1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
|
(*
Copyright © 2009 Valentin Blot
Permission is hereby granted, free of charge, to any person obtaining a copy of
this proof and associated documentation files (the "Proof"), to deal in
the Proof without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
the Proof, and to permit persons to whom the Proof is furnished to do so,
subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Proof.
THE PROOF IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE PROOF OR THE USE OR OTHER DEALINGS IN THE PROOF.
*)
Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice fintype.
Require Import finfun bigops ssralg groups perm zmodp morphisms.
Require Import Ring RingClass.
Require Import bigopsClass.
Require Import Setoid Morphisms.
Notation " x === y " := (Equivalence.equiv x y) (at level 70, no associativity).
Open Scope signature_scope.
Set Implicit Arguments.
Unset Strict Implicit.
Import Prenex Implicits.
Reserved Notation "''M_' n" (at level 8, n at level 2, format "''M_' n").
Reserved Notation "''M_' ( n )" (at level 8, only parsing).
Reserved Notation "''M_' ( m , n )" (at level 8, format "''M_' ( m , n )").
Reserved Notation "\matrix_ ( i , j ) E"
(at level 36, E at level 36, i, j at level 50,
format "\matrix_ ( i , j ) E").
Reserved Notation "\matrix_ ( i < m , j < n ) E"
(at level 36, E at level 36, i, m, j, n at level 50,
format "\matrix_ ( i < m , j < n ) E").
Reserved Notation "\matrix_ ( i , j < n ) E"
(at level 36, E at level 36, i, j, n at level 50,
format "\matrix_ ( i , j < n ) E").
Reserved Notation "x %:M" (at level 8, format "x %:M").
Reserved Notation "-m A" (at level 35, right associativity).
Reserved Notation "A +m B" (at level 50, left associativity).
Reserved Notation "A -m B" (at level 50, left associativity).
Reserved Notation "x *m: A" (at level 40, left associativity).
Reserved Notation "A *m B" (at level 40, left associativity).
Reserved Notation "A ^T" (at level 8).
Reserved Notation "\tr A" (at level 10, A at level 8, format "\tr A").
Reserved Notation "\det A" (at level 10, A at level 8, format "\det A").
Reserved Notation "\adj A" (at level 10, A at level 8, format "\adj A").
Delimit Scope matrix_scope with M.
Local Open Scope matrix_scope.
Definition setoid_cancel {A : Type} {B : Type} `{Equivalence A aeq} (f : A -> B) g :=
forall x, g (f x) === x.
Section MatrixDef.
Variable R : Type.
Variables m n : nat.
Definition matrix : Type := 'I_m -> 'I_n -> R.
End MatrixDef.
Notation "''M_' n" := (matrix _ n n) : type_scope.
Notation "''M_' ( n )" := 'M_n (only parsing) : type_scope.
Notation "''M_' ( m , n )" := (matrix _ m n) : type_scope.
Notation "\matrix_ ( i < m , j < n ) E" :=
(fun (i : 'I_m) (j : 'I_n) => E) (only parsing).
Notation "\matrix_ ( i , j < n ) E" :=
(\matrix_(i < n, j < n) E) (only parsing).
Notation "\matrix_ ( i , j ) E" := (\matrix_(i < _, j < _) E).
Section Slicing.
Context `{r_st : Equivalence R req}.
Definition mx_row m n i0 (A : 'M_(m, n)) :=
\matrix_(i < 1, j < n) (A i0 j : R).
Global Instance mx_row_morph m n i0 : Proper (Equivalence.equiv==>Equivalence.equiv) (@mx_row m n i0).
Proof. by move=> m n i0 A B eqAB i; apply eqAB. Qed.
Definition mx_col m n j0 (A : 'M_(m, n)) :=
\matrix_(i < m, j < 1) (A i j0 : R).
Global Instance mx_col_morph m n i0 : Proper (Equivalence.equiv==>Equivalence.equiv) (@mx_col m n i0).
Proof. by move=> m n i0 A B eqAB i j; apply eqAB. Qed.
Definition mx_row' m n i0 (A : 'M_(m, n)) :=
\matrix_(i, j) (A (lift i0 i) j : R).
Global Instance mx_row'_morph m n i0 : Proper (Equivalence.equiv==>Equivalence.equiv) (@mx_row' m n i0).
Proof. by move=> m n i0 A B eqAB i; apply eqAB. Qed.
Definition mx_col' m n j0 (A : 'M_(m, n)) :=
\matrix_(i, j) (A i (lift j0 j) : R).
Global Instance mx_col'_morph m n i0 : Proper (Equivalence.equiv==>Equivalence.equiv) (@mx_col' m n i0).
Proof. by move=> m n i0 A B eqAB i j; apply eqAB. Qed.
Definition rswap m n i1 i2 (A : 'M_(m, n)) :=
\matrix_(i, j) (A (tperm i1 i2 i) j : R).
Global Instance rswap_morph m n i1 i2 : Proper (Equivalence.equiv==>Equivalence.equiv) (@rswap m n i1 i2).
Proof. by move=> m n i1 i2 A B eqAB i; apply eqAB. Qed.
Definition cswap m n i1 i2 (A : 'M_(m, n)) :=
\matrix_(i, j) (A i (tperm i1 i2 j) : R).
Global Instance cswap_morph m n i1 i2 : Proper (Equivalence.equiv==>Equivalence.equiv) (@cswap m n i1 i2).
Proof. by move=> m n i1 i2 A B eqAB i j; apply eqAB. Qed.
Definition trmx m n (A : 'M_(m, n)) := \matrix_(i, j) (A j i : R).
Global Instance trmx_morph m n : Proper (Equivalence.equiv==>Equivalence.equiv) (@trmx m n).
Proof. by move=> m n A B eqAB i j; apply eqAB. Qed.
Lemma trmxK : forall m n, setoid_cancel (@trmx m n) (@trmx n m).
Proof. by move=> m n A i j; rewrite/trmx; reflexivity. Qed.
Lemma trmx_inj : forall m n (A B : 'M_(m, n)), trmx A === trmx B -> A === B.
Proof. by rewrite/trmx=> m n A B eqtr i j; apply eqtr. Qed.
Notation "A ^T" := (trmx A).
Lemma trmx_row : forall m n i0 (A : 'M_(m, n)),
(mx_row i0 A)^T === mx_col i0 A^T.
Proof. by rewrite/trmx/mx_row/mx_col=> m n i0 A i j; reflexivity. Qed.
Lemma trmx_row' : forall m n i0 (A : 'M_(m, n)),
(mx_row' i0 A)^T === mx_col' i0 A^T.
Proof. by rewrite/trmx/mx_row/mx_col=> m n i0 A i j; reflexivity. Qed.
Lemma trmx_col : forall m n j0 (A : 'M_(m, n)),
(mx_col j0 A)^T === mx_row j0 A^T.
Proof. by rewrite/trmx/mx_row/mx_col=> m n i0 A i j; reflexivity. Qed.
Lemma trmx_col' : forall m n j0 (A : 'M_(m, n)),
(mx_col' j0 A)^T === mx_row' j0 A^T.
Proof. by rewrite/trmx/mx_row/mx_col=> m n i0 A i j; reflexivity. Qed.
Lemma trmx_cswap : forall m n (A : 'M_(m, n)) i1 i2,
(cswap i1 i2 A)^T === rswap i1 i2 A^T.
Proof. by rewrite/trmx/rswap/cswap=> m n A i1 i2 i j; case tpermP; reflexivity. Qed.
Lemma trmx_rswap : forall m n (A : 'M_(m, n)) i1 i2,
(rswap i1 i2 A)^T === cswap i1 i2 A^T.
Proof. by rewrite/trmx/rswap/cswap=> m n A i1 i2 i j; case tpermP; reflexivity. Qed.
Lemma mx_row_id : forall n (A : 'M_(1, n)), mx_row ord0 A === A.
Proof. by move=> n A i j; (have -> : ord0 = i by rewrite (ord1 i); apply ord_inj => //); reflexivity. Qed.
Lemma mx_row_eq : forall m1 m2 n i1 i2 (A1 : 'M_(m1, n)) (A2 : 'M_(m2, n)),
mx_row i1 A1 === mx_row i2 A2 -> A1 i1 === A2 i2.
Proof.
rewrite/mx_row => m1 m2 n i1 i2 A1 A2 eqA1A2 j.
by apply eqA1A2; apply (@Ordinal 1 0).
Qed.
Lemma mx_row'_eq : forall m n i0 (A B : 'M_(m, n)),
mx_row' i0 A === mx_row' i0 B -> {in predC1 i0, forall i, A i === B i}.
Proof.
move=> m n i0 A B eqAB i; rewrite /mx_row' inE /= eq_sym.
by case/unlift_some=> i' -> _; apply: eqAB.
Qed.
Section CutPaste.
Variables m n1 n2 : nat.
(* The shape of the (dependent) width parameter of the type of A *)
(* determines where the cut is made! *)
Definition lcutmx (A : 'M_(m, n1 + n2)):=
\matrix_(i < m, j < n1) (A i (lshift n2 j) : R).
Global Instance lcutmx_morph : Proper (Equivalence.equiv==>Equivalence.equiv) lcutmx.
Proof. by move=> A B eqAB i j; apply eqAB. Qed.
Definition rcutmx (A : 'M_(m, n1 + n2)) :=
\matrix_(i < m, j < n2) (A i (rshift n1 j) : R).
Global Instance rcutmx_morph : Proper (Equivalence.equiv==>Equivalence.equiv) rcutmx.
Proof. by move=> A B eqAB i j; apply eqAB. Qed.
Definition pastemx (A1 : 'M_(m, n1)) (A2 : 'M_(m, n2)) :=
\matrix_(i < m, j < n1 + n2)
(match split j with inl j1 => A1 i j1 | inr j2 => A2 i j2 end : R).
Global Instance pastemx_morph : Proper (Equivalence.equiv==>Equivalence.equiv==>Equivalence.equiv) pastemx.
Proof.
rewrite/pastemx=> A1 B1 eqAB1 A2 B2 eqAB2 i j; case: (splitP j)=> j' _; first by apply eqAB1.
by apply eqAB2.
Qed.
Lemma pastemxEl : forall A1 A2 i j, pastemx A1 A2 i (lshift n2 j) === A1 i j.
Proof. by rewrite/pastemx=> A1 A2 i j; rewrite (unsplitK (inl _ _)); reflexivity. Qed.
Lemma pastemxEr : forall A1 A2 i j, pastemx A1 A2 i (rshift n1 j) === A2 i j.
Proof. by rewrite/pastemx=> A1 A2 i j; rewrite (unsplitK (inr _ _)); reflexivity. Qed.
Lemma pastemxKl : forall A1 A2, lcutmx (pastemx A1 A2) === A1.
Proof. by move=> A1 A2 i j; rewrite /lcutmx; rewrite -> pastemxEl; reflexivity. Qed.
Lemma pastemxKr : forall A1 A2, rcutmx (pastemx A1 A2) === A2.
Proof. by move=> A1 A2 i j; rewrite /rcutmx; rewrite -> pastemxEr; reflexivity. Qed.
Lemma cutmxK : forall A, pastemx (lcutmx A) (rcutmx A) === A.
Proof.
move=> A i j.
rewrite/pastemx/lcutmx/rcutmx.
case: splitP; case=> /= k kprf eqk.
by have <- : j = lshift n2 (Ordinal kprf); [apply ord_inj; apply eqk | reflexivity].
by have <- : j = rshift n1 (Ordinal kprf); [apply ord_inj; apply eqk | reflexivity].
Qed.
End CutPaste.
Lemma mx_row_paste : forall m n1 n2 i0 (A1 : 'M_(m, n1)) (A2 : 'M_(m, n2)),
mx_row i0 (pastemx A1 A2) === pastemx (mx_row i0 A1) (mx_row i0 A2).
Proof. by reflexivity. Qed.
Lemma mx_row'_paste : forall m n1 n2 i0 (A1 : 'M_(m, n1)) (A2 : 'M_(m, n2)),
mx_row' i0 (pastemx A1 A2) === pastemx (mx_row' i0 A1) (mx_row' i0 A2).
Proof. by reflexivity. Qed.
Lemma mx_col_lshift : forall m n1 n2 j1 (A1 : 'M_(m, n1)) A2,
mx_col (lshift n2 j1) (pastemx A1 A2) === mx_col j1 A1.
Proof. by rewrite/mx_col=> m n1 n2 j1 A1 A2 i j; rewrite -> pastemxEl; reflexivity. Qed.
Lemma mx_col_rshift : forall m n1 n2 j2 A1 (A2 : 'M_(m, n2)),
mx_col (rshift n1 j2) (pastemx A1 A2) === mx_col j2 A2.
Proof. by rewrite/mx_col=> m n1 n2 j1 A1 A2 i j; rewrite -> pastemxEr; reflexivity. Qed.
Lemma mx_col'_lshift : forall m n1 n2 j1 (A1 : 'M_(m, n1.+1)) A2,
mx_col' (lshift n2 j1) (pastemx A1 A2) === pastemx (mx_col' j1 A1) A2.
Proof.
move=> m n1 n2 j1 A1 A2 i /= j.
case: (splitP j) => j' def_j'.
have -> : j = lshift n2 j' by apply ord_inj; apply def_j'.
rewrite -> pastemxEl; rewrite /mx_col'.
have -> : lift (lshift n2 j1) (lshift n2 j') = lshift n2 (lift j1 j'); last by rewrite -> pastemxEl; reflexivity.
by apply ord_inj.
have -> : j = rshift n1 j' by apply ord_inj; apply def_j'.
rewrite -> pastemxEr; rewrite /mx_col'.
have -> : lift (lshift n2 j1) (rshift n1 j') = (rshift n1.+1 j'); last by rewrite -> pastemxEr; reflexivity.
apply ord_inj => /=.
rewrite/bump //= addSnnS addnS -def_j' -(addn1 j) addnC.
have -> : j1 <= j=>//.
rewrite def_j' {def_j'}.
by apply leq_trans with n1; [apply j1 | apply leq_addr].
Qed.
Lemma mx_col'_rcast : forall n1 n2, 'I_n2 -> (n1 + n2.-1)%N === (n1 + n2).-1.
Proof. by move=> n1 n2 [j]; move/ltn_predK <-; rewrite addnS. Qed.
(*Lemma paste_mx_col' : forall m n1 n2 j2 A1 (A2 : 'M_(m, n2)),
pastemx A1 (mx_col' j2 A2)
=== eq_rect _ (matrix R m) (mx_col' (rshift n1 j2) (pastemx A1 A2))
_ (esym (mx_col'_rcast n1 j2)).
Proof.
move=> m n1 n2 j2 A1 A2; apply/matrixP=> i /= j; rewrite mxE.
case: splitP => j' def_j'; case: (n1 + n2.-1)%N / (esym _) => /= in j def_j' *.
rewrite mxE -(pastemxEl _ A2); congr (pastemx _ _ _); apply: ord_inj.
by rewrite /= def_j' /bump leqNgt ltn_addr.
rewrite 2!mxE -(pastemxEr A1); congr (pastemx _ _ _ _); apply: ord_inj => /=.
by rewrite def_j' /bump leq_add2l addnCA.
Qed.
Lemma mx_col'_rshift : forall m n1 n2 j2 A1 (A2 : 'M_(m, n2)),
mx_col' (rshift n1 j2) (pastemx A1 A2)
= eq_rect _ (matrix R m) (pastemx A1 (mx_col' j2 A2))
_ (mx_col'_rcast n1 j2).
Proof.
move=> m n1 n2 j2 A1 A2; rewrite paste_mx_col'.
by case: _.-1 / (mx_col'_rcast n1 j2) {A1 A2}(mx_col' _ _).
Qed.*)
Section Block.
Variables m1 m2 n1 n2 : nat.
Definition block_mx Aul Aur All Alr : 'M_(m1 + m2, n1 + n2) :=
(pastemx (pastemx Aul Aur)^T (pastemx All Alr)^T)^T.
Global Instance block_mx_morph : Proper (Equivalence.equiv==>Equivalence.equiv==>Equivalence.equiv==>Equivalence.equiv==>Equivalence.equiv) block_mx.
Proof.
rewrite/block_mx=> Aul1 Aul2 eqAul Aur1 Aur2 eqAur All1 All2 eqAll Alr1 Alr2 eqAlr i j.
by apply pastemx_morph; apply trmx_morph; apply pastemx_morph.
Qed.
Section CutBlock.
Variable A : matrix R (m1 + m2) (n1 + n2).
Definition ulsubmx := lcutmx (lcutmx A^T)^T.
Definition ursubmx := rcutmx (lcutmx A^T)^T.
Definition llsubmx := lcutmx (rcutmx A^T)^T.
Definition lrsubmx := rcutmx (rcutmx A^T)^T.
Lemma submxK : block_mx ulsubmx ursubmx llsubmx lrsubmx === A.
Proof.
rewrite/block_mx/ulsubmx/ursubmx/llsubmx/lrsubmx.
rewrite -> !cutmxK => i j.
rewrite/rcutmx/lcutmx/pastemx/trmx.
case: splitP => i' eqii'.
by have -> : lshift m2 i' = i; [apply ord_inj|reflexivity].
by have -> : rshift m1 i' = i; [apply ord_inj|reflexivity].
Qed.
End CutBlock.
Section PasteBlock.
Variables (Aul : matrix R m1 n1) (Aur : matrix R m1 n2).
Variables (All : matrix R m2 n1) (Alr : matrix R m2 n2).
Let A := block_mx Aul Aur All Alr.
Lemma block_mxEul : forall i j, A (lshift m2 i) (lshift n2 j) === Aul i j.
Proof. by move=> i j; rewrite /A /block_mx /trmx; rewrite -> !pastemxEl; reflexivity. Qed.
Lemma block_mxKul : ulsubmx A === Aul.
Proof. by move=> i j; rewrite /A /block_mx /ulsubmx /lcutmx /trmx; rewrite -> !pastemxEl; reflexivity. Qed.
Lemma block_mxEur : forall i j, A (lshift m2 i) (rshift n1 j) === Aur i j.
Proof. by move=> i j; rewrite /A /block_mx /trmx; rewrite -> pastemxEl, pastemxEr; reflexivity. Qed.
Lemma block_mxKur : ursubmx A === Aur.
Proof. by move=> i j; rewrite /A /block_mx /ursubmx /lcutmx /rcutmx /trmx; rewrite -> pastemxEl, pastemxEr; reflexivity. Qed.
Lemma block_mxEll : forall i j, A (rshift m1 i) (lshift n2 j) === All i j.
Proof. by move=> i j; rewrite /A /block_mx /trmx; rewrite -> pastemxEr, pastemxEl; reflexivity. Qed.
Lemma block_mxKll : llsubmx A === All.
Proof. by move=> i j; rewrite /A /block_mx /llsubmx /lcutmx /rcutmx /trmx; rewrite -> pastemxEr, pastemxEl; reflexivity. Qed.
Lemma block_mxElr : forall i j, A (rshift m1 i) (rshift n1 j) === Alr i j.
Proof. by move=> i j; rewrite /A /block_mx /trmx; rewrite -> !pastemxEr; reflexivity. Qed.
Lemma block_mxKlr : lrsubmx A === Alr.
Proof. by move=> i j; rewrite /A /block_mx /lrsubmx /lcutmx /rcutmx /trmx; rewrite -> !pastemxEr; reflexivity. Qed.
End PasteBlock.
End Block.
Section TrBlock.
Variables m1 m2 n1 n2 : nat.
Section TrCut.
Variable A : matrix R (m1 + m2) (n1 + n2).
Lemma trmx_ulsub : (ulsubmx A)^T === ulsubmx A^T.
Proof. by move => i j /=; reflexivity. Qed.
Lemma trmx_ursub : (ursubmx A)^T === llsubmx A^T.
Proof. by move => i j /=; reflexivity. Qed.
Lemma trmx_llsub : (llsubmx A)^T === ursubmx A^T.
Proof. by move => i j /=; reflexivity. Qed.
Lemma trmx_lrsub : (lrsubmx A)^T === lrsubmx A^T.
Proof. by move => i j /=; reflexivity. Qed.
End TrCut.
Lemma trmx_block : forall (Aul : 'M_(m1, n1)) Aur All (Alr : 'M_(m2, n2)),
(block_mx Aul Aur All Alr)^T ===
block_mx Aul^T All^T Aur^T Alr^T.
Proof.
move=> Aul Aur All Alr.
pose (block_mx Aul Aur All Alr).
rewrite -/m.
rewrite <- (block_mxKul Aul Aur All Alr).
rewrite <- (block_mxKll Aul Aur All Alr) at 2.
rewrite <- (block_mxKur Aul Aur All Alr) at 3.
rewrite <- (block_mxKlr Aul Aur All Alr) at 4.
by rewrite -> trmx_ulsub, trmx_llsub, trmx_ursub, trmx_lrsub, submxK; reflexivity.
Qed.
End TrBlock.
End Slicing.
Notation "A ^T" := (trmx A).
Prenex Implicits lcutmx rcutmx ulsubmx ursubmx llsubmx lrsubmx.
(* Definition of operations for matrices over a ring *)
Section MatrixOpsDef.
Context `{r_ring : Ring}.
Add Ring r_r : r_rt (setoid r_st r_ree, preprocess [unfold Equivalence.equiv]).
Notation "0" := rO.
Notation "1" := rI.
Notation "x + y" := (radd x y).
Notation "x * y " := (rmul x y).
Notation "x - y " := (rsub x y).
Notation "- x" := (ropp x).
Notation "\sum_ ( <- r | P ) F" := (\big[radd/0]_(<- r | P) F).
Notation "\sum_ ( i <- r | P ) F" := (\big[radd/0]_(i <- r | P) F).
Notation "\sum_ ( i <- r ) F" := (\big[radd/0]_(i <- r) F).
Notation "\sum_ ( m <= i < n | P ) F" := (\big[radd/0]_(m <= i < n | P) F).
Notation "\sum_ ( m <= i < n ) F" := (\big[radd/0]_(m <= i < n) F).
Notation "\sum_ ( i | P ) F" := (\big[radd/0]_(i | P) F).
Notation "\sum_ i F" := (\big[radd/0]_i F).
Notation "\sum_ ( i : t | P ) F" := (\big[radd/0]_(i : t | P) F) (only parsing).
Notation "\sum_ ( i : t ) F" := (\big[radd/0]_(i : t) F) (only parsing).
Notation "\sum_ ( i < n | P ) F" := (\big[radd/0]_(i < n | P) F).
Notation "\sum_ ( i < n ) F" := (\big[radd/0]_(i < n) F).
Notation "\sum_ ( i \in A | P ) F" := (\big[radd/0]_(i \in A | P) F).
Notation "\sum_ ( i \in A ) F" := (\big[radd/0]_(i \in A) F).
Notation "\prod_ ( <- r | P ) F" := (\big[rmul/1]_(<- r | P) F).
Notation "\prod_ ( i <- r | P ) F" := (\big[rmul/1]_(i <- r | P) F).
Notation "\prod_ ( i <- r ) F" := (\big[rmul/1]_(i <- r) F).
Notation "\prod_ ( m <= i < n | P ) F" := (\big[rmul/1]_(m <= i < n | P) F).
Notation "\prod_ ( m <= i < n ) F" := (\big[rmul/1]_(m <= i < n) F).
Notation "\prod_ ( i | P ) F" := (\big[rmul/1]_(i | P) F).
Notation "\prod_ i F" := (\big[rmul/1]_i F).
Notation "\prod_ ( i : t | P ) F" := (\big[rmul/1]_(i : t | P) F) (only parsing).
Notation "\prod_ ( i : t ) F" := (\big[rmul/1]_(i : t) F) (only parsing).
Notation "\prod_ ( i < n | P ) F" := (\big[rmul/1]_(i < n | P) F).
Notation "\prod_ ( i < n ) F" := (\big[rmul/1]_(i < n) F).
Notation "\prod_ ( i \in A | P ) F" := (\big[rmul/1]_(i \in A | P) F).
Notation "\prod_ ( i \in A ) F" := (\big[rmul/1]_(i \in A) F).
Existing Instance radd_morph.
Existing Instance rmul_morph.
Existing Instance rsub_morph.
Existing Instance ropp_morph.
Existing Instance radd_assoc.
Existing Instance radd_comm.
Existing Instance radd_left_unit.
Existing Instance rmul_assoc.
Existing Instance rmul_comm.
Existing Instance rmul_left_unit.
Existing Instance rmul_left_zero.
Existing Instance radd_rmul_left_distr.
Section ZmodOps.
(* The Zmodule structure *)
Variables m n : nat.
Implicit Types A B C : matrix R m n.
Definition null_mx := \matrix_(i < m, j < n) (0 : R).
Definition oppmx A := \matrix_(i < m, j < n) (- A i j).
Definition addmx A B := \matrix_(i < m, j < n) (A i j + B i j).
Definition scalemx x A := \matrix_(i < m, j < n) (x * A i j).
Global Instance addmx_morph : Proper (Equivalence.equiv==>Equivalence.equiv==>Equivalence.equiv) addmx.
Proof. by move=> A A' eqAA' B B' eqBB' i j; rewrite/addmx; setoid_rewrite eqAA'; setoid_rewrite eqBB'; reflexivity. Qed.
Global Instance oppmx_morph : Proper (Equivalence.equiv==>Equivalence.equiv) oppmx.
Proof. by move=> A A' eqAA' i j ; rewrite/oppmx; setoid_rewrite eqAA'; reflexivity. Qed.
Global Instance scalemx_morph : Proper (Equivalence.equiv==>Equivalence.equiv==>Equivalence.equiv) scalemx.
Proof. by move=> A A' eqAA' B B' eqBB' i j ; rewrite/scalemx; setoid_rewrite eqAA'; setoid_rewrite eqBB'; reflexivity. Qed.
Lemma summxE : forall I r (P : pred I) (E : I -> 'M_(m, n)) i j,
(\big[addmx/null_mx]_(k <- r | P k) E k) i j === \sum_(k <- r | P k) E k i j.
Proof.
move=> I r P E i j.
apply: (big_morph (phi:=fun A => A i j)) => [A B||].
by rewrite/addmx; ring.
by rewrite/null_mx; ring.
apply radd_morph.
Qed.
(* Vector space structure... pending the definition *)
Notation "'0m" := null_mx.
Notation "-m A" := (oppmx A).
Notation "A +m B" := (addmx A B).
Notation "A -m B" := (addmx A (oppmx B)).
Notation "x *m: A" := (scalemx x A).
Lemma scale0mx : forall A, 0 *m: A === '0m.
Proof. by rewrite/null_mx/addmx/oppmx/scalemx=> A i j; ring. Qed.
Lemma scalemx0 : forall x, x *m: '0m === '0m.
Proof. by rewrite/null_mx/addmx/oppmx/scalemx=> x i j; ring. Qed.
Lemma scale1mx : forall A, 1 *m: A === A.
Proof. by rewrite/null_mx/addmx/oppmx/scalemx=> A i j; ring. Qed.
Lemma scaleNmx : forall x A, (- x) *m: A === -m (x *m: A).
Proof. by rewrite/null_mx/addmx/oppmx/scalemx=> x A i j; ring. Qed.
Lemma scalemxN : forall x A, x *m: (-m A) === -m (x *m: A).
Proof. by rewrite/null_mx/addmx/oppmx/scalemx=> x A i j; ring. Qed.
Lemma scalemx_addl : forall x y A, (x + y) *m: A === (x *m: A) +m (y *m: A).
Proof. by rewrite/null_mx/addmx/oppmx/scalemx=> x y A i j; ring. Qed.
Lemma scalemx_addr : forall x A B, x *m: (A +m B) === (x *m: A) +m (x *m: B).
Proof. by rewrite/null_mx/addmx/oppmx/scalemx=> x A B i j; ring. Qed.
Lemma scalemx_subl : forall x y A, (x - y) *m: A === (x *m: A) -m (y *m: A).
Proof. by rewrite/null_mx/addmx/oppmx/scalemx=> x y A i j; ring. Qed.
Lemma scalemx_subr : forall x A B, x *m: (A -m B) === (x *m: A) -m (x *m: B).
Proof. by rewrite/null_mx/addmx/oppmx/scalemx=> x A B i j; ring. Qed.
Lemma scalemxA : forall x y A, x *m: (y *m: A) === (x * y) *m: A.
Proof. by rewrite/null_mx/addmx/oppmx/scalemx=> x y A i j; ring. Qed.
(* Basis... *)
Definition delta_mx i0 j0 :=
\matrix_(i < m, j < n) (if ((i == i0) && (j == j0)) then 1 else 0).
Lemma matrix_sum_delta : forall A,
A === \big[addmx/null_mx]_(i < m) \big[addmx/null_mx]_(j < n) (A i j *m: delta_mx i j).
Proof.
move=> A i j.
setoid_rewrite summxE.
setoid_rewrite summxE.
setoid_rewrite (bigD1 (j:=i))=>//=.
setoid_rewrite (big1 (P:=fun i0 => i0 != i))=>[|i0 Hi0].
setoid_rewrite (bigD1 (j:=j))=>//=.
setoid_rewrite (big1 (P:=fun i0 => i0 != j))=>[|i0 Hi0].
by rewrite/delta_mx/scalemx !eq_refl/=; ring.
rewrite/delta_mx/scalemx !eq_refl/= eq_sym; move:Hi0.
by case/negbRL=>->/=; ring.
apply (big1 (P:=fun _ => true) (F:=fun k => (A i0 k *m: delta_mx i0 k) i j))=>i1 _.
rewrite/delta_mx/scalemx eq_sym/=; move:Hi0.
by case/negbRL=>->/=; ring.
Qed.
End ZmodOps.
Notation "'0m" := (@null_mx _ _).
Notation "-m A" := (oppmx A).
Notation "A +m B" := (addmx A B).
Notation "A -m B" := (addmx A (oppmx B)).
Notation "x *m: A" := (scalemx x A).
Lemma trmx0 : forall (m n : nat), (@null_mx m n)^T === @null_mx n m.
Proof. by move=> m n; rewrite/trmx/null_mx/addmx/oppmx/scalemx; reflexivity. Qed.
Lemma trmx_add : forall m n (A B : 'M_(m, n)), (A +m B)^T === A^T +m B^T.
Proof. by move=> m n; rewrite/trmx/null_mx/addmx/oppmx/scalemx; reflexivity. Qed.
Lemma trmx_scale : forall m n a (A : 'M_(m, n)), (a *m: A)^T === a *m: A^T.
Proof. by move=> m n; rewrite/trmx/null_mx/addmx/oppmx/scalemx; reflexivity. Qed.
Lemma mx_row0 : forall m n i0, mx_row i0 (@null_mx m n) === (@null_mx 1 n).
Proof. by move=> m n; rewrite/trmx/null_mx/addmx/oppmx/scalemx; reflexivity. Qed.
Lemma mx_col0 : forall m n j0, mx_col j0 (@null_mx m n) === (@null_mx m 1).
Proof. by move=> m n; rewrite/trmx/null_mx/addmx/oppmx/scalemx; reflexivity. Qed.
Lemma mx_row'0 : forall m n i0, mx_row' i0 (@null_mx m n) === (@null_mx m.-1 n).
Proof. by move=> m n; rewrite/trmx/null_mx/addmx/oppmx/scalemx; reflexivity. Qed.
Lemma mx_col'0 : forall m n i0, mx_col' i0 (@null_mx m n) === (@null_mx m n.-1).
Proof. by move=> m n; rewrite/trmx/null_mx/addmx/oppmx/scalemx; reflexivity. Qed.
Lemma pastemx0 : forall m n1 n2,
pastemx (@null_mx m n1) (@null_mx m n2) === (@null_mx m (n1 + n2)).
Proof. by move=> m n1 n2 i j; rewrite/pastemx/trmx/null_mx/addmx/oppmx/scalemx; case: split; reflexivity. Qed.
Lemma addmx_paste : forall m n1 n2 (A1 B1 : 'M_(m, n1)) (A2 B2 : 'M_(m, n2)),
pastemx A1 A2 +m pastemx B1 B2 === pastemx (A1 +m B1) (A2 +m B2).
Proof. by move=> m n1 n2 iA1 B1 A2 B2 i j; rewrite/pastemx/trmx/null_mx/addmx/oppmx/scalemx; case: split; reflexivity. Qed.
Lemma scalemx_paste : forall m n1 n2 a (A1 : 'M_(m, n1)) (A2 : 'M_(m, n2)),
a *m: pastemx A1 A2 === pastemx (a *m: A1) (a *m: A2).
Proof. by move=> m n1 n2 a A1 A2 i j; rewrite/pastemx/trmx/null_mx/addmx/oppmx/scalemx; case: split; reflexivity. Qed.
Lemma block_mx0 : forall m1 m2 n1 n2,
block_mx (@null_mx m1 n1) (@null_mx m1 n2) (@null_mx m2 n1) (@null_mx m2 n2) === @null_mx (m1 + m2) (n1 + n2).
Proof. by move=> m1 m2 n1 n2 i j; rewrite/block_mx/pastemx/trmx/null_mx/addmx/oppmx/scalemx; case: split; case: split; reflexivity. Qed.
Lemma addmx_block : forall m1 m2 n1 n2 (Aul Bul : 'M_(m1, n1)) (Aur Bur : 'M_(m1, n2)) (All Bll : 'M_(m2, n1)) (Alr Blr : 'M_(m2, n2)),
block_mx Aul Aur All Alr +m block_mx Bul Bur Bll Blr
=== block_mx (Aul +m Bul) (Aur +m Bur) (All +m Bll) (Alr +m Blr).
Proof. by move=> m1 m2 n1 n2 Aul Bul Aur Bur All Bll Alr Blr i j; rewrite/block_mx/pastemx/trmx/null_mx/addmx/oppmx/scalemx; case: split; case: split; reflexivity. Qed.
Lemma scalemx_block : forall m1 m2 n1 n2 a (Aul : 'M_(m1, n1)) (Aur : 'M_(m1, n2)) (All : 'M_(m2, n1)) (Alr : 'M_(m2, n2)),
a *m: block_mx Aul Aur All Alr
=== block_mx (a *m: Aul) (a *m: Aur) (a *m: All) (a *m: Alr).
Proof. by move=> m1 m2 n1 n2 a Aul Aur All Alr i j; rewrite/block_mx/pastemx/trmx/null_mx/addmx/oppmx/scalemx; case: split; case: split; reflexivity. Qed.
(* The graded ring structure *)
Definition scalar_mx n x := \matrix_(i , j < n) (if i == j then x else 0).
Global Instance scalar_mx_morph n : Morphism (Equivalence.equiv==>Equivalence.equiv) (@scalar_mx n).
Proof. by rewrite/scalar_mx=>n x y eqxy i j; case:(i==j); [apply eqxy | reflexivity]. Qed.
Definition mulmx m n p (A : 'M_(m, n)) (B : 'M_(n, p)) :=
\matrix_(i < m, k < p) \big [radd/0]_(j < n) (A i j * B j k).
Global Instance mulmx_morph m n p : Morphism (Equivalence.equiv==>Equivalence.equiv==>Equivalence.equiv) (@mulmx m n p).
Proof.
move=> m n p A A' eqAA' B B' eqBB' i k.
rewrite/mulmx; apply eq_bigr=> j _.
by setoid_rewrite eqAA'; setoid_rewrite eqBB'; reflexivity.
Qed.
Notation "x %:M" := (@scalar_mx _ x).
Notation "A *m B" := (mulmx A B).
Lemma scalar_mx0 : forall n, 0 %:M === @null_mx n n.
Proof. by move=> n i j; rewrite/block_mx/pastemx/trmx/null_mx/addmx/oppmx/scalemx/scalar_mx/mulmx; case: eqP=> _; ring. Qed.
Lemma scalar_mx_opp : forall (n : nat) a, (- a)%:M === -m (@scalar_mx n a).
Proof. by move=> n a i j; rewrite/block_mx/pastemx/trmx/null_mx/addmx/oppmx/scalemx/scalar_mx/mulmx; case: eqP=> _; ring. Qed.
Lemma scalar_mx_add : forall n a b, @scalar_mx n (a + b) === a%:M +m b%:M.
Proof. by move=> n a b i j; rewrite/block_mx/pastemx/trmx/null_mx/addmx/oppmx/scalemx/scalar_mx/mulmx; case: eqP=> _; ring. Qed.
Lemma mulmx_scalar : forall m n a (A : 'M_(m, n)), (a%:M) *m A === a *m: A.
Proof.
move=> m n a A i j; rewrite/block_mx/pastemx/trmx/null_mx/addmx/oppmx/scalemx/scalar_mx/mulmx.
setoid_rewrite (bigD1 (j:=i))=>//.
setoid_rewrite big1=>[|i'/=]; first by case: eqP=>ii'//; ring.
by rewrite/is_true eq_sym; move/negbRL=>->/=; ring.
Qed.
Lemma scalar_mx_mul : forall n a b, @scalar_mx n (a * b) === a%:M *m b%:M.
Proof. by move=> n a b; rewrite -> mulmx_scalar; rewrite /scalar_mx /scalemx=> i j; by case (i==j); ring. Qed.
Lemma trmx_scalar : forall n a, (a%:M)^T === @scalar_mx n a.
Proof. by move=> n a i j; rewrite/trmx/null_mx/addmx/oppmx/scalemx/scalar_mx/mulmx eq_sym; reflexivity. Qed.
Lemma mul1mx : forall m n (A : 'M_(m, n)), 1%:M *m A === A.
Proof. by move=> m n A; rewrite -> mulmx_scalar, scale1mx; reflexivity. Qed.
Lemma mulmx_addl : forall m n p (A1 A2 : 'M_(m, n)) (B : 'M_(n, p)),
(A1 +m A2) *m B === A1 *m B +m A2 *m B.
Proof.
move=> m n p A1 A2 B i k; rewrite /addmx /mulmx.
setoid_rewrite <- big_split.
by apply eq_bigr=> j _; ring.
Qed.
Lemma scalemx_add : forall n a1 a2, @scalar_mx n (a1 + a2) === a1%:M +m a2%:M.
Proof. by move=> n a1 a2 i j; rewrite/scalar_mx/addmx; case: (i==j); ring. Qed.
Lemma scalemxAl : forall m n p a (A : 'M_(m, n)) (B : 'M_(n, p)),
a *m: (A *m B) === (a *m: A) *m B.
Proof.
move=> m n p a A B i k.
rewrite/scalemx/mulmx.
setoid_rewrite (big_distrr).
apply eq_bigr => j _; ring.
Qed.
Lemma mul0mx : forall m n p (A : 'M_(n, p)), '0m *m A === @null_mx m p.
Proof. by move=> m n p A i k; rewrite/mulmx/null_mx; apply (big1 (P:=fun _ => true) (F:=fun j => 0 * A j k))=> j _; ring. Qed.
Lemma mulmx0 : forall m n p (A : 'M_(m, n)), A *m '0m === @null_mx m p.
Proof. by move=> m n p A i k; rewrite/mulmx/null_mx; apply (big1 (P:=fun _ => true) (F:=fun j => A i j * 0))=> j _; ring. Qed.
Lemma mulmx1 : forall m n (A : 'M_(m, n)), A *m 1%:M === A.
Proof.
move=> m n A i k; rewrite/mulmx/scalar_mx.
setoid_rewrite (bigD1 (j:=k))=>//.
setoid_rewrite big1=> [| j/=]; first by rewrite eq_refl; ring.
by rewrite/is_true; move/negbRL=>->/=; ring.
Qed.
Lemma mulmx_addr : forall m n p (A : 'M_(m, n)) (B1 B2 : 'M_(n, p)),
A *m (B1 +m B2) === A *m B1 +m A *m B2.
Proof. by move=> m n p A B1 B2 i k; rewrite/mulmx/addmx; setoid_rewrite <- big_split; apply eq_bigr=> j _; ring. Qed.
Lemma mulmxA : forall m n p q (A : 'M_(m, n)) (B : 'M_(n, p)) (C : 'M_(p, q)),
A *m (B *m C) === A *m B *m C.
Proof.
move=> m n p q A B C i l; rewrite/mulmx.
setoid_rewrite big_distrr; setoid_rewrite big_distrl.
setoid_rewrite (exchange_big predT predT (fun j k => A i j * (B j k * C k l))).
by apply eq_bigr=> j _; apply eq_bigr=> k _; ring.
Qed.
Definition perm_mx n (s : 'S_n) :=
\matrix_(i, j) (if s i == j then 1 else 0).
Definition tperm_mx n i1 i2 := @perm_mx n (tperm i1 i2).
Lemma trmx_perm : forall n (s : 'S_n), (perm_mx s)^T === perm_mx s^-1.
Proof. by move=> n s i j; rewrite /trmx /perm_mx (canF_eq (permK _)) eq_sym; reflexivity. Qed.
Lemma trmx_tperm : forall n i1 i2, (@tperm_mx n i1 i2)^T === tperm_mx i1 i2.
Proof. by move=> n i1 i2; rewrite /tperm_mx; rewrite -> trmx_perm, tpermV; reflexivity. Qed.
Lemma mulmx_perm : forall n (s t : 'S_n),
perm_mx s *m perm_mx t === perm_mx (s * t).
Proof.
move=> n s t i j; rewrite/mulmx/perm_mx.
setoid_rewrite (bigD1 (j:=s i))=>//=.
setoid_rewrite (big1 (P:=fun k => k != s i))=>[|k]; first by rewrite eq_refl permM; ring.
by rewrite eq_sym; move/negbTE => ->; ring.
Qed.
Lemma mul_tperm_mx : forall m n (A : 'M_(m, n)) i1 i2,
(tperm_mx i1 i2) *m A === rswap i1 i2 A.
Proof.
move=> m n' A i1 i2 i j.
rewrite /mulmx /tperm_mx /perm_mx /rswap.
setoid_rewrite (bigD1 (j:=tperm i1 i2 i))=>//=.
setoid_rewrite (big1 (P:=fun k => k != tperm i1 i2 i))=>[|k]; first by rewrite eq_refl; ring.
by rewrite eq_sym; move/negbTE => ->; ring.
Qed.
Lemma perm_mx1 : forall n, perm_mx 1 === @scalar_mx n 1.
Proof. by move=> n i j; rewrite /perm_mx /scalar_mx perm1; reflexivity. Qed.
(* The trace, in 1/4 line. *)
Definition mx_trace n (A : 'M_n) := \sum_(i < n) A i i.
Notation "'\tr' A" := (mx_trace A).
Lemma mx_trace0 : forall n, \tr ('0m : 'M_n) === 0.
Proof. by move=> n; apply (big1 (I:=ordinal_finType n))=> i _; reflexivity. Qed.
Lemma mx_trace_scale : forall n a (A : 'M_n), \tr (a *m: A) === a * \tr A.
Proof. by move=> n a A; rewrite/mx_trace; setoid_rewrite (big_distrr (I:=ordinal_finType n)); apply eq_bigr => i _; reflexivity. Qed.
Notation "a *+ n" := (iter n (radd a) rO).
Lemma mx_trace_scalar : forall n a, \tr (a%:M : 'M_n) === a *+ n.
Proof. by move=> n a; rewrite <- big_const_ord; apply eq_bigr=> i _; rewrite/scalar_mx eq_refl; reflexivity. Qed.
Lemma mx_trace_add : forall n A B, \tr (A +m B : 'M_n) === \tr A + \tr B.
Proof. by move=> n A B; rewrite/mx_trace/addmx; apply big_split. Qed.
Lemma mx_trace_tr : forall n (A : 'M_n), \tr A^T === \tr A.
Proof. by move=> n A; apply eq_bigr=> i _; reflexivity. Qed.
Lemma mx_trace_block : forall n1 n2 Aul Aur All Alr,
\tr (block_mx Aul Aur All Alr : 'M_(n1 + n2)) === \tr Aul + \tr Alr.
Proof.
move=> n1 n2 Aul Aur All Alr; rewrite /mx_trace; setoid_rewrite big_split_ord => /=.
apply radd_morph; apply eq_bigr=> i _; [rewrite -> block_mxEul | rewrite -> block_mxElr]; reflexivity.
Qed.
Lemma mulmx_paste : forall m n p1 p2 (A : 'M_(m, n)) (B1 : 'M_(n, p1)) (B2 : 'M_(n, p2)),
A *m (pastemx B1 B2) === pastemx (A *m B1) (A *m B2).
Proof. by move=> m n p1 p2 A B1 B2 i k; rewrite/pastemx/mulmx; case defk: (split k) => [k1 | k2]; apply eq_bigr=> j _; reflexivity. Qed.
Lemma dotmx_paste : forall m n1 n2 p A1 A2 B1 B2,
(pastemx A1 A2 : 'M_(m, n1 + n2)) *m (pastemx B1 B2 : 'M_(p, n1 + n2))^T
=== A1 *m B1^T +m A2 *m B2^T.
Proof.
move=> m n1 n2 p A1 A2 B1 B2 i k; rewrite/mulmx/addmx/trmx; setoid_rewrite big_split_ord.
by apply radd_morph; apply eq_bigr=> j _; [rewrite -> pastemxEl, pastemxEl | rewrite -> pastemxEr, pastemxEr]; reflexivity.
Qed.
End MatrixOpsDef.
Notation "'0m" := (@null_mx _ _ _ _ _ _ _ _ _ _ _ _).
Notation "-m A" := (oppmx A).
Notation "A +m B" := (addmx A B).
Notation "A -m B" := (addmx A (oppmx B)).
Notation "x *m: A" := (scalemx x A).
Notation "x %:M" := (scalar_mx x).
Notation "A *m B" := (mulmx A B).
Notation "'\tr' A" := (mx_trace A).
Section TrMul.
Context `{r_ring : Ring}.
Notation "0" := rO.
Notation "1" := rI.
Notation "x + y" := (radd x y).
Notation "x * y " := (rmul x y).
Notation "x - y " := (rsub x y).
Notation "- x" := (ropp x).
Notation "\sum_ ( <- r | P ) F" := (\big[radd/0]_(<- r | P) F).
Notation "\sum_ ( i <- r | P ) F" := (\big[radd/0]_(i <- r | P) F).
Notation "\sum_ ( i <- r ) F" := (\big[radd/0]_(i <- r) F).
Notation "\sum_ ( m <= i < n | P ) F" := (\big[radd/0]_(m <= i < n | P) F).
Notation "\sum_ ( m <= i < n ) F" := (\big[radd/0]_(m <= i < n) F).
Notation "\sum_ ( i | P ) F" := (\big[radd/0]_(i | P) F).
Notation "\sum_ i F" := (\big[radd/0]_i F).
Notation "\sum_ ( i : t | P ) F" := (\big[radd/0]_(i : t | P) F) (only parsing).
Notation "\sum_ ( i : t ) F" := (\big[radd/0]_(i : t) F) (only parsing).
Notation "\sum_ ( i < n | P ) F" := (\big[radd/0]_(i < n | P) F).
Notation "\sum_ ( i < n ) F" := (\big[radd/0]_(i < n) F).
Notation "\sum_ ( i \in A | P ) F" := (\big[radd/0]_(i \in A | P) F).
Notation "\sum_ ( i \in A ) F" := (\big[radd/0]_(i \in A) F).
Notation "\prod_ ( <- r | P ) F" := (\big[rmul/1]_(<- r | P) F).
Notation "\prod_ ( i <- r | P ) F" := (\big[rmul/1]_(i <- r | P) F).
Notation "\prod_ ( i <- r ) F" := (\big[rmul/1]_(i <- r) F).
Notation "\prod_ ( m <= i < n | P ) F" := (\big[rmul/1]_(m <= i < n | P) F).
Notation "\prod_ ( m <= i < n ) F" := (\big[rmul/1]_(m <= i < n) F).
Notation "\prod_ ( i | P ) F" := (\big[rmul/1]_(i | P) F).
Notation "\prod_ i F" := (\big[rmul/1]_i F).
Notation "\prod_ ( i : t | P ) F" := (\big[rmul/1]_(i : t | P) F) (only parsing).
Notation "\prod_ ( i : t ) F" := (\big[rmul/1]_(i : t) F) (only parsing).
Notation "\prod_ ( i < n | P ) F" := (\big[rmul/1]_(i < n | P) F).
Notation "\prod_ ( i < n ) F" := (\big[rmul/1]_(i < n) F).
Notation "\prod_ ( i \in A | P ) F" := (\big[rmul/1]_(i \in A | P) F).
Notation "\prod_ ( i \in A ) F" := (\big[rmul/1]_(i \in A) F).
Existing Instance radd_morph.
Existing Instance rmul_morph.
Existing Instance rsub_morph.
Existing Instance ropp_morph.
Existing Instance radd_assoc.
Existing Instance radd_comm.
Existing Instance radd_left_unit.
Existing Instance rmul_assoc.
Existing Instance rmul_comm.
Existing Instance rmul_left_unit.
Existing Instance rmul_left_zero.
Existing Instance radd_rmul_left_distr.
Add Ring r_r2 : r_rt (setoid r_st r_ree, preprocess [unfold Equivalence.equiv]).
Existing Instance addmx_morph.
Existing Instance oppmx_morph.
Existing Instance mulmx_morph.
Existing Instance trmx_morph.
Existing Instance pastemx_morph.
Existing Instance block_mx_morph.
Lemma trmx_mul_rev : forall m n p (A : matrix R m n) (B : matrix R n p),
(A *m B)^T === B^T *m A^T.
Proof. by move=> m n p A B k i; rewrite/trmx; apply eq_bigr=> j _; ring. Qed.
Lemma mulmx_block : forall m1 m2 n1 n2 p1 p2 (Aul : matrix R m1 n1) Aur All Alr Bul Bur Bll Blr,
(block_mx Aul Aur All Alr : 'M_(m1 + m2, n1 + n2))
*m (block_mx Bul Bur Bll Blr : 'M_(n1 + n2, p1 + p2))
=== block_mx (Aul *m Bul +m Aur *m Bll) (Aul *m Bur +m Aur *m Blr)
(All *m Bul +m Alr *m Bll) (All *m Bur +m Alr *m Blr).
Proof.
move=> m1 m2 n1 n2 p1 p2 Aul Aur All Alr Bul Bur Bll Blr/=; rewrite <- (trmxK (_ *m _)).
rewrite -> trmx_mul_rev, (trmx_block Aul); rewrite /block_mx; rewrite -> (trmxK (pastemx _ _)), dotmx_paste, <- !addmx_paste.
by rewrite -> !trmx_add, (trmxK _), (trmxK _), <- addmx_paste, !mulmx_paste, <- !trmx_mul_rev, !mulmx_paste; reflexivity.
Qed.
Lemma mul_mx_tperm : forall m n (A : matrix R m n) i1 i2,
A *m (tperm_mx i1 i2) === cswap i1 i2 A.
Proof.
move=> m n A i1 i2; apply: trmx_inj.
by rewrite -> trmx_mul_rev, trmx_tperm, mul_tperm_mx, trmx_cswap; reflexivity.
Qed.
End TrMul.
Section ComMatrix.
Context `{r_ring : Ring}.
Notation "0" := rO.
Notation "1" := rI.
Notation "x + y" := (radd x y).
Notation "x * y " := (rmul x y).
Notation "x - y " := (rsub x y).
Notation "- x" := (ropp x).
Notation "\sum_ ( <- r | P ) F" := (\big[radd/0]_(<- r | P) F).
Notation "\sum_ ( i <- r | P ) F" := (\big[radd/0]_(i <- r | P) F).
Notation "\sum_ ( i <- r ) F" := (\big[radd/0]_(i <- r) F).
Notation "\sum_ ( m <= i < n | P ) F" := (\big[radd/0]_(m <= i < n | P) F).
Notation "\sum_ ( m <= i < n ) F" := (\big[radd/0]_(m <= i < n) F).
Notation "\sum_ ( i | P ) F" := (\big[radd/0]_(i | P) F).
Notation "\sum_ i F" := (\big[radd/0]_i F).
Notation "\sum_ ( i : t | P ) F" := (\big[radd/0]_(i : t | P) F) (only parsing).
Notation "\sum_ ( i : t ) F" := (\big[radd/0]_(i : t) F) (only parsing).
Notation "\sum_ ( i < n | P ) F" := (\big[radd/0]_(i < n | P) F).
Notation "\sum_ ( i < n ) F" := (\big[radd/0]_(i < n) F).
Notation "\sum_ ( i \in A | P ) F" := (\big[radd/0]_(i \in A | P) F).
Notation "\sum_ ( i \in A ) F" := (\big[radd/0]_(i \in A) F).
Notation "\prod_ ( <- r | P ) F" := (\big[rmul/1]_(<- r | P) F).
Notation "\prod_ ( i <- r | P ) F" := (\big[rmul/1]_(i <- r | P) F).
Notation "\prod_ ( i <- r ) F" := (\big[rmul/1]_(i <- r) F).
Notation "\prod_ ( m <= i < n | P ) F" := (\big[rmul/1]_(m <= i < n | P) F).
Notation "\prod_ ( m <= i < n ) F" := (\big[rmul/1]_(m <= i < n) F).
Notation "\prod_ ( i | P ) F" := (\big[rmul/1]_(i | P) F).
Notation "\prod_ i F" := (\big[rmul/1]_i F).
Notation "\prod_ ( i : t | P ) F" := (\big[rmul/1]_(i : t | P) F) (only parsing).
Notation "\prod_ ( i : t ) F" := (\big[rmul/1]_(i : t) F) (only parsing).
Notation "\prod_ ( i < n | P ) F" := (\big[rmul/1]_(i < n | P) F).
Notation "\prod_ ( i < n ) F" := (\big[rmul/1]_(i < n) F).
Notation "\prod_ ( i \in A | P ) F" := (\big[rmul/1]_(i \in A | P) F).
Notation "\prod_ ( i \in A ) F" := (\big[rmul/1]_(i \in A) F).
Existing Instance radd_morph.
Existing Instance rmul_morph.
Existing Instance rsub_morph.
Existing Instance ropp_morph.
Existing Instance radd_assoc.
Existing Instance radd_comm.
Existing Instance radd_left_unit.
Existing Instance rmul_assoc.
Existing Instance rmul_comm.
Existing Instance rmul_left_unit.
Existing Instance rmul_left_zero.
Existing Instance radd_rmul_left_distr.
Add Ring r_r3 : r_rt (setoid r_st r_ree, preprocess [unfold Equivalence.equiv]).
Existing Instance addmx_morph.
Existing Instance oppmx_morph.
Existing Instance mulmx_morph.
Existing Instance trmx_morph.
Existing Instance pastemx_morph.
Existing Instance block_mx_morph.
Lemma trmx_mul : forall m n p (A : matrix R m n) (B : 'M_(n, p)),
(A *m B)^T === B^T *m A^T.
Proof.
move=> m n p A B; rewrite -> trmx_mul_rev; rewrite /mulmx=> k i.
by apply (eq_bigr (I:=ordinal_finType n)) => j _; reflexivity.
Qed.
Lemma scalemxAr : forall m n p a (A : matrix R m n) (B : 'M_(n, p)),
a *m: (A *m B) === A *m (a *m: B).
Proof.
move=> m n p a A B; apply trmx_inj.
by rewrite -> trmx_scale, !trmx_mul, trmx_scale, scalemxAl; reflexivity.
Qed.
Lemma scalar_mx_comm : forall (n : pos_nat) a (A : matrix R n n),
A *m (a%:M) === (a%:M) *m A.
Proof.
move=> n a A; apply: trmx_inj; rewrite -> trmx_mul, trmx_scalar.
by rewrite -> !mulmx_scalar, trmx_scale; reflexivity.
Qed.
Lemma mx_trace_mulC : forall m n (A : matrix R m n) B,
\tr (A *m B) === \tr (B *m A).
Proof.
move=> m n A B; transitivity (\sum_(i < m) \sum_(j < n) A i j * B j i).
by apply eq_bigr; reflexivity.
setoid_rewrite (exchange_big (I:=ordinal_finType m)); apply eq_bigr => i _.
by apply eq_bigr => j _; ring.
Qed.
Local Notation "x ^+ n" := (iter n (rmul x) 1).
(* The determinant, in one line. *)
Definition determinant n (A : matrix R n n) :=
\big[radd/0]_(s : 'S_n) ((-(1:R)) ^+ s * \prod_(i < n) A i (s i)).
Global Instance determinant_morph n : Morphism (Equivalence.equiv==>Equivalence.equiv) (@determinant n).
Proof.
move=> n A B eqAB; rewrite /determinant; apply eq_bigr => s _.
apply rmul_morph; first by reflexivity.
by apply eq_bigr => i _; apply eqAB.
Qed.
Notation "'\det' A" := (determinant A).
Definition cofactor n A (i j : 'I_n) : R :=
(-(1:R)) ^+ (i + j) * \det (mx_row' i (mx_col' j A)).
Definition adjugate n A := \matrix_(i, j < n) (cofactor A j i : R).
Lemma determinant_multilinear : forall n (A B C : 'M_n) i0 b c,
mx_row i0 A === b *m: mx_row i0 B +m c *m: mx_row i0 C ->
mx_row' i0 B === mx_row' i0 A ->
mx_row' i0 C === mx_row' i0 A ->
\det A === b * \det B + c * \det C.
Proof.
move=> n A B C i0 b c; rewrite <- (mx_row_id (_ +m _)); move/mx_row_eq=> ABC.
move/mx_row'_eq=> BA; move/mx_row'_eq=> CA; rewrite/determinant.
setoid_rewrite (big_distrr _ b); setoid_rewrite (big_distrr _ c).
rewrite <- big_split; apply eq_bigr => s _ /=.
have Heq : forall x y z, req (b * (z * x) + c * (z * y)) (z * (b * x + c * y)) by move=> x y z; ring.
rewrite -> Heq.
apply rmul_morph; first by reflexivity.
setoid_rewrite (bigD1 (j:=i0))=>//=.
rewrite -> (ABC _).
rewrite/mx_row/addmx/scalemx.
transitivity ((b * B i0 (s i0)) * \prod_(i < n | i != i0) A i (s i)
+ c * (C i0 (s i0) * \prod_(i < n | i != i0) A i (s i))).
set tmp := reducebig _ _ _ _ _; ring.
apply radd_morph.
ring_simplify; apply rmul_morph; first by reflexivity.
by apply eq_bigr => i neq; symmetry; apply BA.
ring_simplify; apply rmul_morph; first by reflexivity.
by apply eq_bigr => i neq; symmetry; apply CA.
Qed.
Lemma alternate_determinant : forall n (A : 'M_n) i1 i2,
i1 != i2 -> A i1 === A i2 -> \det A === 0.
Proof.
move=> n A i1 i2 Di12 A12; pose r := 'I_n.
pose t := tperm i1 i2; pose tr s := (t * s)%g.
have trK : involutive tr by move=> s; rewrite /tr mulgA tperm2 mul1g.
rewrite /(\det _).
setoid_rewrite (bigID (index_enum (perm_for_finType (ordinal_finType n))) (fun s => (s : bool))) => /=.
set S1 := reducebig _ _ _ _ _; set T := S1 + _.
have: req (S1 + (- S1)) 0 by ring.
move => eq; rewrite <- eq; clear eq.
apply radd_morph; first by reflexivity.
rewrite {T}/S1.
setoid_rewrite (big_morph (op2:=radd) (idx2:=0) (phi:=ropp)); [|by move=> x y; ring|by ring|by apply radd_morph].
setoid_rewrite (reindex (h:=tr)) at 1 => /=; last by exists tr => ? _.
symmetry; apply eq_big => [s | s seven].
by rewrite /tr odd_permM odd_tperm Di12 negbK.
rewrite odd_permM odd_tperm Di12 seven=> /=; ring_simplify.
setoid_rewrite (reindex (h:=t)) at 1=>/=; last by exists (t : _ -> _) => i _; exact: tpermK.
apply eq_bigr => i _; rewrite permM /t.
by case: tpermP=> [H|H|H1 H2]; [rewrite -> H, (A12 _)|rewrite -> H, (A12 _)|]; reflexivity.
Qed.
Lemma det_trmx : forall n (A : 'M_n), \det A^T === \det A.
Proof.
move=> n A; pose r := 'I_n; pose ip p : 'S_n := p^-1%g.
rewrite /(\det _).
setoid_rewrite (reindex (h:=ip)) at 1 => /=; last first.
by exists ip => s _; rewrite /ip invgK.
apply eq_bigr => s _; rewrite !odd_permV /=.
apply rmul_morph; first by reflexivity.
setoid_rewrite (reindex (h:=s)) at 1.
apply eq_bigr => i _; rewrite permK /trmx; reflexivity.
by exists (s^-1%g : _ -> _) => i _; rewrite ?permK ?permKV.
Qed.
Lemma det_perm_mx : forall n (s : 'S_n), \det (perm_mx s) === (-(1:R)) ^+s.
Proof.
move=> n s; rewrite /(\det _); setoid_rewrite (bigD1 (j:=s))=>//=.
setoid_rewrite (big1 (I:=perm_for_finType (ordinal_finType n))).
rewrite/perm_mx; setoid_rewrite (big1 (I:=ordinal_finType n)); first by ring.
by move=> i _; rewrite eq_refl; reflexivity.
move=> t neq; rewrite/perm_mx.
have Heq : req (\prod_(i < n) (if s i == t i then 1 else 0)) 0; last by rewrite -> Heq; ring.
case: (pickP (fun i => s i != t i)) => [i ist | Est].
by setoid_rewrite (bigD1 (j:=i))=>//; rewrite (negbTE ist); ring.
by case/eqP:neq; apply/permP=>i; apply/eqP; move:(Est i); rewrite eq_sym; apply negbFE.
Qed.
Lemma det1 : forall n, \det (1%:M : matrix R n n) === 1.
Proof.
move=> n; rewrite <- perm_mx1, det_perm_mx, odd_perm1.
by rewrite/iter/=; reflexivity.
Qed.
Lemma det_scalemx : forall n x (A : 'M_n),
\det (x *m: A) === x ^+ n * \det A.
Proof.
move=> n x A; rewrite/determinant.
setoid_rewrite (big_distrr (I:=perm_for_finType (ordinal_finType n)))=>/=.
apply eq_bigr => s _; ring_simplify.
setoid_rewrite <- rmul_assoc; apply rmul_morph; first by reflexivity.
rewrite/scalemx; setoid_rewrite <- (card_ord n) at 4.
setoid_rewrite big_split; apply rmul_morph; last by reflexivity.
by rewrite <- big_const; apply eq_bigr; reflexivity.
Qed.
Lemma det_mulmx : forall n (A B : 'M_n), \det (A *m B) === \det A * \det B.
Proof.
move=> n A B.
pose AB (f : {ffun _}) := \matrix_(i, j) (A i (f i) * B (f i) j).
transitivity (\sum_f \det (AB f)).
rewrite{2}/determinant.
setoid_rewrite (exchange_big (I:=finfun_of_finType (ordinal_finType n) (ordinal_finType n))).
apply eq_bigr => /= s _.
rewrite <- big_distrr => /=; apply rmul_morph; first by reflexivity.
rewrite/mulmx.
setoid_rewrite (bigA_distr_bigA (I:=ordinal_finType n)).
by apply eq_bigr=>s' _; reflexivity.
pose P_inj := fun f : {ffun 'I_n -> 'I_n} => injectiveb f.
setoid_rewrite (bigID _ P_inj xpredT (fun f => \det (AB f)))=> /=.
setoid_rewrite (big1 (I:=finfun_of_finType (ordinal_finType n) (ordinal_finType n))) at 2=>[|f]; last first.
rewrite{}/P_inj; case/injectivePn=>i0;case=>j0 neq eq; rewrite{}/AB /determinant.
setoid_rewrite big_split; setoid_rewrite rmul_comm at 2; setoid_rewrite rmul_assoc.
rewrite <- big_distrl; rewrite -/(\det \matrix_(i,j) B (f i) j).
by rewrite -> (alternate_determinant neq)=>[|i]; [ring|rewrite eq; reflexivity].
setoid_rewrite (reindex (J:=perm_for_finType (ordinal_finType n)) (h:=fun s => pval s)); last first.
have s0 : 'S_n := 1%g; pose uf (f : {ffun 'I_n -> 'I_n}) := uniq (val f).
exists (insubd s0) => /= f Uf; first apply: val_inj; exact: insubdK.
setoid_rewrite (eq_bigl (I:=perm_for_finType (ordinal_finType n)) (P1:=fun j => P_inj (pval j)) (P2:=predT) _ (fun j => \det (AB (pval j)))); last by case.
rewrite{2}/determinant=>{P_inj}; setoid_rewrite (big_distrl _ (\det _)).
ring_simplify; apply eq_bigr=>s _; rewrite{}/AB (pvalE s) {2}/determinant.
setoid_rewrite big_distrr.
transitivity (\sum_(s' : 'S_n) (- (1)) ^+ s * (- rI) ^+ s' * (\prod_(i < n) A i (s i) *
\prod_(i < n) B i (s' i))); last by apply eq_bigr=> j _; ring.
have : forall s' : 'S_n, req ((- rI) ^+ s * (- rI) ^+ s') ((-rI) ^+ (s * s')%g).
by move=>s'; rewrite odd_permM; case: (odd_perm s); case: (odd_perm s')=>/=; ring.
move=>eq_puiss; setoid_rewrite eq_puiss; clear eq_puiss.
setoid_rewrite (reindex (h:=fun t => (s^-1%g * t)%g)); last first.
by exists [eta mulg s]=>s' _ /=; [apply (mulKVg s s') | apply (mulKg s s')].
apply eq_bigr=> s' _; rewrite (mulKVg s s'); apply rmul_morph; first by reflexivity.
setoid_rewrite (reindex (h:=s)) at 3; last by exists (s^-1)%g=>i _; [rewrite permK|rewrite permKV].
setoid_rewrite big_split; apply rmul_morph; first by reflexivity.
by apply eq_bigr=>i _; rewrite -permM (mulKVg s s'); reflexivity.
Qed.
Definition lift_perm_fun n i j (s : 'S_n) k :=
if @unlift n.+1 i k is Some k' then @lift n.+1 j (s k') else j.
Lemma lift_permK : forall n i j s,
cancel (@lift_perm_fun n i j s) (lift_perm_fun j i s^-1%g).
Proof.
move=> n i j s k; rewrite /lift_perm_fun.
by case: (unliftP i k) => [j'|] ->; rewrite (liftK, unlift_none) ?permK.
Qed.
Definition lift_perm n i j s := perm (can_inj (@lift_permK n i j s)).
Lemma lift_perm_id : forall n i j s, lift_perm i j s i = j :> 'I_n.+1.
Proof. by move=> n i j s; rewrite permE /lift_perm_fun unlift_none. Qed.
Lemma lift_perm_lift : forall n i j s k,
lift_perm i j s (lift i k) = lift j (s k) :> 'I_n.+1.
Proof. by move=> n i j s k; rewrite permE /lift_perm_fun liftK. Qed.
Lemma lift_permM : forall n i j k s t,
(@lift_perm n i j s * lift_perm j k t)%g = lift_perm i k (s * t)%g.
Proof.
move=> n i j k s t; apply/permP=> i1; case: (unliftP i i1) => [i2|] ->{i1}.
by rewrite !(permM, lift_perm_lift).
by rewrite permM !lift_perm_id.
Qed.
Lemma lift_perm1 : forall n i, @lift_perm n i i 1 = 1%g.
Proof.
by move=> n i; apply: (mulgI (lift_perm i i 1)); rewrite lift_permM !mulg1.
Qed.
Lemma lift_permV : forall n i j s,
(@lift_perm n i j s)^-1%g = lift_perm j i s^-1.
Proof.
by move=> n i j s; apply/eqP; rewrite eq_invg_mul lift_permM mulgV lift_perm1.
Qed.
Lemma odd_lift_perm : forall n i j s,
@lift_perm n i j s = odd i (+) odd j (+) s :> bool.
Proof.
move=> n i j s; rewrite -{1}(mul1g s) -(lift_permM _ j) odd_permM.
congr (_ (+) _); last first.
case: (prod_tpermP s) => ts ->{s} _.
elim: ts => [|t ts IHts] /=; first by rewrite bigops.big_nil lift_perm1 !odd_perm1.
rewrite bigops.big_cons odd_mul_tperm -(lift_permM _ j) odd_permM {}IHts //.
congr (_ (+) _); rewrite (_ : _ j _ = tperm (lift j t.1) (lift j t.2)).
by rewrite odd_tperm (inj_eq (@lift_inj _ _)).
apply/permP=> k; case: (unliftP j k) => [k'|] ->.
rewrite lift_perm_lift inj_tperm //; exact: lift_inj.
by rewrite lift_perm_id tpermD // eq_sym neq_lift.
suff{i j s} odd_lift0: forall k : 'I_n.+1, lift_perm ord0 k 1 = odd k :> bool.
rewrite -!odd_lift0 -{2}invg1 -lift_permV odd_permV -odd_permM.
by rewrite lift_permM mulg1.
move=> k; elim: {k}(k : nat) {1 3}k (erefl (k : nat)) => [|m IHm] k def_k.
rewrite (_ : k = ord0) ?lift_perm1 ?odd_perm1 //; exact: val_inj.
have le_mn: m < n.+1 by [rewrite -def_k ltnW]; pose j := Ordinal le_mn.
rewrite -(mulg1 1)%g -(lift_permM _ j) odd_permM {}IHm // addbC.
rewrite (_ : _ k _ = tperm j k).
by rewrite odd_tperm neq_ltn def_k leqnn.
apply/permP=> i; case: (unliftP j i) => [i'|] ->; last first.
by rewrite lift_perm_id tpermL.
apply: ord_inj; rewrite lift_perm_lift !permE /= eq_sym -if_neg neq_lift.
rewrite fun_if -val_eqE /= def_k /bump ltn_neqAle andbC.
case: leqP => [_ | lt_i'm] /=; last by rewrite -if_neg neq_ltn leqW.
by rewrite add1n eqSS eq_sym; case: eqP.
Qed.
Lemma expand_cofactor : forall n (A : 'M_n) i j,
cofactor A i j ===
\sum_(s : 'S_n | s i == j) (-(1:R)) ^+ s * \prod_(k | i != k) A k (s k).
Proof.
move=> [_ [] //|n] A i0 j0; setoid_rewrite (reindex (h:=lift_perm i0 j0)); last first.
pose ulsf i (s : 'S_n.+1) k := odflt k (unlift (s i) (s (lift i k))).
have ulsfK: forall i (s : 'S__) k, lift (s i) (ulsf i s k) = s (lift i k).
rewrite /ulsf => i s k; have:= neq_lift i k.
by rewrite -(inj_eq (@perm_inj _ s)); case/unlift_some=> ? ? ->.
have inj_ulsf: injective (ulsf i0 _).
move=> s; apply: can_inj (ulsf (s i0) s^-1%g) _ => k'.
by rewrite {1}/ulsf ulsfK !permK liftK.
exists (fun s => perm (inj_ulsf s)) => [s _ | s].
by apply/permP=> k'; rewrite permE /ulsf lift_perm_lift lift_perm_id liftK.
move/(s _ =P _) => si0; apply/permP=> k.
case: (unliftP i0 k) => [k'|] ->; rewrite ?lift_perm_id //.
by rewrite lift_perm_lift -si0 permE ulsfK.
rewrite /cofactor /determinant.
setoid_rewrite (big_distrr (I:=perm_for_finType (ordinal_finType (predn (S n)))))=> /=.
apply eq_big => [s | s _]; first by rewrite lift_perm_id eqxx.
have Heq : forall i, req ((-rI) ^+ i) ((-rI) ^+ (odd i)).
elim=>[|i]//=; first by reflexivity.
by case: (odd i)=>/= H; simpl; ring_simplify; rewrite -> H; ring.
rewrite -> Heq, odd_lift_perm, <- odd_add, (Rmul_assoc r_rt).
apply rmul_morph; first by case: (odd (i0 + j0)); case (odd_perm s)=>//=; ring.
case: (pickP 'I_n) => [k0 _ | n0]; last first.
setoid_rewrite (big1 (I:=ordinal_finType n))=>[|i _]; last by have:= n0 i.
setoid_rewrite (big1 (I:=ordinal_finType (S n)))=>[|j]; first by reflexivity.
by case/unlift_some=> i; have:= n0 i.
setoid_rewrite (reindex (h:=lift i0)).
apply eq_big => [k | k _] /=; first by rewrite neq_lift //.
by rewrite lift_perm_lift; reflexivity.
exists (fun k => odflt k0 (unlift i0 k)) => k; first by rewrite liftK.
by case/unlift_some=> k' -> ->.
Qed.
Lemma expand_det_row : forall n (A : 'M_n) i0,
\det A === \sum_j A i0 j * cofactor A i0 j.
Proof.
move=> n A i0; rewrite /(\det A).
setoid_rewrite (partition_big (P:=predT) (p:=fun s : 'S_n => s i0) (Q:=predT))=>//.
apply eq_bigr => j0 _; rewrite -> expand_cofactor.
setoid_rewrite (big_distrr _ (A i0 j0)).
apply eq_bigr => s; move/eqP=> Dsi0.
setoid_rewrite (bigID _ (pred1 i0)) at 1=>/=.
setoid_rewrite (big_pred1_eq (I:=ordinal_finType n)).
rewrite Dsi0; ring_simplify.
apply rmul_morph; first by reflexivity.
by apply eq_bigl=>i; rewrite eq_sym.
Qed.
Lemma cofactor_tr : forall n (A : 'M_n) i j,
cofactor A^T i j === cofactor A j i.
Proof.
move=> n A i j; rewrite /cofactor addnC.
apply rmul_morph; first by reflexivity.
rewrite <- det_trmx; apply determinant_morph.
by apply trmx_inj=>i' j'; apply trmxK.
Qed.
Lemma expand_det_col : forall n (A : 'M_n) j0,
\det A === \sum_i (A i j0 * cofactor A i j0).
Proof.
move=> n A j0; rewrite <- det_trmx, (expand_det_row _ j0).
by apply eq_bigr => i _; rewrite -> cofactor_tr; reflexivity.
Qed.
Lemma mulmx_adjr : forall n (A : 'M_n), A *m adjugate A === (\det A)%:M.
Proof.
rewrite/scalar_mx=> n A i1 i2; case Di: (i1 == i2).
rewrite -> (eqP Di), (expand_det_row _ i2)=> //=.
by apply eq_bigr => j _; apply rmul_morph; reflexivity.
pose B := \matrix_(i, j) (if i == i2 then A i1 j else A i j).
have EBi12: pointwise_relation 'I_n req (B i1) (B i2).
by rewrite /B Di eq_refl=>j; reflexivity.
rewrite <- (alternate_determinant (negbT Di) EBi12) at 2.
rewrite -> (expand_det_row _ i2); apply eq_bigr => j _.
rewrite /B eq_refl; apply rmul_morph; first by reflexivity.
rewrite/adjugate/cofactor; apply rmul_morph; first by reflexivity.
apply eq_bigr => s _; apply rmul_morph; first by reflexivity.
apply eq_bigr => i _; rewrite /mx_row' /mx_col'.
by rewrite eq_sym -if_neg neq_lift; reflexivity.
Qed.
Lemma trmx_adj : forall n (A : 'M_n), (adjugate A)^T === adjugate A^T.
Proof. by move=> n A i j; rewrite /adjugate; rewrite -> cofactor_tr; rewrite /trmx; reflexivity. Qed.
Lemma mulmx_adjl : forall n (A : 'M_n), adjugate A *m A === (\det A)%:M.
Proof.
move=> n A; apply trmx_inj; rewrite -> trmx_mul, trmx_adj, mulmx_adjr.
by rewrite -> det_trmx, trmx_scalar; reflexivity.
Qed.
Lemma detM : forall (n : pos_nat) (A B : 'M_n), \det (A *m B) === \det A * \det B.
Proof. move=> n; exact: det_mulmx. Qed.
Lemma det_scalar : forall n a, \det (a%:M : 'M_n) === a ^+ n.
Proof.
move=> n a.
transitivity ((a ^+ n) * rI); last by ring.
setoid_rewrite <- (det1 n) at 3; setoid_rewrite <- det_scalemx.
apply determinant_morph; rewrite <- mulmx_scalar; rewrite <- scalar_mx_mul.
by apply scalar_mx_morph; ring.
Qed.
Lemma det_scalar1 : forall a, \det (a%:M : 'M_1) === a.
Proof. by move=>a; rewrite -> (det_scalar 1 a)=> /=; ring. Qed.
Lemma det_ublock : forall n1 n2 (Aul : 'M_(n1, n1)) (Aur : 'M_(n1, n2)) (Alr : 'M_(n2, n2)),
\det (block_mx Aul Aur (@null_mx _ _ _ _ _ _ _ _ _ _ _ _) Alr : 'M_(n1 + n2)) === \det Aul * \det Alr.
Proof.
move=> n1 n2 Aul Aur Alr; elim: n1 => [|n1 IHn1] in Aul Aur *.
have Heq : req (\det Aul) 1.
by rewrite <- det1; apply determinant_morph; case.
rewrite -> Heq; ring_simplify; apply determinant_morph=> i j; rewrite/block_mx/pastemx/trmx.
case:splitP; [ by case | move=>i'; move/val_inj ->].
by case:splitP; [ case | move=> j'; move/val_inj ->; reflexivity].
rewrite -> (expand_det_col (block_mx Aul _ _ _) (lshift n2 ord0)).
setoid_rewrite big_split_ord=>/=.
setoid_rewrite (Radd_comm (r_rt (Ring:=r_ring))).
setoid_rewrite (big1 (I:= ordinal_finType n2))=>[|i _]; last first.
by rewrite -> block_mxEll; rewrite /null_mx; ring.
setoid_rewrite (Radd_0_l (r_rt (Ring:=r_ring))).
setoid_rewrite (expand_det_col Aul ord0).
setoid_rewrite big_distrl.
apply eq_bigr=>i _; rewrite -> block_mxEul.
setoid_rewrite <- Rmul_assoc; last by apply r_ring.
apply rmul_morph; first by reflexivity.
rewrite/cofactor; rewrite <- (Rmul_assoc r_rt).
rewrite <- (IHn1 (mx_row' i (mx_col' ord0 Aul)) (mx_row' i Aur)).
have -> : (addn (nat_of_ord i) (@nat_of_ord (S n1) ord0) = nat_of_ord i) by done.
apply rmul_morph; first by reflexivity.
apply determinant_morph; rewrite {2}/block_mx; rewrite <- (mx_row'_paste i), (trmx_row' i).
rewrite <- (mx_col'_lshift i), (trmx_col' (lshift n2 i)); apply (mx_row'_morph (lshift n2 i)).
rewrite <- (mx_col'_lshift ord0 Aul), (trmx_col' (lshift n2 ord0) (pastemx Aul Aur)).
rewrite /block_mx; rewrite <- trmx_row', mx_row'_paste; apply trmx_morph.
apply pastemx_morph; first by reflexivity.
rewrite <- trmx_col'; apply trmx_morph; rewrite -> mx_col'_lshift.
apply pastemx_morph; last by reflexivity.
by move=> i' j'; rewrite/mx_col'/lift/null_mx; reflexivity.
Qed.
Lemma det_lblock : forall n1 n2 Aul All Alr,
\det (block_mx Aul '0m All Alr : 'M_(n1 + n2)) === \det Aul * \det Alr.
Proof.
move=> n1 n2 Aul All Alr.
by rewrite <- det_trmx, trmx_block, trmx0, det_ublock, !det_trmx; reflexivity.
Qed.
End ComMatrix.
Notation "\det A" := (determinant A).
Notation "\adj A" := (adjugate A).
|