros.
reflexivity.
intros.
cut (mkseq ssrfun.id (S k) =
mkseq ssrfun.id k ++ [:: k]).
intro.
rewrite H1.
rewrite (@big_cat (cpoly K) (cpoly_eq K)
eqv_cpoly (cpoly_plus_cs K) (cpoly_zero K)
morph_cpoly assoc_cpoly left_unit_cpoly).
rewrite (@big_seq1 (cpoly K) (cpoly_eq K)
eqv_cpoly (cpoly_plus_cs K) (cpoly_zero K)
right_unit_cpoly).
rewrite nth_coeff_plus.
unfold degree_le in IHk.
rewrite IHk.
rewrite cm_lft_unit_unfolded.
rewrite nth_coeff_c_mult_p.
clear IHk.
assert (degree_le k (eta K s k)).
unfold degree_le.
induction k.
unfold degree_le, eta.
intros.
rewrite take0.
destruct m0.
assert (1 < 0) by omega.
inversion H2.
simpl; reflexivity.
unfold degree_le, eta.
intros.
cut (take (S k) s = take k s ++
[:: nth Zero s k]).
intro.
rewrite H3.
rewrite (@big_cat (cpoly K) (cpoly_eq K)
eqv_cpoly (cpoly_mult_cs K) (cpoly_one K)
morph_cpoly_mult assoc_cpoly_mult left_unit_cpoly_mult).
set degree_mult_aux.
simpl in s0.
rewrite <- cpoly_mult_fast_equiv.
destruct m0.
inversion H2.
replace (S m0) with (m0 + 1) by omega.
rewrite s0.
unfold degree_le in IHk.
rewrite IHk.
rewrite mult_commutes.
rewrite cring_mult_zero.
reflexivity.
omega.
omega.
unfold mkseq.
assert ([:: k] = map ssrfun.id (iota k 1)).
simpl; reflexivity.
rewrite H4.
rewrite <- map_cat.
rewrite <- iota_add.
rewrite ssrnat.addn1.
reflexivity.
omega.
unfold degree_le.
intros.
rewrite IHk.
reflexivity.
omega.
omega.
unfold mkseq.
assert ([:: k] = map ssrfun.id (iota k 1)).
simpl; reflexivity.
rewrite H5.
rewrite <- map_cat.
rewrite <- iota_add.
rewrite ssrnat.addn1.
reflexivity.
omega.
unfold degree_le.
intros.
simpl.
destruct m1.
inversion H4.
destruct m1.
inversion H4.
inversion H6.
reflexivity.
rewrite cats1.
rewrite <- take_nth.
reflexivity.
apply (ssrbool.introT (P := S k <= size s)).
apply ssrnat.leP.
omega.
unfold degree_le in H2.
rewrite H2.
rewrite cring_mult_zero.
reflexivity.
omega.
omega.
omega.
unfold mkseq.
assert ([:: k] = map ssrfun.id (iota k 1)).
simpl; reflexivity.
rewrite H1.
rewrite <- map_cat.
rewrite <- iota_add.
rewrite ssrnat.addn1.
reflexivity.
destruct k.
simpl.
rewrite cm_lft_unit_unfolded.
reflexivity.
unfold degree_le in H2.
rewrite H2.
rewrite cm_lft_unit_unfolded.
reflexivity.
omega.
unfold mkseq.
assert ([:: k] = map ssrfun.id (iota k 1)).
simpl; reflexivity.
rewrite H0.
rewrite <- map_cat.
rewrite <- iota_add.
rewrite ssrnat.addn1.
replace (S k) with (k + 1) by omega.
reflexivity.
Qed.
End BigopsTheory.
(**
* Since we don't have decidable equality for elements
* in a Field K, we have to define our own permutation
* for sequences.
*)
Section Permutations.
Variable A : CSetoid.
(**
* Alternative definition for permutations. This one
* matches the definition of dd a bit better.
*)
Inductive permutation : seq A -> seq A -> Prop :=
| permutation_nil : permutation nil nil
| permutation_singleton :
forall (a : A), permutation [:: a] [:: a]
| permutation_skip :
forall (a b : A) (s1 s2 : seq A),
permutation s1 s2 ->
permutation (a :: s1) (a :: s2) ->
permutation (b :: s1) (b :: s2) ->
permutation (a :: b :: s1) (a :: b :: s2)
| permutation_swap :
forall (a b : A) (s : seq A),
permutation (a :: b :: s) (b :: a :: s)
| permutation_trans :
forall s1 s2 s3 : seq A,
permutation s1 s2 -> permutation s2 s3 ->
permutation s1 s3.
Hint Constructors permutation.
(**
* A type of induction on sequences that suits the
* definition of divided differences a bit better.
*
* TODO: Fix this proof, which should not be too hard.
* A solution might be to distinguish between sequences
* of even and odd length.
*)
Lemma dd_type_ind : forall P, P [::] ->
(forall (a : A), P [:: a]) ->
(forall (a b : A) (s : seq A),
P s -> P (a :: s) ->
P (b :: s) -> P (a :: b :: s)) ->
(forall (s : seq A), P s).
Proof.
intros.
Admitted.
(**
* Permutations are reflexive.
*)
Lemma permutation_refl : forall s : seq A,
permutation s s.
Proof.
intros.
induction s using dd_type_ind.
apply permutation_nil.
apply permutation_singleton.
apply permutation_skip.
exact IHs.
exact IHs0.
exact IHs1.
Qed.
Hint Resolve permutation_refl.
(**
* Permutations are symmetric.
*)
Lemma permutation_sym :
forall l m : seq A, permutation l m ->
permutation m l.
Proof.
intros l1 l2 H'; elim H'.
apply permutation_nil.
intro a.
apply permutation_singleton.
intros.
apply permutation_skip.
exact H0.
exact H2.
exact H4.
intros.
apply permutation_swap.
intros l1' l2' l3' H1 H2 H3 H4.
apply permutation_trans with (1 := H4) (2 := H2).
Qed.
(**
* The length of a sequence does not change under
* permutation.
*)
Lemma permutation_size :
forall l m : seq A, permutation l m ->
size l = size m.
Proof.
intros l m H'; elim H'; simpl in |- *; auto.
intros l1 l2 l3 H'0 H'1 H'2 H'3.
rewrite <- H'3; auto.
Qed.
(**
* The permutation nil originates from nil.
*)
Lemma permutation_nil_inv : forall l : seq A,
permutation l nil -> l = nil.
Proof.
intros l H;
generalize (permutation_size _ _ H); case l;
simpl in |- *; auto.
intros; discriminate.
Qed.
(**
* Permutation on sequences of length 1 is an identity
* operation.
*)
Lemma permutation_one_inv_aux :
forall l1 l2 : seq A,
permutation l1 l2 ->
forall a : A, l1 = a :: nil -> l2 = a :: nil.
Proof.
intros l1 l2 H; elim H; clear H l1 l2; auto.
intros.
inversion H5.
intros.
inversion H.
Qed.
(**
* TODO: Do we really require this lemma?
*)
Lemma permutation_one_inv :
forall (a : A) (l : seq A),
permutation (a :: nil) l -> l = a :: nil.
intros a l H;
apply permutation_one_inv_aux with (l1 := a :: nil);
auto.
Qed.
End Permutations.
Section PermProperties.
Variable K : CField.
Variable f : K -> K.
(**
* The property of freshness is preserved under permutation.
*)
Lemma perm_fresh : forall (s1 s2 : seq K),
fresh_seq K s1 -> permutation K s1 s2 ->
fresh_seq K s2.
Proof.
intros.
induction H0.
apply fresh_nil.
apply fresh_cons.
unfold sqfresh; simpl.
apply insq; auto.
apply fresh_nil.
apply fresh_cons.
assert (fresh_seq K (a :: s2)).
apply IHpermutation2.
apply fresh_cons.
inversion H.
inversion H2.
inversion X.
unfold sqfresh.
apply insq.
exact X1.
inversion H.
inversion H3.
exact H7.
inversion H.
inversion H3.
inversion X.
unfold sqfresh.
apply insq.
simpl.
split.
exact X0.
apply unsq.
inversion H0.
unfold sqfresh in H7.
exact H7.
apply IHpermutation3.
inversion H.
exact H3.
apply fresh_cons.
inversion H.
inversion H2.
inversion X.
unfold sqfresh.
apply insq.
simpl.
split.
apply ap_symmetric.
exact X0.
apply unsq.
inversion H3.
unfold sqfresh in H6.
exact H6.
apply fresh_cons.
inversion H.
inversion H2.
inversion X.
unfold sqfresh.
apply insq.
exact X1.
inversion H.
inversion H3.
exact H7.
apply IHpermutation2.
apply IHpermutation1.
exact H.
Qed.
(**
* Lemma 14 - The result of dd is invariant under
* permutation of its sequence of arguments.
*
* In the paper as sent to me on january 11th, this is
* referred to as lemma 16.
*
* TODO: Shorten proof.
*)
Lemma lem14 : forall (s1 s2 : seq K)
(P1 : fresh_seq K s1) (P2 : fresh_seq K s2),
(permutation K s1 s2) -> dd K f s1 P1 [=] dd K f s2 P2.
Proof.
intros s1 s2 P1 P2 perm.
induction perm.
algebra.
algebra.
assert (fresh_seq K (a :: s1)).
apply fresh_cons.
inversion P1.
inversion H1.
inversion X.
unfold sqfresh.
apply insq.
exact X1.
inversion P1.
inversion H2.
exact H6.
assert (fresh_seq K (b :: s1)).
inversion P1.
exact H3.
inversion P1.
inversion H3.
inversion X.
assert (a [-] b [#] Zero).
apply minus_ap_zero.
apply ap_symmetric.
exact X0.
rewrite (dd_reduce K f s1 a b P1 H H0 X2).
assert (fresh_seq K (a :: s2)).
apply fresh_cons.
inversion P2.
inversion H7.
inversion X3.
apply insq.
exact X5.
inversion P2.
inversion H8.
exact H12.
assert (fresh_seq K (b :: s2)).
inversion P2.
exact H9.
rewrite (dd_reduce K f s2 a b P2 H5 H6 X2).
apply div_wd.
rewrite (IHperm2 H H5).
rewrite (IHperm3 H0 H6).
reflexivity.
reflexivity.
assert (fresh_seq K (a :: s)).
inversion P2.
exact H2.
assert (fresh_seq K (b :: s)).
inversion P1.
exact H3.
inversion P1.
inversion H3.
inversion X.
assert (a [-] b [#] Zero).
apply minus_ap_zero.
apply ap_symmetric.
exact X0.
rewrite (dd_reduce K f s a b P1 H H0 X2).
assert (b [-] a [#] Zero).
apply minus_ap_zero.
exact X0.
rewrite (dd_reduce K f s b a P2 H0 H X3).
apply eq_div.
rewrite ring_dist_minus.
rewrite ring_dist_minus.
rewrite dist_2b.
rewrite dist_2b.
rewrite dist_2b.
rewrite dist_2b.
set (cr_mult (dd K f (a :: s) H) b).
set (cr_mult (dd K f (b :: s) H0) b).
set (cr_mult (dd K f (a :: s) H) a).
set (cr_mult (dd K f (b :: s) H0) a).
rewrite assoc_1.
rewrite assoc_1.
rewrite <- minus_plus.
rewrite <- minus_plus.
rewrite (cag_commutes_unfolded K s3 s2).
rewrite (cag_commutes_unfolded K _ s1).
rewrite assoc_2.
rewrite (cag_commutes_unfolded K _ s4).
rewrite assoc_2.
rewrite cg_minus_unfolded.
rewrite cg_minus_unfolded.
rewrite (cag_commutes_unfolded K s1 s4).
reflexivity.
assert (fresh_seq K s2).
apply (perm_fresh s1).
exact P1.
exact perm1.
rewrite (IHperm1 P1 H).
rewrite (IHperm2 H P2).
reflexivity.
Qed.
End PermProperties.
(**
* This is the end of the section about permutations. As I
* indicated before in our conversations, from this point on
* I have much concern about the proper heading of this
* research. For instance, many lemmas below are only
* required to get NAH-material to work (while it is still
* a bit uncertain if we require this at all). Another
* important mistake (in my opinion) is the usage of two
* different definitions of continuity, differentiability
* etc.
*
* I therefore propose the following:
*
* - Keep the file from line 0 up until here intact
* (but fix the proofs, of course).
* - Start over again to work on multi-variable integration
* as a separate branch (but only what is really required
* for this project).
* - Bridge the gap between these two, and complete the
* proof.
*)
Section Derivations.
(**
* Lemma 15 - If a < b then C[a,b] is an algebra over
* the ring R.
*)
Require Import Structures.
Variable a b : IR.
Hypothesis Hab : a [<] b.
(**
* These are the partial functions on IR such that for
* each n, they are n-times differentiable.
*)
Record C_inf_ab := {
f_crr : PartFunct IR ;
f_pdf : forall n, Diffble_I_n Hab n f_crr}.
(**
* These are type class instances and not further explained.
*)
Instance IR_plus : RingPlus IR := csg_op.
Instance IR_mult : RingMult IR := cr_mult.
Instance IR_inv : GroupInv IR := cg_inv.
Instance IR_zero : RingZero IR := Zero.
Instance IR_one : RingOne IR := One.
Instance IR_equiv : Equiv IR := (@st_eq IR).
Instance IR_equivalence : Equivalence (@st_eq IR).
(**
* Addition is associative for IR
*)
Instance IR_associative : @Associative IR (@st_eq IR) IR_plus.
unfold Associative.
intros.
unfold IR_plus.
unfold equiv.
algebra.
Qed.
(**
* Addition is a morphism with respect to the standard
* equality on IR.
*)
Instance IR_proper : Proper ((@st_eq IR) ==> (@st_eq IR) ==>
(@st_eq IR)) IR_plus.
unfold Proper.
unfold respectful.
intros.
rewrite H.
rewrite H0.
reflexivity.
Qed.
(**
* These two facts allow us to state IR as a semigroup for
* addition.
*)
Instance IR_semigroup : @SemiGroup IR (@st_eq IR) IR_plus.
(**
* IR is a monoid for addition over IR.
*)
Instance IR_monoid : @Monoid IR (@st_eq IR) IR_plus Zero.
assert (forall x : IR, Zero [+] x == x).
intros.
rewrite cm_lft_unit_unfolded.
reflexivity.
assert (forall x : IR, x [+] Zero == x).
intros.
rewrite cm_rht_unit_unfolded.
reflexivity.
apply (Build_Monoid IR (@st_eq IR) IR_plus Zero
IR_semigroup H H0).
Qed.
(**
* Type instance stating that inversion for IR is a
* morphism with respect to the standard equality on IR.
*)
Instance IR_proper_inv : Proper ((@st_eq IR) ==>
(@st_eq IR)) IR_inv.
unfold Proper.
unfold respectful.
intros.
rewrite H.
reflexivity.
Qed.
(**
* This makes IR a group with addition, inversion and zero.
*)
Instance IR_group : @Group IR (@st_eq IR) IR_plus
Zero IR_inv.
assert (forall x : IR, IR_plus (IR_inv x) x == Zero).
intros.
unfold IR_plus, IR_inv.
assert (csg_op (cg_inv x) x [=] Zero).
algebra.
rewrite H.
reflexivity.
assert (forall x : IR, IR_plus x (IR_inv x) == Zero).
intros.
unfold IR_plus, IR_inv.
assert (csg_op x (cg_inv x) [=] Zero).
algebra.
rewrite H0.
reflexivity.
apply (Build_Group IR (@st_eq IR) IR_plus Zero IR_inv
IR_monoid IR_proper_inv H H0).
Qed.
(**
* IR is also an Abelian group because of the commutativity
* of addition.
*)
Instance IR_abgroup : @AbGroup IR (@st_eq IR) IR_plus
Zero IR_inv.
assert (Commutative IR_plus).
unfold Commutative.
intros.
assert (IR_plus x y [=] IR_plus y x).
unfold IR_plus.
algebra.
rewrite H.
reflexivity.
apply (Build_AbGroup IR (@st_eq IR) IR_plus Zero
IR_inv IR_group H).
Qed.
(**
* Multiplication on IR is clearly associative.
*)
Instance IR_associative_mult : @Associative IR (@st_eq IR) IR_mult.
unfold Associative.
intros.
unfold IR_mult.
unfold equiv.
algebra.
Qed.
(**
* Multiplication on IR is a morphism with respect to the
* standard equality on IR.
*)
Instance IR_proper_mult : Proper ((@st_eq IR) ==> (@st_eq IR) ==>
(@st_eq IR)) IR_mult.
unfold Proper.
unfold respectful.
intros.
rewrite H.
rewrite H0.
reflexivity.
Qed.
(**
* This makes IR a semigroup with respect to multiplication.
*)
Instance IR_semigroup_mult : @SemiGroup IR (@st_eq IR) IR_mult.
(**
* We may now conclude that IR is a monoid with one as the
* neutral element in multiplication.
*)
Instance IR_monoid_mult : @Monoid IR (@st_eq IR) IR_mult One.
assert (forall x : IR, One [*] x == x).
intros.
rewrite mult_commutes.
rewrite mult_one.
reflexivity.
assert (forall x : IR, x [*] One == x).
intros.
rewrite mult_one.
reflexivity.
apply (Build_Monoid IR (@st_eq IR) IR_mult One
IR_semigroup_mult H H0).
Qed.
(**
* The reals form a ring with addition and multiplication.
*
* TODO: All these lemmas (this one and the ones before) are
* probably defined in the CoRN libraries as well and are
* therefore not required to be stated here (but I am not
* sure if they are already present as type class instances).
*)
Instance IR_ring : @Ring IR (@st_eq IR) IR_plus
IR_mult IR_inv Zero One.
assert (Commutative IR_mult).
unfold Commutative.
intros.
assert (IR_mult x y [=] IR_mult y x).
unfold IR_mult.
algebra.
rewrite H.
reflexivity.
assert (Distribute IR_mult IR_plus).
assert (forall a b c, IR_mult a (IR_plus b c) ==
IR_plus (IR_mult a b) (IR_mult a c)).
intros.
unfold IR_mult, IR_plus.
assert (cr_mult a0 (csg_op b0 c) [=]
csg_op (cr_mult a0 b0) (cr_mult a0 c)).
algebra.
rewrite H0.
reflexivity.
assert (forall a b c, IR_mult (IR_plus a b) c ==
IR_plus (IR_mult a c) (IR_mult b c)).
intros.
unfold IR_mult, IR_plus.
assert (cr_mult (csg_op a0 b0) c [=]
csg_op (cr_mult a0 c) (cr_mult b0 c)).
algebra.
rewrite H1.
reflexivity.
apply (Build_Distribute IR (@st_eq IR) IR_mult IR_plus
H0 H1).
apply (Build_Ring IR (@st_eq IR) IR_plus IR_mult
IR_inv Zero One IR_abgroup IR_monoid_mult H H0).
Qed.
(**
* If f' and g' are the nth derivatives of respectively
* f and g, then f'+g' is the nth derivative of f+g.
*
* TODO: Is it possible to make these proofs a bit shorter?
*)
Lemma Derivative_I_n_add : forall (n : nat)
(f g f' g' : PartFunct IR) (Pfderiv : Derivative_I_n Hab n f f')
(Pgderiv : Derivative_I_n Hab n g g'),
Derivative_I_n Hab n (f{+}g) (f'{+}g').
Proof.
intro n.
induction n.
intros.
apply Feq_plus.
exact Pfderiv.
exact Pgderiv.
intros.
simpl.
elim Pfderiv.
intros.
elim Pgderiv.
intros.
exists (IPlus x x0).
apply Derivative_I_wdr with (PartInt x{+}PartInt x0).
apply part_int_plus.
apply Feq_reflexive.
apply derivative_imp_inc' with f.
exact p.
apply Feq_reflexive.
apply derivative_imp_inc' with g.
exact p0.
apply Derivative_I_plus.
exact p.
exact p0.
apply Derivative_I_n_wdl with (PartInt x{+}PartInt x0).
apply part_int_plus.
apply Feq_reflexive.
apply derivative_imp_inc' with f.
exact p.
apply Feq_reflexive.
apply derivative_imp_inc' with g.
exact p0.
apply IHn.
exact q.
exact q0.
Qed.
(**
* Now that we have an exact representation of the nth
* derivative under addition, we can more easily prove
* n-times differentiability for the addition of functions.
*)
Lemma Diffble_I_n_plus : forall (n : nat)
(f g : PartFunct IR) (Pfdf : Diffble_I_n Hab n f)
(Pgdf : Diffble_I_n Hab n g),
Diffble_I_n Hab n (Fplus f g).
Proof.
intros.
assert ({f0' : CSetoid_fun (subset (Compact (less_leEq _ _ _ Hab))) IR |
Derivative_I_n Hab n f (PartInt f0')}).
apply Diffble_I_n_imp_deriv_n.
exact Pfdf.
assert ({g' : CSetoid_fun (subset (Compact (less_leEq _ _ _ Hab))) IR |
Derivative_I_n Hab n g (PartInt g')}).
apply Diffble_I_n_imp_deriv_n.
exact Pgdf.
inversion_clear X.
inversion_clear X0.
apply deriv_n_imp_Diffble_I_n with (PartInt x{+}PartInt x0).
apply Derivative_I_n_add.
exact X1.
exact X.
Qed.
(**
* If f' and g' are the nth derivatives of respectively
* f and g, then f'-g' is the nth derivative of f-g.
*)
Lemma Derivative_I_n_minus : forall (n : nat)
(f g f' g' : PartFunct IR) (Pfderiv : Derivative_I_n Hab n f f')
(Pgderiv : Derivative_I_n Hab n g g'),
Derivative_I_n Hab n (f{-}g) (f'{-}g').
Proof.
intro n.
induction n.
intros.
apply Feq_minus.
exact Pfderiv.
exact Pgderiv.
intros.
simpl.
elim Pfderiv.
intros.
elim Pgderiv.
intros.
exists (IMinus x x0).
apply Derivative_I_wdr with (PartInt x{-}PartInt x0).
apply part_int_minus.
apply Feq_reflexive.
apply derivative_imp_inc' with f.
exact p.
apply Feq_reflexive.
apply derivative_imp_inc' with g.
exact p0.
apply Derivative_I_minus.
exact p.
exact p0.
apply Derivative_I_n_wdl with (PartInt x{-}PartInt x0).
apply part_int_minus.
apply Feq_reflexive.
apply derivative_imp_inc' with f.
exact p.
apply Feq_reflexive.
apply derivative_imp_inc' with g.
exact p0.
apply IHn.
exact q.
exact q0.
Qed.
(**
* The n-times differentiability of two functions f and g
* continues to the n-times differentiability of f-g.
*
* TODO: Prove this lemma using only backward reasoning.
*)
Lemma Diffble_I_n_minus : forall (n : nat)
(f g : PartFunct IR) (Pfdf : Diffble_I_n Hab n f)
(Pgdf : Diffble_I_n Hab n g),
Diffble_I_n Hab n (f{-}g).
Proof.
intros.
assert ({f0' : CSetoid_fun (subset (Compact (less_leEq _ _ _ Hab))) IR |
Derivative_I_n Hab n f (PartInt f0')}).
apply Diffble_I_n_imp_deriv_n.
exact Pfdf.
assert ({g' : CSetoid_fun (subset (Compact (less_leEq _ _ _ Hab))) IR |
Derivative_I_n Hab n g (PartInt g')}).
apply Diffble_I_n_imp_deriv_n.
exact Pgdf.
inversion_clear X.
inversion_clear X0.
apply deriv_n_imp_Diffble_I_n with (PartInt x{-}PartInt x0).
apply Derivative_I_n_minus.
exact X1.
exact X.
Qed.
(**
* Use addition of functions to create a semigroup-operation
* for infinitely-differentiable functions.
*)
Program Instance C_inf_ab_plus : SemiGroupOp C_inf_ab :=
(fun f g => Build_C_inf_ab
(@Fplus IR (f_crr f) (f_crr g)) _ ).
Next Obligation.
apply Diffble_I_n_plus.
destruct f.
assert (f_crr (Build_C_inf_ab f_crr0 f_pdf0) = f_crr0).
auto.
rewrite H.
apply f_pdf0.
destruct g.
assert (f_crr (Build_C_inf_ab f_crr0 f_pdf0) = f_crr0).
auto.
rewrite H.
apply f_pdf0.
Qed.
(**
* The standard equality between functions can be continued
* to an equality on C_inf_ab (the functions that are
* infinitely-times differentiable).
*)
Program Instance C_inf_ab_eq : Equiv C_inf_ab :=
(fun f g => sq (Feq (Compact (less_leEq _ _ _ Hab))
(f_crr f) (f_crr g))).
(**
* The addition in C_inf_ab is associative. This is
* represented here using a type class instance.
*)
Instance C_inf_ab_associative : @Associative C_inf_ab
(C_inf_ab_eq) C_inf_ab_plus.
unfold Associative.
intros.
unfold C_inf_ab_plus.
red.
unfold C_inf_ab_eq.
apply insq.
simpl.
FEQ.
apply included_FPlus.
destruct x.
replace (f_crr (Build_C_inf_ab f_crr0 f_pdf0))
with f_crr0 by auto.
apply Diffble_I_n_imp_inc with 42.
apply f_pdf0.
apply included_FPlus.
destruct y.
replace (f_crr (Build_C_inf_ab f_crr0 f_pdf0))
with f_crr0 by auto.
apply Diffble_I_n_imp_inc with 42.
apply f_pdf0.
destruct z.
replace (f_crr (Build_C_inf_ab f_crr0 f_pdf0))
with f_crr0 by auto.
apply Diffble_I_n_imp_inc with 42.
apply f_pdf0.
apply included_FPlus.
apply included_FPlus.
destruct x.
replace (f_crr (Build_C_inf_ab f_crr0 f_pdf0))
with f_crr0 by auto.
apply Diffble_I_n_imp_inc with 42.
apply f_pdf0.
destruct y.
replace (f_crr (Build_C_inf_ab f_crr0 f_pdf0))
with f_crr0 by auto.
apply Diffble_I_n_imp_inc with 42.
apply f_pdf0.
destruct z.
replace (f_crr (Build_C_inf_ab f_crr0 f_pdf0))
with f_crr0 by auto.
apply Diffble_I_n_imp_inc with 42.
apply f_pdf0.
Qed.
(**
* The addition we defined on C_inf_ab is a morphism
* with respect to our equality.
*)
Instance C_inf_ab_proper : Proper (C_inf_ab_eq ==>
C_inf_ab_eq ==> C_inf_ab_eq) C_inf_ab_plus.
unfold Proper.
unfold respectful.
intros.
red in H.
apply unsq in H.
red in H0.
apply unsq in H0.
unfold C_inf_ab_eq.
apply insq.
unfold C_inf_ab_plus.
simpl.
apply Feq_plus.
exact H.
exact H0.
Qed.
(**
* Short proof that the equality we defined is also an
* equivalence.
*)
Instance C_inf_ab_equivalence : Equivalence C_inf_ab_eq.
assert (Reflexive C_inf_ab_eq).
unfold Reflexive.
intros.
unfold C_inf_ab_eq.
apply insq.
apply Feq_reflexive.
destruct x.
replace (f_crr (Build_C_inf_ab f_crr0 f_pdf0)) with
f_crr0 by auto.
apply Diffble_I_n_imp_inc with 42.
apply f_pdf0.
assert (Symmetric C_inf_ab_eq).
unfold Symmetric.
intros.
unfold C_inf_ab_eq in H0.
apply unsq in H0.
unfold C_inf_ab_eq.
apply insq.
apply Feq_symmetric.
exact H0.
assert (Transitive C_inf_ab_eq).
unfold Transitive.
intros.
unfold C_inf_ab_eq in H1, H2.
apply unsq in H1; apply unsq in H2.
unfold C_inf_ab_eq; apply insq.
apply Feq_transitive with (f_crr y).
exact H1.
exact H2.
apply (Build_Equivalence C_inf_ab (C_inf_ab_eq)
H H0 H1).
Qed.
(**
* This makes the infinitely differentiable functions on
* [a,b] a semigroup with respect to functional addition.
*)
Instance C_inf_ab_semigroup : @SemiGroup C_inf_ab
C_inf_ab_eq C_inf_ab_plus.
(**
* An n-times differentiable function can be multiplied with
* an arbitrary constant.
*)
Lemma Diffble_I_n_const : forall (n : nat) (c : IR),
Diffble_I_n Hab n (Fconst c).
Proof.
intro n.
induction n.
intro c.
simpl.
unfold included.
auto.
intro c.
simpl.
assert (Diffble_I Hab [-C-] c).
apply Diffble_I_const.
exists X.
destruct X.
simpl.
assert (Derivative_I Hab [-C-]c [-C-]Zero).
apply Derivative_I_const.
apply Diffble_I_n_wd with ([-C-]Zero).
apply Derivative_I_unique with ([-C-]c).
exact X.
exact d.
apply IHn.
Qed.
(**
* The constant zero function is a neutral element in
* the definition of C_inf_ab as a monoid under addition.
*)
Instance C_inf_ab_mon_unit : @MonoidUnit C_inf_ab :=
(Build_C_inf_ab (Fconst Zero) _).
intros.
apply Diffble_I_n_const.
Defined.
(**
* The infinitely-differentiable functions on [a,b] are
* a monoid under addition.
*)
Instance C_inf_ab_monoid : @Monoid C_inf_ab
C_inf_ab_eq C_inf_ab_plus C_inf_ab_mon_unit.
assert (forall x, C_inf_ab_plus C_inf_ab_mon_unit
x == x).
intros.
unfold C_inf_ab_mon_unit.
red.
unfold C_inf_ab_eq.
apply insq.
unfold C_inf_ab_plus.
simpl.
FEQ.
apply included_FPlus.
simpl.
unfold included.
auto.
destruct x.
replace (f_crr (Build_C_inf_ab f_crr0 f_pdf0))
with f_crr0 by auto.
apply Diffble_I_n_imp_inc with 42.
apply f_pdf0.
destruct x.
replace (f_crr (Build_C_inf_ab f_crr0 f_pdf0))
with f_crr0 by auto.
apply Diffble_I_n_imp_inc with 42.
apply f_pdf0.
assert (forall x,
C_inf_ab_plus x C_inf_ab_mon_unit == x).
intros.
unfold C_inf_ab_mon_unit.
red.
unfold C_inf_ab_eq.
apply insq.
unfold C_inf_ab_plus.
simpl.
FEQ.
apply included_FPlus.
destruct x.
replace (f_crr (Build_C_inf_ab f_crr0 f_pdf0))
with f_crr0 by auto.
apply Diffble_I_n_imp_inc with 42.
apply f_pdf0.
simpl.
unfold included.
auto.
destruct x.
replace (f_crr (Build_C_inf_ab f_crr0 f_pdf0))
with f_crr0 by auto.
apply Diffble_I_n_imp_inc with 42.
apply f_pdf0.
apply (Build_Monoid C_inf_ab C_inf_ab_eq
C_inf_ab_plus C_inf_ab_mon_unit
C_inf_ab_semigroup H H0).
Qed.
(**
* If a function is n-times differentiable, its functional
* inverse also has this property. To prove this, we first
* need an exact representation of the nth derivative.
*)
Lemma Derivative_I_n_inv : forall (n : nat) (f f' : PartFunct IR),
Derivative_I_n Hab n f f' -> Derivative_I_n Hab n (Finv f) (Finv f').
Proof.
intro.
induction n.
intros.
simpl.
simpl in X.
apply Feq_inv.
exact X.
intros.
simpl.
destruct X.
exists (IInv x).
apply Derivative_I_wdr with (Finv (PartInt x)).
apply part_int_inv.
apply Feq_reflexive.
apply derivative_imp_inc' with f.
exact d.
apply Derivative_I_inv.
exact d.
apply Derivative_I_n_wdl with (Finv (PartInt x)).
apply part_int_inv.
apply Feq_reflexive.
apply derivative_imp_inc' with f.
exact d.
apply IHn.
exact d0.
Qed.
(**
* This is a small lemma to get from the nth derivative to
* the n-times differentiability of the functional inverse.
*)
Lemma Diffble_I_n_inv : forall (n : nat) (f : PartFunct IR),
Diffble_I_n Hab n f -> Diffble_I_n Hab n (Finv f).
Proof.
intros.
assert ({f0' : CSetoid_fun (subset (Compact (less_leEq _ _ _ Hab))) IR |
Derivative_I_n Hab n f (PartInt f0')}).
apply Diffble_I_n_imp_deriv_n.
exact X.
elim X0.
intros.
apply deriv_n_imp_Diffble_I_n with (Finv (PartInt x)).
apply Derivative_I_n_inv.
exact p.
Qed.
(**
* Type class instance to define the inverse on C_inf_ab
* as a group inversion operation.
*)
Program Instance C_inf_ab_inv : GroupInv C_inf_ab :=
(fun f => Build_C_inf_ab (Finv (f_crr f)) _).
Next Obligation.
apply Diffble_I_n_inv.
destruct f.
replace (f_crr (Build_C_inf_ab f_crr0 f_pdf0)) with
f_crr0 by auto.
apply f_pdf0.
Defined.
(**
* This inversion operation on C_inf_ab is a morphism with
* respect to the equality as previously defined on C_inf_ab.
*)
Instance C_inf_ab_proper_inv : Proper (C_inf_ab_eq ==>
C_inf_ab_eq) C_inf_ab_inv.
intros.
unfold Proper.
unfold respectful.
intros.
red.
apply insq.
unfold C_inf_ab_inv.
simpl.
apply Feq_inv.
apply unsq.
inversion H.
apply insq.
exact X.
Qed.
(**
* The infinitely-differentiable functions on [a,b] form
* a group with respect to addition, inversion and the
* constant zero function.
*)
Instance C_inf_ab_group : @Group C_inf_ab C_inf_ab_eq
C_inf_ab_plus C_inf_ab_mon_unit C_inf_ab_inv.
assert (forall x, C_inf_ab_plus (C_inf_ab_inv x) x
== C_inf_ab_mon_unit).
intros.
red.
unfold C_inf_ab_eq.
apply insq.
unfold C_inf_ab_plus.
unfold C_inf_ab_inv.
simpl.
FEQ.
apply included_FPlus.
apply included_FInv.
destruct x.
replace (f_crr (Build_C_inf_ab f_crr0 f_pdf0))
with f_crr0 by auto.
apply Diffble_I_n_imp_inc with 42.
apply f_pdf0.
destruct x.
replace (f_crr (Build_C_inf_ab f_crr0 f_pdf0))
with f_crr0 by auto.
apply Diffble_I_n_imp_inc with 42.
apply f_pdf0.
assert (forall x, C_inf_ab_plus x (C_inf_ab_inv x)
== C_inf_ab_mon_unit).
intros.
red.
unfold C_inf_ab_eq.
apply insq.
unfold C_inf_ab_plus.
unfold C_inf_ab_inv.
simpl.
FEQ.
apply included_FPlus.
destruct x.
replace (f_crr (Build_C_inf_ab f_crr0 f_pdf0))
with f_crr0 by auto.
apply Diffble_I_n_imp_inc with 42.
apply f_pdf0.
apply included_FInv.
destruct x.
replace (f_crr (Build_C_inf_ab f_crr0 f_pdf0))
with f_crr0 by auto.
apply Diffble_I_n_imp_inc with 42.
apply f_pdf0.
apply (Build_Group C_inf_ab C_inf_ab_eq C_inf_ab_plus
C_inf_ab_mon_unit C_inf_ab_inv C_inf_ab_monoid
C_inf_ab_proper_inv H H0).
Qed.
(**
* The addition operator we defined is commutative,
* resulting in an Abelian group for C_inf_ab.
*)
Instance C_inf_ab_abgroup : @AbGroup C_inf_ab C_inf_ab_eq
C_inf_ab_plus C_inf_ab_mon_unit C_inf_ab_inv.
assert (Commutative C_inf_ab_plus).
unfold Commutative.
intros.
unfold C_inf_ab_plus.
red.
unfold C_inf_ab_eq.
apply insq.
simpl.
FEQ.
apply included_FPlus.
destruct x.
replace (f_crr (Build_C_inf_ab f_crr0 f_pdf0)) with
f_crr0 by auto.
apply Diffble_I_n_imp_inc with 42.
apply f_pdf0.
destruct y.
replace (f_crr (Build_C_inf_ab f_crr0 f_pdf0)) with
f_crr0 by auto.
apply Diffble_I_n_imp_inc with 42.
apply f_pdf0.
apply included_FPlus.
destruct y.
replace (f_crr (Build_C_inf_ab f_crr0 f_pdf0)) with
f_crr0 by auto.
apply Diffble_I_n_imp_inc with 42.
apply f_pdf0.
destruct x.
replace (f_crr (Build_C_inf_ab f_crr0 f_pdf0)) with
f_crr0 by auto.
apply Diffble_I_n_imp_inc with 42.
apply f_pdf0.
apply (Build_AbGroup C_inf_ab C_inf_ab_eq C_inf_ab_plus
C_inf_ab_mon_unit C_inf_ab_inv C_inf_ab_group H).
Qed.
(**
* If f' is the nth derivative if f, it is immediate that
* c*f' is the nth derivative of c*f.
*)
Lemma Derivative_I_n_cmul : forall (n : nat) (f f' : PartFunct IR)
(c : IR), Derivative_I_n Hab n f f' ->
Derivative_I_n Hab n (c{**}f) (c{**}f').
Proof.
intro n.
induction n.
intros.
simpl.
simpl in X.
unfold Fscalmult.
apply Feq_mult.
apply Feq_reflexive.
unfold included.
simpl.
auto.
exact X.
intros.
simpl.
destruct X.
exists (IMult (IConst c) x).
apply Derivative_I_wdr with ((Fconst c) {*} PartInt x).
apply part_int_mult.
apply part_int_const.
apply Feq_reflexive.
apply derivative_imp_inc' with f.
exact d.
apply Derivative_I_scal.
exact d.
apply Derivative_I_n_wdl with ((Fconst c) {*} PartInt x).
apply part_int_mult.
apply part_int_const.
apply Feq_reflexive.
apply derivative_imp_inc' with f.
exact d.
apply IHn.
exact d0.
Qed.
(**
* Because of the previous lemma, it is only a small step to
* the n-times differentiability of constant-multiplication.
*)
Lemma Diffble_I_n_cmul : forall (n : nat) (f : PartFunct IR)
(c : IR), Diffble_I_n Hab n f -> Diffble_I_n Hab n (c{**}f).
Proof.
intros.
assert ({f0' : CSetoid_fun (subset (Compact (less_leEq _ _ _ Hab))) IR |
Derivative_I_n Hab n f (PartInt f0')}).
apply Diffble_I_n_imp_deriv_n.
exact X.
inversion_clear X0.
apply deriv_n_imp_Diffble_I_n with (c{**}PartInt x).
apply Derivative_I_n_cmul.
exact X1.
Qed.
(**
* Define the algebra-action (terminology from NAH) as an
* operation on C_inf_ab using type class instances.
*)
Program Instance C_inf_ab_ralg_act : RalgebraAction IR C_inf_ab :=
(fun c f => Build_C_inf_ab (c {**} (f_crr f)) _).
Next Obligation.
apply Diffble_I_n_cmul.
destruct f.
replace (f_crr (Build_C_inf_ab f_crr0 f_pdf0)) with
f_crr0 by auto.
apply f_pdf0.
Defined.
(**
* Addition and multiplication on IR, as well as addition
* on C_inf_ab can be used to prove that the infinitely-
* differentiable functions on [a,b] are an R-module.
*)
Instance C_inf_ab_rmodule : @Rmodule IR (@st_eq IR)
C_inf_ab C_inf_ab_eq C_inf_ab_ralg_act IR_plus IR_mult
IR_inv IR_zero IR_one C_inf_ab_plus C_inf_ab_mon_unit
C_inf_ab_inv.
assert (forall (a b : C_inf_ab) (x : IR),
C_inf_ab_ralg_act x (C_inf_ab_plus a b) ==
C_inf_ab_plus (C_inf_ab_ralg_act x a) (C_inf_ab_ralg_act x b)).
intros.
unfold C_inf_ab_ralg_act.
unfold C_inf_ab_plus.
simpl.
red.
unfold C_inf_ab_eq.
apply insq.
simpl.
FEQ.
apply included_FMult.
unfold included; simpl.
auto.
apply included_FPlus.
destruct a0.
replace (f_crr (Build_C_inf_ab f_crr0 f_pdf0)) with
f_crr0 by auto.
apply Diffble_I_n_imp_inc with 42.
apply f_pdf0.
destruct b0.
replace (f_crr (Build_C_inf_ab f_crr0 f_pdf0)) with
f_crr0 by auto.
apply Diffble_I_n_imp_inc with 42.
apply f_pdf0.
apply included_FPlus.
apply included_FMult.
unfold included; simpl; auto.
destruct a0.
replace (f_crr (Build_C_inf_ab f_crr0 f_pdf0)) with
f_crr0 by auto.
apply Diffble_I_n_imp_inc with 42.
apply f_pdf0.
apply included_FMult.
unfold included; simpl; auto.
destruct b0.
replace (f_crr (Build_C_inf_ab f_crr0 f_pdf0)) with
f_crr0 by auto.
apply Diffble_I_n_imp_inc with 42.
apply f_pdf0.
assert (forall (a : C_inf_ab) (x y : IR),
C_inf_ab_ralg_act (x [+] y) a ==
C_inf_ab_plus (C_inf_ab_ralg_act x a)
(C_inf_ab_ralg_act y a)).
intros.
unfold C_inf_ab_ralg_act, C_inf_ab_plus.
simpl.
red.
unfold C_inf_ab_eq.
apply insq.
simpl.
FEQ.
apply included_FMult.
unfold included; simpl; auto.
destruct a0.
replace (f_crr (Build_C_inf_ab f_crr0 f_pdf0)) with
f_crr0 by auto.
apply Diffble_I_n_imp_inc with 42.
apply f_pdf0.
apply included_FPlus.
apply included_FMult.
unfold included; simpl; auto.
destruct a0.
replace (f_crr (Build_C_inf_ab f_crr0 f_pdf0)) with
f_crr0 by auto.
apply Diffble_I_n_imp_inc with 42.
apply f_pdf0.
apply included_FMult.
unfold included; simpl; auto.
destruct a0.
replace (f_crr (Build_C_inf_ab f_crr0 f_pdf0)) with
f_crr0 by auto.
apply Diffble_I_n_imp_inc with 42.
apply f_pdf0.
assert (forall (a : C_inf_ab) (x y : IR),
C_inf_ab_ralg_act (x [*] y) a ==
C_inf_ab_ralg_act x (C_inf_ab_ralg_act y a)).
intros.
unfold C_inf_ab_ralg_act; simpl.
red; unfold C_inf_ab_eq; simpl.
apply insq; FEQ.
apply included_FMult.
unfold included; simpl; auto.
destruct a0.
replace (f_crr (Build_C_inf_ab f_crr0 f_pdf0)) with
f_crr0 by auto.
apply Diffble_I_n_imp_inc with 42.
apply f_pdf0.
apply included_FMult.
unfold included; simpl; auto.
apply included_FMult.
unfold included; simpl; auto.
destruct a0.
replace (f_crr (Build_C_inf_ab f_crr0 f_pdf0)) with
f_crr0 by auto.
apply Diffble_I_n_imp_inc with 42.
apply f_pdf0.
apply (Build_Rmodule IR (@st_eq IR) C_inf_ab C_inf_ab_eq
C_inf_ab_ralg_act IR_plus IR_mult IR_inv IR_zero IR_one
C_inf_ab_plus C_inf_ab_mon_unit C_inf_ab_inv IR_ring
C_inf_ab_abgroup H H0 H1).
Qed.
(**
* The property of n-times differentiability is preserved
* under multiplication.
*)
Lemma Diffble_I_n_mult : forall (n : nat)
(f g : PartFunct IR) (Pfdf : Diffble_I_n Hab n f)
(Pgdf : Diffble_I_n Hab n g),
Diffble_I_n Hab n (Fmult f g).
Proof.
intro n.
induction n.
intros.
simpl.
apply included_conj.
simpl in Pfdf.
exact Pfdf.
simpl in Pgdf.
exact Pgdf.
intros.
simpl.
elim Pfdf.
intros.
inversion x.
elim Pgdf.
intros.
inversion x1.
assert (included (Compact (less_leEq _ _ _ Hab)) (Dom f)).
apply derivative_imp_inc with (PartInt x0).
exact X.
assert (included (Compact (less_leEq _ _ _ Hab)) (Dom g)).
apply derivative_imp_inc with (PartInt x2).
exact X0.
assert (Diffble_I Hab (f{*}g)).
apply Diffble_I_mult.
exact x.
exact x1.
exists X3.
destruct X3.
simpl.
assert (Derivative_I Hab (f{*}g)
((f{*}PartInt x2){+}(PartInt x0{*}g))).
apply Derivative_I_mult.
exact X.
exact X0.
apply Diffble_I_n_wd with (f{*}PartInt x2{+}PartInt x0{*}g).
apply Derivative_I_unique with (f{*}g).
exact X3.
exact d.
apply Diffble_I_n_plus.
apply IHn.
apply le_imp_Diffble_I with (S n).
omega.
exact Pfdf.
destruct x1.
simpl in p0.
apply Diffble_I_n_wd with (PartInt x1).
apply Derivative_I_unique with g.
exact d0.
exact X0.
exact p0.
apply IHn.
destruct x.
simpl in p.
apply Diffble_I_n_wd with (PartInt x).
apply Derivative_I_unique with f.
exact d0.
exact X.
exact p.
apply le_imp_Diffble_I with (S n).
omega.
exact Pgdf.
Qed.
(**
* Using the previous lemma, we can come up with a
* straightforward (but lengthy) proof about the
* n-times differentiability of functional division.
*)
Lemma Diffble_I_n_div : forall (n : nat)
(f g : PartFunct IR) (Pfdf : Diffble_I_n Hab n f)
(Pgdf : Diffble_I_n Hab n g)
(Pbnd : bnd_away_zero (Compact (less_leEq _ _ _ Hab)) g),
Diffble_I_n Hab n (Fdiv f g).
Proof.
intro n.
induction n.
intros f0 g Hf0 Hg Hbnd.
simpl.
unfold included.
intros.
red.
split.
simpl in Hf0.
unfold included in Hf0.
apply Hf0.
exact H.
red.
split.
simpl in Hg.
unfold included in Hg.
apply Hg.
exact H.
intros.
elim Hbnd.
intros.
elim b0.
intros.
apply AbsIR_cancel_ap_zero.
apply pos_ap_zero.
apply less_leEq_trans with x0.
exact p.
apply q.
exact H.
intros.
simpl.
simpl in Pfdf.
inversion Pfdf.
inversion x.
simpl in Pgdf.
inversion Pgdf.
inversion x1.
assert (Derivative_I Hab (f{/}g)
(((PartInt x0){*}g{-}f{*}(PartInt x2)){/}
(g{*}g))).
apply Derivative_I_div.
exact X0.
exact X2.
exact Pbnd.
assert (Diffble_I Hab (f{/}g)).
apply deriv_imp_Diffble_I with
((PartInt x0{*}g{-}f{*}PartInt x2){/}g{*}g).
exact X3.
exists X4.
destruct X4.
simpl.
apply Diffble_I_n_wd with
((PartInt x0{*}g{-}f{*}PartInt x2){/}g{*}g).
apply Derivative_I_unique with (f{/}g).
exact X3.
exact d.
apply IHn.
apply Diffble_I_n_minus.
apply Diffble_I_n_mult.
replace n with (pred (S n)) by omega.
apply Diffble_I_imp_le with f.
omega.
simpl.
exists x.
exact X.
exact X0.
apply le_imp_Diffble_I with (S n).
omega.
simpl.
exact Pgdf.
apply Diffble_I_n_mult.
apply le_imp_Diffble_I with (S n).
omega.
simpl.
exact Pfdf.
replace n with (pred (S n)) by omega.
apply Diffble_I_imp_le with g.
omega.
simpl.
exact Pgdf.
exact X2.
apply Diffble_I_n_mult.
apply le_imp_Diffble_I with (S n).
omega.
simpl.
exact Pgdf.
apply le_imp_Diffble_I with (S n).
omega.
simpl.
exact Pgdf.
unfold bnd_away_zero.
split.
apply included_FMult.
apply Diffble_I_n_imp_inc with (S n).
simpl.
exact Pgdf.
apply Diffble_I_n_imp_inc with (S n).
simpl.
exact Pgdf.
unfold bnd_away_zero in Pbnd.
inversion Pbnd.
inversion X5.
exists (x4[*]x4).
apply mult_resp_pos.
exact X6.
exact X6.
intros.
rewrite AbsIR_resp_mult.
apply mult_resp_leEq_both.
algebra.
algebra.
apply H.
exact H0.
apply H.
exact H0.
Qed.
(**
* We are now able to create a type class instance of
* multiplication on C_inf_ab as a semi-group operation.
*)
Program Instance C_inf_ab_mult : SemiGroupOp C_inf_ab :=
(fun f g => Build_C_inf_ab
(@Fmult IR (f_crr f) (f_crr g)) _ ).
Next Obligation.
apply Diffble_I_n_mult.
destruct f.
replace (f_crr (Build_C_inf_ab f_crr0 f_pdf0))
with f_crr0 by auto.
apply f_pdf0.
destruct g.
replace (f_crr (Build_C_inf_ab f_crr0 f_pdf0))
with f_crr0 by auto.
apply f_pdf0.
Qed.
(**
* Multiplication on C_inf_ab is associative.
*)
Instance C_inf_ab_associative_mult : @Associative C_inf_ab
(C_inf_ab_eq) C_inf_ab_mult.
unfold Associative.
intros.
unfold C_inf_ab_mult; simpl.
red; unfold C_inf_ab_eq.
apply insq; simpl.
FEQ.
apply included_FMult.
destruct x.
replace (f_crr (Build_C_inf_ab f_crr0 f_pdf0))
with f_crr0 by auto.
apply Diffble_I_n_imp_inc with 42.
apply f_pdf0.
apply included_FMult.
destruct y.
replace (f_crr (Build_C_inf_ab f_crr0 f_pdf0))
with f_crr0 by auto.
apply Diffble_I_n_imp_inc with 42.
apply f_pdf0.
destruct z.
replace (f_crr (Build_C_inf_ab f_crr0 f_pdf0))
with f_crr0 by auto.
apply Diffble_I_n_imp_inc with 42.
apply f_pdf0.
apply included_FMult.
apply included_FMult.
destruct x.
replace (f_crr (Build_C_inf_ab f_crr0 f_pdf0))
with f_crr0 by auto.
apply Diffble_I_n_imp_inc with 42.
apply f_pdf0.
destruct y.
replace (f_crr (Build_C_inf_ab f_crr0 f_pdf0))
with f_crr0 by auto.
apply Diffble_I_n_imp_inc with 42.
apply f_pdf0.
destruct z.
replace (f_crr (Build_C_inf_ab f_crr0 f_pdf0))
with f_crr0 by auto.
apply Diffble_I_n_imp_inc with 42.
apply f_pdf0.
Qed.
(**
* Multiplication on C_inf_ab is a morphism with respect
* to the equality we previously defined.
*)
Instance C_inf_ab_proper_mult : Proper (C_inf_ab_eq ==>
C_inf_ab_eq ==> C_inf_ab_eq) C_inf_ab_mult.
unfold Proper.
unfold respectful.
intros.
unfold C_inf_ab_eq, C_inf_ab_mult.
apply insq; simpl.
apply Feq_mult.
apply unsq; inversion H.
apply insq.
exact X.
apply unsq; inversion H0.
apply insq.
exact X.
Qed.
(**
* The type class instance of C_inf_ab as a semigroup
* under multiplication.
*)
Instance C_inf_ab_semigroup_mult : @SemiGroup C_inf_ab
C_inf_ab_eq C_inf_ab_mult.
(**
* The constant function one is a neutral element in the
* multiplication of C_inf_ab.
*)
Instance C_inf_ab_mon_unit_mult : @MonoidUnit C_inf_ab :=
(Build_C_inf_ab (Fconst One) _).
intros.
apply Diffble_I_n_const.
Defined.
(**
* C_inf_ab is a monoid under multiplication with
* the constant function one as unit element.
*)
Instance C_inf_ab_monoid_mult : @Monoid C_inf_ab
C_inf_ab_eq C_inf_ab_mult C_inf_ab_mon_unit_mult.
assert (forall x, C_inf_ab_mult C_inf_ab_mon_unit_mult
x == x).
intros.
unfold C_inf_ab_mon_unit_mult.
red.
unfold C_inf_ab_eq.
apply insq.
unfold C_inf_ab_mult.
simpl.
FEQ.
apply included_FMult.
simpl.
unfold included.
auto.
destruct x.
replace (f_crr (Build_C_inf_ab f_crr0 f_pdf0))
with f_crr0 by auto.
apply Diffble_I_n_imp_inc with 42.
apply f_pdf0.
destruct x.
replace (f_crr (Build_C_inf_ab f_crr0 f_pdf0))
with f_crr0 by auto.
apply Diffble_I_n_imp_inc with 42.
apply f_pdf0.
assert (forall x,
C_inf_ab_mult x C_inf_ab_mon_unit_mult == x).
intros.
unfold C_inf_ab_mon_unit_mult.
red.
unfold C_inf_ab_eq.
apply insq.
unfold C_inf_ab_mult.
simpl.
FEQ.
apply included_FMult.
destruct x.
replace (f_crr (Build_C_inf_ab f_crr0 f_pdf0))
with f_crr0 by auto.
apply Diffble_I_n_imp_inc with 42.
apply f_pdf0.
simpl.
unfold included.
auto.
destruct x.
replace (f_crr (Build_C_inf_ab f_crr0 f_pdf0))
with f_crr0 by auto.
apply Diffble_I_n_imp_inc with 42.
apply f_pdf0.
apply (Build_Monoid C_inf_ab C_inf_ab_eq
C_inf_ab_mult C_inf_ab_mon_unit_mult
C_inf_ab_semigroup_mult H H0).
Qed.
(**
* C_inf_ab is a ring with respect to its addition and
* multiplication operators.
*)
Instance C_inf_ab_ring : @Ring C_inf_ab C_inf_ab_eq
C_inf_ab_plus C_inf_ab_mult C_inf_ab_inv
C_inf_ab_mon_unit C_inf_ab_mon_unit_mult.
assert (Commutative C_inf_ab_mult).
unfold Commutative.
intros; red.
unfold C_inf_ab_mult, C_inf_ab_eq.
apply insq; simpl.
FEQ.
apply included_FMult.
destruct x.
replace (f_crr (Build_C_inf_ab f_crr0 f_pdf0))
with f_crr0 by auto.
apply Diffble_I_n_imp_inc with 42.
apply f_pdf0.
destruct y.
replace (f_crr (Build_C_inf_ab f_crr0 f_pdf0))
with f_crr0 by auto.
apply Diffble_I_n_imp_inc with 42.
apply f_pdf0.
apply included_FMult.
destruct y.
replace (f_crr (Build_C_inf_ab f_crr0 f_pdf0))
with f_crr0 by auto.
apply Diffble_I_n_imp_inc with 42.
apply f_pdf0.
destruct x.
replace (f_crr (Build_C_inf_ab f_crr0 f_pdf0))
with f_crr0 by auto.
apply Diffble_I_n_imp_inc with 42.
apply f_pdf0.
assert (Distribute C_inf_ab_mult C_inf_ab_plus).
assert (forall a b c, C_inf_ab_mult a (C_inf_ab_plus b c) ==
C_inf_ab_plus (C_inf_ab_mult a b) (C_inf_ab_mult a c)).
intros.
unfold C_inf_ab_mult, C_inf_ab_plus; red; simpl.
unfold C_inf_ab_eq; simpl; apply insq; FEQ.
apply included_FMult.
destruct a0.
replace (f_crr (Build_C_inf_ab f_crr0 f_pdf0))
with f_crr0 by auto.
apply Diffble_I_n_imp_inc with 42.
apply f_pdf0.
apply included_FPlus.
destruct b0.
replace (f_crr (Build_C_inf_ab f_crr0 f_pdf0))
with f_crr0 by auto.
apply Diffble_I_n_imp_inc with 42.
apply f_pdf0.
destruct c.
replace (f_crr (Build_C_inf_ab f_crr0 f_pdf0))
with f_crr0 by auto.
apply Diffble_I_n_imp_inc with 42.
apply f_pdf0.
apply included_FPlus.
apply included_FMult.
destruct a0.
replace (f_crr (Build_C_inf_ab f_crr0 f_pdf0))
with f_crr0 by auto.
apply Diffble_I_n_imp_inc with 42.
apply f_pdf0.
destruct b0.
replace (f_crr (Build_C_inf_ab f_crr0 f_pdf0))
with f_crr0 by auto.
apply Diffble_I_n_imp_inc with 42.
apply f_pdf0.
apply included_FMult.
destruct a0.
replace (f_crr (Build_C_inf_ab f_crr0 f_pdf0))
with f_crr0 by auto.
apply Diffble_I_n_imp_inc with 42.
apply f_pdf0.
destruct c.
replace (f_crr (Build_C_inf_ab f_crr0 f_pdf0))
with f_crr0 by auto.
apply Diffble_I_n_imp_inc with 42.
apply f_pdf0.
assert (forall a b c, C_inf_ab_mult (C_inf_ab_plus a b) c ==
C_inf_ab_plus (C_inf_ab_mult a c) (C_inf_ab_mult b c)).
intros.
unfold C_inf_ab_mult, C_inf_ab_plus; simpl; red.
unfold C_inf_ab_eq; simpl; apply insq; FEQ.
apply included_FMult.
apply included_FPlus.
destruct a0.
replace (f_crr (Build_C_inf_ab f_crr0 f_pdf0))
with f_crr0 by auto.
apply Diffble_I_n_imp_inc with 42.
apply f_pdf0.
destruct b0.
replace (f_crr (Build_C_inf_ab f_crr0 f_pdf0))
with f_crr0 by auto.
apply Diffble_I_n_imp_inc with 42.
apply f_pdf0.
destruct c.
replace (f_crr (Build_C_inf_ab f_crr0 f_pdf0))
with f_crr0 by auto.
apply Diffble_I_n_imp_inc with 42.
apply f_pdf0.
apply included_FPlus.
apply included_FMult.
destruct a0.
replace (f_crr (Build_C_inf_ab f_crr0 f_pdf0))
with f_crr0 by auto.
apply Diffble_I_n_imp_inc with 42.
apply f_pdf0.
destruct c.
replace (f_crr (Build_C_inf_ab f_crr0 f_pdf0))
with f_crr0 by auto.
apply Diffble_I_n_imp_inc with 42.
apply f_pdf0.
apply included_FMult.
destruct b0.
replace (f_crr (Build_C_inf_ab f_crr0 f_pdf0))
with f_crr0 by auto.
apply Diffble_I_n_imp_inc with 42.
apply f_pdf0.
destruct c.
replace (f_crr (Build_C_inf_ab f_crr0 f_pdf0))
with f_crr0 by auto.
apply Diffble_I_n_imp_inc with 42.
apply f_pdf0.
apply (Build_Distribute C_inf_ab C_inf_ab_eq
C_inf_ab_mult C_inf_ab_plus H0 H1).
apply (Build_Ring C_inf_ab C_inf_ab_eq C_inf_ab_plus
C_inf_ab_mult C_inf_ab_inv C_inf_ab_mon_unit C_inf_ab_mon_unit_mult
C_inf_ab_abgroup C_inf_ab_monoid_mult H H0).
Qed.
(**
* Together with the operations in IR, we may use the
* addition and multiplication in C_inf_ab to define
* and R-algebra for the infinitely-differentiable functions.
*)
Instance C_inf_ab_ralgebra : @Ralgebra IR (@st_eq IR)
C_inf_ab C_inf_ab_eq C_inf_ab_ralg_act IR_plus IR_mult
IR_inv IR_zero IR_one C_inf_ab_plus C_inf_ab_mult
C_inf_ab_mon_unit C_inf_ab_mon_unit_mult C_inf_ab_inv.
assert (forall (a b : C_inf_ab) (x : IR),
C_inf_ab_ralg_act x (C_inf_ab_mult a b) ==
C_inf_ab_mult (C_inf_ab_ralg_act x a) b).
intros.
unfold C_inf_ab_ralg_act, C_inf_ab_mult; red.
unfold C_inf_ab_eq; simpl.
apply insq; FEQ.
apply included_FMult.
unfold included; simpl; auto.
apply included_FMult.
destruct a0.
replace (f_crr (Build_C_inf_ab f_crr0 f_pdf0))
with f_crr0 by auto.
apply Diffble_I_n_imp_inc with 42.
apply f_pdf0.
destruct b0.
replace (f_crr (Build_C_inf_ab f_crr0 f_pdf0))
with f_crr0 by auto.
apply Diffble_I_n_imp_inc with 42.
apply f_pdf0.
apply included_FMult.
apply included_FMult.
unfold included; simpl; auto.
destruct a0.
replace (f_crr (Build_C_inf_ab f_crr0 f_pdf0))
with f_crr0 by auto.
apply Diffble_I_n_imp_inc with 42.
apply f_pdf0.
destruct b0.
replace (f_crr (Build_C_inf_ab f_crr0 f_pdf0))
with f_crr0 by auto.
apply Diffble_I_n_imp_inc with 42.
apply f_pdf0.
apply (Build_Ralgebra IR (@st_eq IR) C_inf_ab C_inf_ab_eq
C_inf_ab_ralg_act IR_plus IR_mult IR_inv IR_zero IR_one
C_inf_ab_plus C_inf_ab_mult C_inf_ab_mon_unit C_inf_ab_mon_unit_mult
C_inf_ab_inv C_inf_ab_rmodule C_inf_ab_ring H).
Qed.
(**
* This is the definition of the abstract property of
* derivation on an R-algebra.
*)
Definition is_derivation `(Ralgebra Scalar Elem)
(D : Elem -> Elem) : Prop.
repeat intro.
exact (
(forall (a b : Elem), e' (elem_plus (D a) (D b)) (D (elem_plus a b))) and
(forall (a : Elem) (c : Scalar), e' (H c (D a)) (D (H c a))) and
(forall (a b : Elem), e' (D (elem_mult a b))
(elem_plus (elem_mult a (D b)) (elem_mult (D a) b)))).
Defined.
(**
* Define the derivative of a function in C_inf_ab as a
* directly-callable operation. That is, the result of
* the expression is the required derivative.
*)
Definition deriv_I_C_inf (f : C_inf_ab) : C_inf_ab.
intro.
destruct f.
assert (Diffble_I_n Hab 1 f_crr0).
apply f_pdf0.
set (n_deriv_I a b Hab 1 f_crr0 X).
assert (forall n, Diffble_I_n Hab n p).
intro n.
replace n with (pred (S n)) by omega.
apply Diffble_I_imp_le with f_crr0.
omega.
apply f_pdf0.
assert (Diffble_I_n Hab 0 f_crr0).
simpl.
apply Diffble_I_n_imp_inc with 42.
apply f_pdf0.
apply Derivative_I_wdl with (n_deriv_I a b Hab 0 f_crr0 X0).
simpl.
apply Feq_symmetric.
apply FRestr_wd.
apply n_Sn_deriv.
exact (Build_C_inf_ab p X0).
Defined.
(**
* This corresponds to proposition 25 in the PDF as sent to
* me on january 11th. We prove that the derivation operator
* deriv_I_C_inf on C_inf_ab is a derivation with respect
* to the R_algebra we defined on C_inf_ab.
*
* TODO: This proof can be made shorter
*)
Lemma lem18 : is_derivation C_inf_ab_ralgebra deriv_I_C_inf.
Proof.
unfold is_derivation.
split.
intros.
unfold C_inf_ab_eq.
apply insq.
unfold C_inf_ab_plus.
destruct a0.
destruct b0.
assert (forall x y, f_crr
(Build_C_inf_ab x y) = x).
intros.
auto.
rewrite H.
assert (f_crr (deriv_I_C_inf (Build_C_inf_ab f_crr0 f_pdf0)) =
n_deriv_I a b Hab 1 f_crr0 (f_pdf0 1)).
auto.
rewrite H0.
assert (f_crr (deriv_I_C_inf (Build_C_inf_ab f_crr1 f_pdf1)) =
n_deriv_I a b Hab 1 f_crr1 (f_pdf1 1)).
auto.
rewrite H1.
assert (f_crr
(deriv_I_C_inf
(Build_C_inf_ab
(f_crr (Build_C_inf_ab f_crr0 f_pdf0){+}
f_crr (Build_C_inf_ab f_crr1 f_pdf1))
(C_inf_ab_plus_obligation_1
(Build_C_inf_ab f_crr0 f_pdf0)
(Build_C_inf_ab f_crr1 f_pdf1)))) =
n_deriv_I a b Hab 1
(f_crr0{+}f_crr1)
(C_inf_ab_plus_obligation_1
(Build_C_inf_ab f_crr0 f_pdf0)
(Build_C_inf_ab f_crr1 f_pdf1) 1)).
auto.
rewrite H2.
clear H H0 H1 H2.
apply Feq_transitive with
(n_deriv_I a b Hab 1 (f_crr0{+}f_crr1)
(Diffble_I_n_plus 1 f_crr0 f_crr1
(f_pdf0 1) (f_pdf1 1))).
assert ({f_crr0' : CSetoid_fun (subset (Compact (less_leEq _ _ _ Hab))) IR |
Derivative_I_n Hab 1 f_crr0 (PartInt f_crr0')}).
apply Diffble_I_n_imp_deriv_n.
apply f_pdf0.
inversion_clear X.
assert (Derivative_I_n Hab 1 f_crr0
(n_deriv_I a b Hab 1 f_crr0 (f_pdf0 1))).
apply n_deriv_lemma.
assert (Feq (Compact (less_leEq IR a b Hab))
(PartInt x) (n_deriv_I a b Hab 1 f_crr0 (f_pdf0 1))).
apply (Derivative_I_n_unique a b Hab 1 f_crr0).
exact X0.
exact X.
assert ({f_crr1' : CSetoid_fun (subset (Compact (less_leEq _ _ _ Hab))) IR |
Derivative_I_n Hab 1 f_crr1 (PartInt f_crr1')}).
apply Diffble_I_n_imp_deriv_n.
apply f_pdf1.
inversion_clear X2.
assert (Derivative_I_n Hab 1 f_crr1
(n_deriv_I a b Hab 1 f_crr1 (f_pdf1 1))).
apply n_deriv_lemma.
assert (Feq (Compact (less_leEq IR a b Hab))
(PartInt x0) (n_deriv_I a b Hab 1 f_crr1 (f_pdf1 1))).
apply (Derivative_I_n_unique a b Hab 1 f_crr1).
exact X3.
exact X2.
assert (Feq (Compact (less_leEq IR a b Hab))
(PartInt x{+}PartInt x0)
((n_deriv_I a b Hab 1 f_crr0 (f_pdf0 1)){+}
(n_deriv_I a b Hab 1 f_crr1 (f_pdf1 1)))).
apply Feq_plus.
exact X1.
exact X4.
apply Feq_transitive with (PartInt x{+}PartInt x0).
apply Feq_plus.
apply Feq_symmetric; exact X1.
apply Feq_symmetric; exact X4.
assert (Derivative_I_n Hab 1 (f_crr0{+}f_crr1)
(PartInt x{+}PartInt x0)).
apply Derivative_I_n_add.
exact X0.
exact X3.
assert (Derivative_I_n Hab 1 (f_crr0{+}f_crr1)
((n_deriv_I a b Hab 1 (f_crr0{+}f_crr1)
(Diffble_I_n_plus 1 f_crr0 f_crr1 (f_pdf0 1) (f_pdf1 1))))).
apply n_deriv_lemma.
apply (Derivative_I_n_unique a b Hab 1
(f_crr0{+}f_crr1)).
exact X6.
exact X7.
apply n_deriv_I_wd.
apply Feq_plus.
apply Feq_reflexive.
apply Diffble_I_n_imp_inc with 42.
apply f_pdf0.
apply Feq_reflexive.
apply Diffble_I_n_imp_inc with 42.
apply f_pdf1.
split.
intros.
unfold C_inf_ab_eq.
apply insq.
unfold C_inf_ab_ralg_act.
assert (forall x y,
f_crr (Build_C_inf_ab x y) = x) by auto.
rewrite H.
destruct a0.
assert (f_crr (deriv_I_C_inf
(Build_C_inf_ab f_crr0 f_pdf0)) =
n_deriv_I a b Hab 1 f_crr0 (f_pdf0 1)).
auto.
rewrite H0.
assert (
f_crr
(deriv_I_C_inf
(Build_C_inf_ab (c{**}f_crr (Build_C_inf_ab f_crr0 f_pdf0))
(C_inf_ab_ralg_act_obligation_1 c
(Build_C_inf_ab f_crr0 f_pdf0)))) =
n_deriv_I a b Hab 1 (c{**}f_crr0)
(C_inf_ab_ralg_act_obligation_1 c
(Build_C_inf_ab f_crr0 f_pdf0) 1)).
auto.
rewrite H1.
clear H H0 H1.
apply Feq_transitive with
(n_deriv_I a b Hab 1 (c{**}f_crr0)
(Diffble_I_n_cmul 1 f_crr0 c (f_pdf0 1))).
assert ({f_crr0' : CSetoid_fun (subset (Compact (less_leEq _ _ _ Hab))) IR |
Derivative_I_n Hab 1 f_crr0 (PartInt f_crr0')}).
apply Diffble_I_n_imp_deriv_n.
apply f_pdf0.
inversion_clear X.
assert (Derivative_I_n Hab 1 f_crr0
(n_deriv_I a b Hab 1 f_crr0 (f_pdf0 1))).
apply n_deriv_lemma.
assert (Feq (Compact (less_leEq IR a b Hab))
(PartInt x) (n_deriv_I a b Hab 1 f_crr0 (f_pdf0 1))).
apply (Derivative_I_n_unique a b Hab 1 f_crr0).
exact X0.
exact X.
assert (Derivative_I_n Hab 1 (c{**}f_crr0)
(c{**}PartInt x)).
apply Derivative_I_n_cmul.
exact X0.
assert (Derivative_I_n Hab 1 (c{**}f_crr0)
((n_deriv_I a b Hab 1 (c{**}f_crr0)
(Diffble_I_n_cmul 1 f_crr0 c (f_pdf0 1))))).
apply n_deriv_lemma.
apply Feq_transitive with (c{**}PartInt x).
unfold Fscalmult.
apply Feq_mult.
apply Feq_reflexive.
unfold included; simpl; auto.
apply Feq_symmetric.
exact X1.
assert (Derivative_I_n Hab 1 (c{**}f_crr0)
(c{**}(n_deriv_I a b Hab 1 f_crr0 (f_pdf0 1)))).
apply Derivative_I_n_cmul.
apply n_deriv_lemma.
assert (Derivative_I_n Hab 1 (c{**}f_crr0)
(c{**}PartInt x)).
apply Derivative_I_n_cmul.
exact X0.
apply Feq_transitive with
(c{**}n_deriv_I a b Hab 1 f_crr0 (f_pdf0 1)).
unfold Fscalmult.
apply Feq_mult.
apply Feq_reflexive.
unfold included; simpl; auto.
exact X1.
apply Feq_transitive with (c{**}PartInt x).
apply (Derivative_I_n_unique a b Hab 1
(c{**}f_crr0)).
exact X4.
exact X2.
apply Feq_transitive with
(c{**}n_deriv_I a b Hab 1 f_crr0 (f_pdf0 1)).
unfold Fscalmult.
apply Feq_mult.
apply Feq_reflexive.
unfold included; simpl; auto.
exact X1.
apply (Derivative_I_n_unique a b Hab 1
(c{**}f_crr0)).
exact X4.
exact X3.
apply n_deriv_I_wd.
unfold Fscalmult.
apply Feq_mult.
apply Feq_reflexive.
unfold included; simpl; auto.
apply Feq_reflexive.
apply Diffble_I_n_imp_inc with 42.
apply f_pdf0.
intros.
unfold C_inf_ab_eq.
apply insq.
destruct a0.
destruct b0.
unfold C_inf_ab_mult, C_inf_ab_plus.
set (f_crr (Build_C_inf_ab f_crr0 f_pdf0)).
set (f_crr (Build_C_inf_ab f_crr1 f_pdf1)).
set (deriv_I_C_inf (Build_C_inf_ab f_crr0 f_pdf0)).
set (deriv_I_C_inf (Build_C_inf_ab f_crr1 f_pdf1)).
set (Build_C_inf_ab f_crr0 f_pdf0).
set (Build_C_inf_ab f_crr1 f_pdf1).
replace
(f_crr
(deriv_I_C_inf
(Build_C_inf_ab (p{*}p0)
(C_inf_ab_mult_obligation_1 c1 c2))))
with
(n_deriv_I a b Hab 1 (p{*}p0)
(C_inf_ab_mult_obligation_1 c1 c2 1)) by auto.
replace
(f_crr
(Build_C_inf_ab
(f_crr
(Build_C_inf_ab (p{*}f_crr c0)
(C_inf_ab_mult_obligation_1 c1 c0)){+}
f_crr
(Build_C_inf_ab (f_crr c{*}p0)
(C_inf_ab_mult_obligation_1 c c2)))
(C_inf_ab_plus_obligation_1
(Build_C_inf_ab (p{*}f_crr c0)
(C_inf_ab_mult_obligation_1 c1 c0))
(Build_C_inf_ab (f_crr c{*}p0)
(C_inf_ab_mult_obligation_1 c c2)))))
with
(f_crr
(Build_C_inf_ab (p{*}f_crr c0)
(C_inf_ab_mult_obligation_1 c1 c0)){+}
f_crr
(Build_C_inf_ab (f_crr c{*}p0)
(C_inf_ab_mult_obligation_1 c c2))) by auto.
replace (f_crr ((Build_C_inf_ab
(f_crr c{*}p0)
(C_inf_ab_mult_obligation_1 c c2))))
with
(f_crr c{*}p0) by auto.
replace (f_crr (Build_C_inf_ab
(p{*}f_crr c0)
(C_inf_ab_mult_obligation_1 c1 c0)))
with
(p{*}f_crr c0) by auto.
assert (Derivative_I_n Hab 1 (p{*}p0)
(n_deriv_I a b Hab 1 (p{*}p0)
(C_inf_ab_mult_obligation_1 c1 c2 1))).
apply n_deriv_lemma.
assert ({f_crr0' : CSetoid_fun (subset (Compact (less_leEq _ _ _ Hab))) IR |
Derivative_I_n Hab 1 f_crr0 (PartInt f_crr0')}).
apply Diffble_I_n_imp_deriv_n.
apply f_pdf0.
inversion_clear X0.
assert ({f_crr1' : CSetoid_fun (subset (Compact (less_leEq _ _ _ Hab))) IR |
Derivative_I_n Hab 1 f_crr1 (PartInt f_crr1')}).
apply Diffble_I_n_imp_deriv_n.
apply f_pdf1.
inversion_clear X0.
assert (Derivative_I_n Hab 1 (p{*}p0)
(f_crr0{*}PartInt x0{+}PartInt x{*}f_crr1)).
simpl.
assert (included (Compact (less_leEq _ _ _ Hab)) (Dom
(f_crr0{*}PartInt x0{+}PartInt x{*}f_crr1))).
apply included_FPlus.
apply included_FMult.
apply (Derivative_I_n_imp_inc a b Hab 1 f_crr0
(PartInt x)).
exact X1.
apply (Derivative_I_n_imp_inc' a b Hab 1
f_crr1 (PartInt x0)).
exact X2.
apply included_FMult.
apply (Derivative_I_n_imp_inc' a b Hab 1
f_crr0 (PartInt x)).
exact X1.
apply (Derivative_I_n_imp_inc a b Hab 1 f_crr1
(PartInt x0)).
exact X2.
exists (@IntPartIR
(f_crr0{*}PartInt x0{+}PartInt x{*}f_crr1)
a b (less_leEq _ _ _ Hab) X0).
apply Derivative_I_wdr with
(f_crr0{*}PartInt x0{+}PartInt x{*}f_crr1).
apply int_part_int.
replace p with f_crr0 by auto.
replace p0 with f_crr1 by auto.
apply Derivative_I_mult.
simpl in X1.
inversion_clear X1.
apply Derivative_I_wdr with (PartInt x1).
exact X4.
exact X3.
simpl in X2.
inversion_clear X2.
apply Derivative_I_wdr with (PartInt x1).
exact X4.
exact X3.
apply Feq_symmetric.
apply int_part_int.
apply Feq_transitive with
(p{*}f_crr c0{+}f_crr c{*}p0).
apply (Derivative_I_n_unique a b Hab 1 (p{*}p0)).
exact X.
replace p with f_crr0 by auto.
replace p0 with f_crr1 by auto.
replace (f_crr c0) with
(n_deriv_I a b Hab 1 f_crr1 (f_pdf1 1)) by auto.
replace (f_crr c) with
(n_deriv_I a b Hab 1 f_crr0 (f_pdf0 1)) by auto.
replace p with f_crr0 in X0 by auto.
replace p0 with f_crr1 in X0 by auto.
apply Derivative_I_n_wdr with
(f_crr0{*}PartInt x0{+}PartInt x{*}f_crr1).
apply Feq_plus.
apply Feq_mult.
apply Feq_reflexive.
apply (Derivative_I_n_imp_inc a b Hab 1 f_crr0
(PartInt x)).
exact X1.
assert (Derivative_I_n Hab 1 f_crr1
(n_deriv_I a b Hab 1 f_crr1 (f_pdf1 1))).
apply n_deriv_lemma.
apply (Derivative_I_n_unique a b Hab 1 f_crr1).
exact X2.
apply n_deriv_lemma.
apply Feq_mult.
apply (Derivative_I_n_unique a b Hab 1 f_crr0).
exact X1.
apply n_deriv_lemma.
apply Feq_reflexive.
apply (Derivative_I_n_imp_inc a b Hab 1 f_crr1
(PartInt x0)).
exact X2.
exact X0.
apply Feq_reflexive.
apply included_FPlus.
apply included_FMult.
replace p with f_crr0 by auto.
apply (Derivative_I_n_imp_inc a b Hab 1 f_crr0
(PartInt x)).
exact X1.
replace (f_crr c0) with
(n_deriv_I a b Hab 1 f_crr1 (f_pdf1 1)) by auto.
apply n_deriv_inc.
apply included_FMult.
replace (f_crr c) with
(n_deriv_I a b Hab 1 f_crr0 (f_pdf0 1)) by auto.
apply n_deriv_inc.
replace p0 with f_crr1 by auto.
apply (Derivative_I_n_imp_inc a b Hab 1 f_crr1
(PartInt x0)).
exact X2.
Qed.
End Derivations.
(**
* This section contains lemmas and definitions about the
* function L. Note that the order in which things appear
* in the proof differs from the order in the paper because
* the proof is still based on a previous version of the
* paper.
*)
Section Lfunct.
Variables a b c d : IR.
Hypothesis Hab : a [<] b.
Hypothesis Hcd : c [<] d.
Hypothesis Hac : a [<=] c.
Hypothesis Hdb : d [<=] b.
(**
* TODO: This lemma is unneccesary.
*)
Lemma ab_diff : b [-] a [#] Zero.
Proof.
apply minus_ap_zero.
apply Greater_imp_ap.
exact Hab.
Qed.
(**
* We don't define L_inner as a direct lambda-expression
* but instead as a composition of functions because this
* enhances the usage of this definition in the proof.
*)
Definition L_inner :=
Fplus (Fconst c)
(Fmult (Fminus (Fconst d) (Fconst c))
(Fdiv (Fminus (Fid IR) (Fconst a))
(Fminus (Fconst b) (Fconst a)))).
Definition L_func (f : C_inf_ab c d Hcd) :=
Fcomp (f_crr c d Hcd f) L_inner.
(**
* Prove that the function L is n-times differentiable for
* each n. This effectively proves that the function L
* belongs to the class C_inf_ab.
*)
Lemma L_diffble : forall (n : nat) (f : C_inf_ab c d Hcd),
Diffble_I_n Hab n (L_func f).
Proof.
intro n.
induction n.
intro f0.
unfold L_func.
simpl.
unfold included.
intros.
assert (Conj (fun _ : IR => True) (Conj (Conj (fun _ : IR => True)
(fun _ : IR => True)) (Conj (Conj (fun _ : IR => True)
(fun _ : IR => True)) (extend (Conj (fun _ : IR => True)
(fun _ : IR => True)) (fun (x0 : IR) (_ : Conj (fun _ : IR => True)
(fun _ : IR => True) x0) => b[-]a[#]Zero)))) x).
unfold extend.
red.
split.
auto.
red.
split.
red.
auto.
red.
split.
red.
auto.
split.
red.
auto.
intro.
apply ab_diff.
exists X.
destruct f0.
replace (f_crr c d Hcd (Build_C_inf_ab c d Hcd f_crr0 f_pdf0))
with f_crr0 by auto.
destruct f_crr0.
simpl.
assert (included (Compact (less_leEq _ _ _ Hcd)) pfdom).
assert (Diffble_I_n Hcd 0
(Build_PartFunct IR pfdom dom_wd pfpfun pfstrx)).
apply f_pdf0.
simpl in X0.
exact X0.
unfold included in X0.
apply X0.
red.
split.
red in H.
rewrite <- cm_rht_unit_unfolded at 1.
apply plus_resp_leEq_lft.
rewrite <- (cring_mult_zero_op IR Zero).
apply mult_resp_leEq_both.
apply leEq_reflexive.
apply leEq_reflexive.
apply shift_leEq_lft.
algebra.
apply shift_leEq_div.
apply shift_zero_less_minus.
exact Hab.
rewrite cring_mult_zero_op.
apply shift_leEq_lft.
inversion H.
exact H0.
apply shift_plus_leEq'.
rewrite <- (mult_one IR (d[-]c)) at 2.
apply mult_resp_leEq_both.
apply shift_leEq_lft.
algebra.
apply shift_leEq_div.
apply shift_zero_less_minus.
exact Hab.
rewrite cring_mult_zero_op.
red in H.
inversion H.
apply shift_leEq_lft.
exact H0.
apply leEq_reflexive.
apply shift_div_leEq.
apply shift_zero_less_minus.
exact Hab.
rewrite mult_commutes.
rewrite mult_one.
apply minus_resp_leEq_both.
red in H.
inversion H.
exact H1.
apply leEq_reflexive.
intro f0.
simpl.
assert (Derivative_I Hab L_inner
(
([-C-] Zero) {+}
(
([-C-] d {-} [-C-] c) {*}
(
Fdiv
((([-C-] One) {*} ([-C-] b {-} [-C-] a)) {-}
((Fid IR {-} [-C-] a) {*} ([-C-] Zero)))
(([-C-] b {-} [-C-] a) {*} ([-C-] b {-} [-C-] a))
)
{+}
([-C-] Zero) {*}
(
Fdiv (Fid IR {-} [-C-] a)
([-C-] b {-} [-C-] a)
)
)
)).
unfold L_inner.
apply Derivative_I_plus.
apply Derivative_I_const.
apply Derivative_I_mult.
apply Derivative_I_wdr with ([-C-]Zero{-}[-C-]Zero).
FEQ.
apply Derivative_I_minus.
apply Derivative_I_const.
apply Derivative_I_const.
apply Derivative_I_div.
apply Derivative_I_wdr with ([-C-]One{-}[-C-]Zero).
FEQ.
apply Derivative_I_minus.
apply Derivative_I_id.
apply Derivative_I_const.
apply Derivative_I_wdr with ([-C-]Zero{-}[-C-]Zero).
FEQ.
apply Derivative_I_minus.
apply Derivative_I_const.
apply Derivative_I_const.
red.
split.
apply included_FMinus.
unfold included; simpl; auto.
unfold included; simpl; auto.
exists (AbsIR (b[-]a)).
apply AbsIR_pos.
apply ab_diff.
intros.
simpl.
apply leEq_reflexive.
assert (Diffble_I Hcd (f_crr c d Hcd f0)).
destruct f0; simpl.
apply Diffble_I_n_imp_diffble with 42.
omega.
apply f_pdf0.
destruct X0.
assert (forall n, Diffble_I_n Hcd n (PartInt x)).
intro n0.
replace n0 with (pred (S n0)) by omega.
apply Diffble_I_imp_le with (f_crr c d Hcd f0).
omega.
destruct f0.
replace (f_crr c d Hcd (Build_C_inf_ab c d Hcd f_crr0 f_pdf0))
with f_crr0 by auto.
apply f_pdf0.
exact d0.
assert (Derivative_I Hab (L_func f0)
((L_func (Build_C_inf_ab c d Hcd (PartInt x) X0)) {*}
(([-C-]Zero{+}
(([-C-]d{-}[-C-]c){*}
(([-C-]One{*}([-C-]b{-}[-C-]a){-}(FId{-}[-C-]a){*}[-C-]Zero){/}
([-C-]b{-}[-C-]a){*}([-C-]b{-}[-C-]a)){+}
[-C-]Zero{*}((FId{-}[-C-]a){/}([-C-]b{-}[-C-]a))))))
).
unfold L_func.
apply (Derivative_I_comp _ _ _ _ _ _ _ c d Hcd).
exact X.
simpl.
exact d0.
unfold maps_into_compacts.
split.
destruct f0.
simpl.
apply Diffble_I_n_imp_inc with 42.
apply f_pdf0.
intros.
red.
split.
unfold L_inner.
simpl.
rewrite <- cm_rht_unit_unfolded at 1.
apply plus_resp_leEq_lft.
rewrite <- (cring_mult_zero_op IR Zero).
apply mult_resp_leEq_both.
apply leEq_reflexive.
apply leEq_reflexive.
apply shift_leEq_lft.
algebra.
apply shift_leEq_div.
apply shift_zero_less_minus.
exact Hab.
rewrite cring_mult_zero_op.
apply shift_leEq_lft.
inversion H.
exact H0.
unfold L_inner.
simpl.
apply shift_plus_leEq'.
rewrite <- (mult_one IR (d[-]c)) at 2.
apply mult_resp_leEq_both.
apply shift_leEq_lft.
algebra.
apply shift_leEq_div.
apply shift_zero_less_minus.
exact Hab.
rewrite cring_mult_zero_op.
inversion H.
apply shift_leEq_lft.
exact H0.
apply leEq_reflexive.
apply shift_div_leEq.
apply shift_zero_less_minus.
exact Hab.
rewrite mult_commutes.
rewrite mult_one.
apply minus_resp_leEq_both.
inversion H.
exact H1.
apply leEq_reflexive.
assert (Diffble_I Hab (L_func f0)).
apply (deriv_imp_Diffble_I _ _ _ _ _ X1).
exists X2.
destruct X2.
simpl.
apply Diffble_I_n_wd with
(L_func (Build_C_inf_ab c d Hcd (PartInt x) X0){*}
([-C-]Zero{+}(([-C-]d{-}[-C-]c){*}
(([-C-]One{*}([-C-]b{-}[-C-]a){-}(FId{-}[-C-]a){*}[-C-]Zero){/}
([-C-]b{-}[-C-]a){*}([-C-]b{-}[-C-]a)){+}
[-C-]Zero{*}((FId{-}[-C-]a){/}([-C-]b{-}[-C-]a))))).
apply Derivative_I_unique with (L_func f0).
exact X1.
exact d1.
apply Diffble_I_n_mult.
apply IHn.
apply Diffble_I_n_plus.
apply Diffble_I_n_const.
apply Diffble_I_n_plus.
apply Diffble_I_n_mult.
apply Diffble_I_n_minus.
apply Diffble_I_n_const.
apply Diffble_I_n_const.
apply Diffble_I_n_div.
apply Diffble_I_n_minus.
apply Diffble_I_n_mult.
apply Diffble_I_n_const.
apply Diffble_I_n_minus.
apply Diffble_I_n_const.
apply Diffble_I_n_const.
apply Diffble_I_n_wd with ([-C-] Zero).
FEQ.
apply Diffble_I_n_const.
apply Diffble_I_n_mult.
apply Diffble_I_n_minus.
apply Diffble_I_n_const.
apply Diffble_I_n_const.
apply Diffble_I_n_minus.
apply Diffble_I_n_const.
apply Diffble_I_n_const.
unfold bnd_away_zero.
split.
apply included_FMult.
apply included_FMinus.
unfold included; simpl; auto.
unfold included; simpl; auto.
apply included_FMinus.
unfold included; simpl; auto.
unfold included; simpl; auto.
exists ((b[-]a)[*](b[-]a)).
apply mult_resp_pos.
apply shift_zero_less_minus.
exact Hab.
apply shift_zero_less_minus.
exact Hab.
intros.
rewrite AbsIR_resp_mult.
apply mult_resp_leEq_both.
apply shift_zero_leEq_minus.
algebra.
apply shift_zero_leEq_minus.
algebra.
apply eq_imp_leEq.
symmetry.
apply AbsIR_eq_x.
apply shift_zero_leEq_minus.
algebra.
apply eq_imp_leEq.
symmetry.
apply AbsIR_eq_x.
algebra.
apply Diffble_I_n_wd with ([-C-] Zero).
apply eq_imp_Feq.
unfold included; simpl; auto.
apply included_FMult.
unfold included; simpl; auto.
apply included_FDiv.
apply included_FMinus.
unfold included; simpl; auto.
unfold included; simpl; auto.
apply included_FMinus.
unfold included; simpl; auto.
unfold included; simpl; auto.
intros.
simpl.
apply pos_ap_zero.
apply shift_zero_less_minus.
exact Hab.
intros.
simpl.
rewrite mult_commutes.
rewrite cring_mult_zero.
reflexivity.
apply Diffble_I_n_const.
Qed.
Lemma L_diffble_all_n : forall (f : C_inf_ab c d Hcd)
(n : nat), Diffble_I_n Hab n (L_func f).
Proof.
intros.
apply L_diffble.
Qed.
(**
* Define L as a member of the class C_inf_ab.
*)
Definition L (f : C_inf_ab c d Hcd) : (C_inf_ab a b Hab) :=
Build_C_inf_ab a b Hab (L_func f)
(L_diffble_all_n f).
End Lfunct.
(**
* The following section is vague at best. Various versions
* of lemmas (e.g. continuity) are used. One of the main
* improvements should be to make things more consistent.
*)
Section Integration.
Require Import ProductMetric.
Require Import CRIR.
Require Import Integration.
Require Import Qmetric.
Require Import QposMinMax.
Variable a b : CR.
Hypothesis Hab : a [<] b.
(**
* Define equality on a sub-metricspace (a sub-metricspace
* is a collection of elements from a metric space restricted
* to certain property).
*)
Definition eqSubMS (X : MetricSpace)
(P : X -> Prop) (a : {X | P X})
(b : {X | P X}) := (projT1 a) [=] (projT1 b).
(**
* Because a metric space is a setoid, it follows
* automatically that a sub-metricspace is also a setoid.
*)
Definition setoidSubMS (X : MetricSpace)
(P : X -> Prop) : Setoid.
intros X P.
assert (Reflexive (eqSubMS X P)).
unfold Reflexive, eqSubMS.
intro x.
reflexivity.
assert (Symmetric (eqSubMS X P)).
unfold Symmetric, eqSubMS.
intros x y H42.
symmetry.
exact H42.
assert (Transitive (eqSubMS X P)).
unfold Transitive, eqSubMS.
intros x y z H37 H42.
transitivity (projT1 y).
exact H37.
exact H42.
apply (@Build_Setoid {X | P X} (eqSubMS X P)
(Build_Equivalence {X | P X} (eqSubMS X P) H H0 H1)).
Defined.
(**
* The usual definition of a ball can be used in a
* sub-metricspace as well.
*)
Program Definition ballSubMS (X : MetricSpace)
(P : X -> Prop) (x : Qpos)
(a : {X | P X}) (b : {X | P X}) :=
(@ball X x a b).
(**
* The actual definition of sub-metricspace.
*
* TODO: Perhaps P should be directly dicidable (although
* we axiomatized anything in Prop to be decidable using
* sq and unsq).
*)
Definition SubMS (X : MetricSpace) (P : X -> Prop) :
MetricSpace.
intros X P.
apply (@Build_MetricSpace (setoidSubMS X P)
(ballSubMS X P)).
intros e1 e2 H x1 x2 H0 y1 y2 H1.
split.
intro H2.
unfold ballSubMS.
unfold ballSubMS in H2.
assert ((`x1) [=] (`x2)).
destruct x1.
destruct x2.
auto.
assert ((`y1) [=] (`y2)).
destruct y1.
destruct y2.
auto.
apply (ball_wd X H (`x1) (`x2) H3 (`y1) (`y2) H4).
exact H2.
intro H2.
unfold ballSubMS.
unfold ballSubMS in H2.
assert ((`x1) [=] (`x2)).
destruct x1.
destruct x2.
auto.
assert ((`y1) [=] (`y2)).
destruct y1.
destruct y2.
auto.
apply (ball_wd X H (`x1) (`x2) H3 (`y1) (`y2) H4).
exact H2.
assert (forall e : Qpos, Reflexive (ballSubMS X P e)).
intro e; unfold Reflexive.
intro x; unfold ballSubMS.
apply (msp_refl (msp X) e (`x)).
assert (forall e : Qpos, Symmetric (ballSubMS X P e)).
intro e; unfold Symmetric.
intros x y H0; unfold ballSubMS; unfold ballSubMS in H0.
apply (msp_sym (msp X) e (`x) (`y)).
exact H0.
assert (forall (e1 e2 : Qpos) (a b c : (setoidSubMS X P)),
(ballSubMS X P e1 a b) -> (ballSubMS X P e2 b c) ->
(ballSubMS X P ((e1 + e2)%Qpos) a c)).
intros e1 e2 a0 b0 c H1 H2.
unfold ballSubMS; unfold ballSubMS in H1; unfold ballSubMS in H2.
apply (msp_triangle (msp X) _ _ _ (`b0)).
exact H1.
exact H2.
assert (forall (e : Qpos) (a b : (setoidSubMS X P)),
(forall d : Qpos, ballSubMS X P ((e + d)%Qpos) a b) ->
ballSubMS X P e a b).
intros e a0 b0 H2.
unfold ballSubMS.
apply (msp_closed (msp X)).
exact H2.
assert (forall a b : (setoidSubMS X P), (forall e : Qpos,
ballSubMS X P e a b) -> a [=] b).
intros a0 b0 H3.
destruct a0.
destruct b0.
simpl.
unfold eqSubMS.
simpl.
apply (msp_eq (msp X)).
unfold ballSubMS in H3.
simpl in H3.
exact H3.
apply (Build_is_MetricSpace (setoidSubMS X P)
(ballSubMS X P) H H0 H1 H2 H3).
Defined.
(**
* The abstract concept of nultiplication of a
* MetricSpace (as in IR x IR etc). This results in
* a product space (which is again a metric space).
*)
Fixpoint XpowM (X : MetricSpace) (m : nat)
{struct m} : MetricSpace :=
match m with
| 0 => X (* Should not be used *)
| 1 => X
| S n => ProductMS X (XpowM X n)
end.
(**
* If an element is known to be inside a sub-metricspace, it
* can also be typed as an element from the original metric
* space.
*)
Definition unres (m : nat) (P : CR -> Prop)
(X : XpowM (SubMS CR P) m) : XpowM CR m.
intros m P x.
induction m.
simpl; simpl in x.
inversion x.
exact x0.
destruct m.
simpl.
simpl in x.
inversion x.
exact x0.
simpl.
split.
simpl in x.
inversion x.
inversion X.
exact x0.
apply IHm.
simpl in x.
inversion x.
exact X0.
Defined.
(**
* The definition of continuity according to the book of
* Bishop. Please note that this definition does not use
* the continuity-definitions from CoRN/ftc.
*
* TODO: Find a way to make continuity and differentiability
* as consistent as possible throughout the proof.
*)
Definition Bcont (m : nat) (X : MetricSpace)
(f : (XpowM CR m) -> X) := forall (a b : CR)
(Hab : a [<] b) (g : (XpowM (SubMS CR
(fun x => sq (a [<] x and x [<] b))) m) -> X),
(forall x : (XpowM (SubMS CR
(fun x => sq (a [<] x and x [<] b))) m),
(f (unres m (fun x =>
sq (a [<] x and x [<] b)) x) [=] g x)) ->
{m | is_UniformlyContinuousFunction g m}.
(**
* Application of a pair of functions to an element from a
* metric space resulting in an element of a product space.
*)
Definition pairFG (m : nat) (X : MetricSpace) (Y : MetricSpace)
(f : (XpowM CR m) -> X) (g : (XpowM CR m) -> Y) :
(XpowM CR m) -> ProductMS X Y.
intros m X Y f g x.
unfold ProductMS.
simpl; split.
apply f.
exact x.
apply g.
exact x.
Defined.
(**
* This lemma corresponds to lemma 20 in the PDF as sent to
* me on january 11th. It states that Bishop-continuity of
* individual functions can be continued to pairs of functions.
*)
Lemma lem20 : forall (m : nat) (X : MetricSpace) (Y : MetricSpace)
(f : (XpowM CR m) -> X) (g : (XpowM CR m) -> Y)
(Hf : Bcont m X f) (Hg : Bcont m Y g),
Bcont m (ProductMS X Y) (pairFG m X Y f g).
Proof.
intros m X Y f g Hf Hg.
unfold Bcont.
intros a0 b0 Ha0b0 g0 Hg0.
unfold Bcont in Hf.
assert ({f' : XpowM (SubMS CR
(fun x : CR => sq (cof_less a0 x and cof_less x b0))) m -> X |
(forall x : XpowM (SubMS CR (fun x : CR => sq (cof_less a0 x and cof_less x b0))) m,
f (unres m (fun x0 : CR => sq (cof_less a0 x0 and cof_less x0 b0)) x) [=] f' x)}).
exists (fun x => fst (g0 x)).
intro x.
unfold pairFG in Hg0.
destruct (Hg0 x).
rewrite <- H.
simpl; reflexivity.
inversion X0.
elim (Hf a0 b0 Ha0b0 x H).
intros mu1 H0.
unfold Bcont in Hg.
assert ({g' : XpowM (SubMS CR
(fun x : CR => sq (cof_less a0 x and cof_less x b0))) m -> Y |
(forall x : XpowM (SubMS CR (fun x : CR => sq (cof_less a0 x and cof_less x b0))) m,
g (unres m (fun x0 : CR => sq (cof_less a0 x0 and cof_less x0 b0)) x) [=] g' x)}).
exists (fun x => snd (g0 x)).
intro x0.
unfold pairFG in Hg0.
destruct (Hg0 x0).
rewrite <- H2.
simpl; reflexivity.
inversion X1.
elim (Hg a0 b0 Ha0b0 x0 H1).
intros mu2 H2.
exists (fun x : Qpos =>
QposInf_min (mu1 x) (mu2 x)).
unfold is_UniformlyContinuousFunction.
intros e a1 b1 H3.
unfold is_UniformlyContinuousFunction in H0, H2.
assert (ball_ex (mu1 e) a1 b1).
apply ball_ex_weak_le with
(QposInf_min (mu1 e) (mu2 e)).
apply QposInf_min_lb_l.
exact H3.
assert (ball_ex (mu2 e) a1 b1).
apply ball_ex_weak_le with
(QposInf_min (mu1 e) (mu2 e)).
apply QposInf_min_lb_r.
exact H3.
assert (ball e (x a1) (x b1)).
apply H0.
exact H4.
assert (ball e (x0 a1) (x0 b1)).
apply H2.
exact H5.
simpl; unfold prod_ball; split.
destruct (Hg0 a1).
rewrite <- H8.
destruct (Hg0 b1).
rewrite <- H10.
simpl.
rewrite H.
rewrite H.
exact H6.
simpl.
destruct (Hg0 a1).
rewrite <- H9.
destruct (Hg0 b1).
rewrite <- H11.
simpl.
rewrite H1.
rewrite H1.
exact H7.
Qed.
(**
* TODO: This should be formulated either directly in the
* proof or in a more general way.
*)
Definition betw01 (x : CR) : Prop :=
Zero [<=] x and x [<=] One.
Require Import QMinMax.
Require Import iso_CReals.
(**
* A quick definition to have the computational reals (CR)
* represented as CR^1.
*)
Definition CRasCRpow1 (c : CR) : XpowM CR 1.
intro c.
simpl.
simpl in c.
exact c.
Defined.
(**
* A somewhat general definition of a subspace of
* the rationals.
*)
Definition QsubMS (a b : Q) := SubMS Q_as_MetricSpace
(fun x : Q_as_MetricSpace => (a <= x)%Q and (x <= b)%Q).
(**
* Any element in a subset of Q is - of course - an element
* in Q.
*)
Definition QsubMSasQ (a b : Q) (m : QsubMS a b) : Q.
intros a0 b0 m.
inversion m.
exact x.
Defined.
(**
* A 'flatten' function because apparently total functions
* can be handled better by CoRN compared tot partial
* funtions.
*
* flat_raw takes a function f from ([a,b] <intersect> Q) to
* R and returns a function f':Q -> R according to the
* following diagram:
*
* ---(b)--------------
* /
* /
* --
* /
* --------(a)--/
*
* That is: the result of f'(x) in x<a and x>b is equal to
* f(a) and f(b) respectively.
*)
Definition flat_raw (a b : Q) (Hab : (a < b)%Q)
(f : (QsubMS a b) -> CR) (Hf : Bcont 1 CR f) :=
(fun x : Q_as_MetricSpace =>
match (Qlt_le_dec_fast a x) with
| left _ => match (Qlt_le_dec_fast x b) with
| left _ => f (CRasCRpow1 (IRasCR (inj_Q IR x)))
| right _ => f (CRasCRpow1 (IRasCR (inj_Q IR b)))
end
| right _ => f (CRasCRpow1 (IRasCR (inj_Q IR a)))
end
).
(**
* A proof that the 'flatten' operation indeed preserves
* uniform continuity.
*)
Lemma flat_prf : forall (a b : Qpos) (Hab : (a < b)%Q)
(f : (XpowM CR 1) -> CR) (Hf : Bcont 1 CR f),
{m | is_UniformlyContinuousFunction
(flat_raw a b Hab f Hf) m}.
Proof.
intros a0 b0 Ha0b0 f Hf.
unfold Bcont in Hf.
set (IRasCR (inj_Q IR a0)).
set (IRasCR (inj_Q IR b0)).
assert ({g : XpowM (SubMS CR
(fun x : CR => sq (cof_less s x and cof_less x s0))) 1 -> CR |
(forall x : XpowM (SubMS CR (fun x : CR => sq (cof_less s x and cof_less x s0))) 1,
f (unres 1 (fun x0 : CR => sq (cof_less s x0 and cof_less x0 s0)) x) [=] g x)}).
exists (fun x : XpowM (SubMS CR
(fun x : CR => sq (cof_less s x and cof_less x s0))) 1 =>
f (unres 1 (fun x0 : CR => sq (cof_less s x0 and cof_less x0 s0)) x)).
intro x; reflexivity.
inversion X.
assert (cof_less s s0).
unfold s.
unfold s0.
Admitted.
(**
* A 'flattened' function typed as a uniformly continuous
* space.
*)
Definition flat (a b : Qpos) (Hab : (a < b)%Q)
(f : (XpowM CR 1) -> CR) (Hf : Bcont 1 CR f) :
UniformlyContinuousSpace Q_as_MetricSpace CR.
intros a0 b0 Ha0b0 f Hf.
set (flat_prf a0 b0 Ha0b0 f Hf).
inversion s.
exact (Build_UniformlyContinuousFunction H).
Defined.
(**
* The is a repeated attempt at the definition of the
* function L (see above). The function L0 is again a
* translation function. It transforms a function
* f : ([a,b] <intersect> Q) -> R to a function
* f' : ([c,d] <intersect> Q) -> R.
*
* TODO: Finish or reconsider this proof.
*)
Definition L0_def (a b c d : Q) (Hab : (a < b)%Q) (Hcd : (c < d)%Q)
(f : (QsubMS a b) -> CR) : (QsubMS c d) -> CR.
intros a0 b0 c d Ha0b0 Hcd f x.
inversion x.
set (Qplus c (Qmult (Qminus d c) (Qdiv
(Qminus (QsubMSasQ c d x) a0) (Qminus b0 a0)))).
cut ((a0 <= q)%Q and (q <= b0)%Q).
intro Hq.
apply f.
simpl.
exists q.
exact Hq.
Admitted.
(**
* A new definition of L0 in terms of Q as a metric space.
*
* TODO: This proof (and the whole L0 construct, for that
* matter) should be set up in a different way.
*)
Definition L0_ext_def (a b c d : Q) (Hab : (a < b)%Q)
(Hcd : (c < d)%Q) (f : (QsubMS a b) -> CR) :
Q_as_MetricSpace -> CR.
intros a0 b0 c d Ha0b0 Hcd f x.
case (Qlt_le_dec_fast c x).
intro H.
case (Qlt_le_dec_fast x d).
intro H0.
apply (L0_def a0 b0 c d Ha0b0 Hcd f).
simpl.
exists x.
split.
auto with *.
auto with *.
intro H0.
apply (L0_def a0 b0 c d Ha0b0 Hcd f).
simpl.
exists d.
split.
auto with *.
auto with *.
intro H.
apply (L0_def a0 b0 c d Ha0b0 Hcd f).
simpl.
exists c.
split.
auto with *.
auto with *.
Defined.
(**
* TODO: Lemma should be replaced/removed.
*)
Lemma L0_ext_uc : forall (a b c d : Q) (f : (QsubMS a b) -> CR)
(Hab : (a < b)%Q) (Hcd : (c < d)%Q),
{m : Qpos -> QposInf | is_UniformlyContinuousFunction
(L0_ext_def a b c d Hab Hcd f) m}.
Admitted.
(**
* TODO: Definition should be replaced/removed.
*)
Definition L0 (a b c d : Q) (f : (QsubMS a b) -> CR)
(Hab : (a < b)%Q) (Hcd : (c < d)%Q) :
UniformlyContinuousSpace Q_as_MetricSpace CR.
intros a0 b0 c d f Ha0b0 Hcd.
set (L0_ext_uc a0 b0 c d f Ha0b0 Hcd).
inversion s.
exact (Build_UniformlyContinuousFunction H).
Defined.
(**
* Integration as a total function from Q to R. However, this
* part of the proof probably has to be set up in a different
* way (as I indicated before during our discussions).
*)
Definition F (a b : Qpos) (Hab : (a < b)%Q)
(f : (XpowM CR 1) -> CR) (Hf : Bcont 1 CR f) :=
(fun x : Q_as_MetricSpace =>
match (Qlt_le_dec_fast x (1%Q)) with
| left _ => IRasCR Zero
| right _ => (Integrate01 (flat a b Hab f Hf))
end
).
|