1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
|
(* Copyright © 1998-2006
* Henk Barendregt
* Luís Cruz-Filipe
* Herman Geuvers
* Mariusz Giero
* Rik van Ginneken
* Dimitri Hendriks
* Sébastien Hinderer
* Bart Kirkels
* Pierre Letouzey
* Iris Loeb
* Lionel Mamane
* Milad Niqui
* Russell O’Connor
* Randy Pollack
* Nickolay V. Shmyrev
* Bas Spitters
* Dan Synek
* Freek Wiedijk
* Jan Zwanenburg
*
* This work is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This work is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this work; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*)
Require Export CoRN.complex.CComplex.
(**
* Absolute value on [CC]
** Properties of [AbsCC] *)
Section AbsCC_properties.
Lemma AbsCC_nonneg : forall x : CC, [0] [<=] AbsCC x.
Proof.
unfold AbsCC in |- *. intros.
apply sqrt_nonneg.
Qed.
Lemma AbsCC_ap_zero_imp_pos : forall z : CC, AbsCC z [#] [0] -> [0] [<] AbsCC z.
Proof.
intros z H.
apply leEq_not_eq.
apply AbsCC_nonneg.
apply ap_symmetric_unfolded. assumption.
Qed.
Lemma AbsCC_wd : forall x y : CC, x [=] y -> AbsCC x [=] AbsCC y.
Proof.
intros x y. elim x. intros x1 x2. elim y. intros y1 y2.
simpl in |- *. unfold cc_eq in |- *. unfold AbsCC in |- *. simpl in |- *. intros.
change (sqrt (x1[^]2[+]x2[^]2) (cc_abs_aid _ x1 x2) [=]
sqrt (y1[^]2[+]y2[^]2) (cc_abs_aid _ y1 y2)) in |- *.
elim H. clear H. intros.
apply sqrt_wd. algebra.
Qed.
Hint Resolve AbsCC_wd: algebra_c.
Lemma cc_inv_abs : forall x : CC, AbsCC [--]x [=] AbsCC x.
Proof.
intros.
unfold AbsCC in |- *.
apply sqrt_wd.
apply bin_op_wd_unfolded.
Step_final ( [--] (Re x) [^]2).
Step_final ( [--] (Im x) [^]2).
Qed.
Hint Resolve cc_inv_abs: algebra.
Lemma cc_minus_abs : forall x y : CC, AbsCC (x[-]y) [=] AbsCC (y[-]x).
Proof.
intros.
apply eq_transitive_unfolded with (AbsCC [--] (y[-]x)).
apply AbsCC_wd. rational.
apply cc_inv_abs.
Qed.
Lemma cc_mult_abs : forall x y : CC, AbsCC (x[*]y) [=] AbsCC x[*]AbsCC y.
Proof.
intros x y. elim x. intros x1 x2. elim y. intros y1 y2. intros.
unfold AbsCC in |- *.
apply sqrt_mult_wd.
simpl in |- *.
rational.
Qed.
Hint Resolve cc_mult_abs: algebra.
Lemma AbsCC_minzero : forall x : CC, AbsCC (x[-][0]) [=] AbsCC x.
Proof.
intros.
apply AbsCC_wd.
algebra.
Qed.
Lemma AbsCC_IR : forall x : IR, [0] [<=] x -> AbsCC (cc_IR x) [=] x.
Proof.
intros. unfold AbsCC in |- *.
change (sqrt (x[^]2[+][0][^]2) (cc_abs_aid _ x [0]) [=] x) in |- *.
apply eq_transitive_unfolded with (sqrt (x[^]2) (sqr_nonneg _ x)).
apply sqrt_wd. rational.
apply sqrt_to_nonneg. auto.
Qed.
Hint Resolve AbsCC_IR: algebra.
Lemma cc_div_abs : forall (x y : CC) y_ y__, AbsCC (x[/] y[//]y_) [=] (AbsCC x[/] AbsCC y[//]y__).
Proof.
intros x y nz anz.
rstepl (AbsCC y[*]AbsCC (x[/] y[//]nz) [/] AbsCC y[//]anz).
apply div_wd. 2: algebra.
astepl (AbsCC (y[*] (x[/] y[//]nz))).
apply AbsCC_wd. rational.
Qed.
Lemma cc_div_abs' : forall (x : CC) (y : IR) y_ y__,
[0] [<=] y -> AbsCC (x[/] cc_IR y[//]y__) [=] (AbsCC x[/] y[//]y_).
Proof.
intros x y nz cnz H.
rstepl (y[*]AbsCC (x[/] cc_IR y[//]cnz) [/] y[//]nz).
apply div_wd. 2: algebra.
astepl (AbsCC (cc_IR y) [*]AbsCC (x[/] cc_IR y[//]cnz)).
astepl (AbsCC (cc_IR y[*] (x[/] cc_IR y[//]cnz))).
apply AbsCC_wd.
rational.
Qed.
Lemma AbsCC_zero : AbsCC [0] [=] [0].
Proof.
astepl (AbsCC (cc_IR [0])).
apply AbsCC_IR.
apply leEq_reflexive.
Qed.
Hint Resolve AbsCC_zero: algebra.
Lemma AbsCC_one : AbsCC [1] [=] [1].
Proof.
astepl (AbsCC (cc_IR [1])).
apply AbsCC_IR.
apply less_leEq. apply pos_one.
Qed.
Lemma cc_pow_abs : forall (x : CC) (n : nat), AbsCC (x[^]n) [=] AbsCC x[^]n.
Proof.
intros. induction n as [| n Hrecn]; intros.
simpl in |- *. apply AbsCC_one.
simpl in |- *. Step_final (AbsCC (x[^]n) [*]AbsCC x).
Qed.
Lemma AbsCC_pos : forall x : CC, x [#] [0] -> [0] [<] AbsCC x.
Proof.
intro. elim x. intros x1 x2.
unfold AbsCC in |- *. simpl in |- *. unfold cc_ap in |- *. simpl in |- *. intros H.
change ([0] [<] sqrt (x1[^]2[+]x2[^]2) (cc_abs_aid _ x1 x2)) in |- *.
apply power_cancel_less with 2. apply sqrt_nonneg.
astepl ZeroR.
astepr (x1[^]2[+]x2[^]2).
elim H; clear H; intros.
apply plus_resp_pos_nonneg.
apply pos_square. auto. apply sqr_nonneg.
apply plus_resp_nonneg_pos.
apply sqr_nonneg. apply pos_square. auto.
Qed.
Lemma AbsCC_ap_zero : forall x : CC, [0] [#] AbsCC x -> x [#] [0].
Proof.
intro. elim x. intros x1 x2. simpl in |- *. unfold AbsCC in |- *. unfold cc_ap in |- *.
change ([0] [#] sqrt (x1[^]2[+]x2[^]2) (cc_abs_aid _ x1 x2) -> x1 [#] [0] or x2 [#] [0]) in |- *.
intros H.
cut (x1[^]2 [#] [0] or x2[^]2 [#] [0]). intro H0.
elim H0; clear H0; intros.
left.
apply cring_mult_ap_zero with x1.
astepl (x1[^]2). auto.
right.
apply cring_mult_ap_zero with x2.
astepl (x2[^]2). auto.
apply cg_add_ap_zero.
astepl (sqrt (x1[^]2[+]x2[^]2) (cc_abs_aid _ x1 x2) [^]2).
apply nexp_resp_ap_zero.
apply ap_symmetric_unfolded. auto.
Qed.
Lemma AbsCC_small_imp_eq : forall x : CC, (forall e, [0] [<] e -> AbsCC x [<] e) -> x [=] [0].
Proof.
intros x H.
apply not_ap_imp_eq. intro.
elim (less_irreflexive_unfolded _ (AbsCC x)).
apply H.
apply AbsCC_pos. auto.
Qed.
(* begin hide *)
Let l_1_1_2 :
forall x y : IR, (x[+I*]y) [*] (x[+I*][--]y) [=] cc_IR (x[^]2[+]y[^]2).
Proof.
intros. apply calculate_norm with (x := x) (y := y).
Qed.
(* end hide *)
Hint Resolve l_1_1_2: algebra.
Lemma AbsCC_square_Re_Im : forall x y : IR, x[^]2[+]y[^]2 [=] AbsCC (x[+I*]y) [^]2.
Proof.
intros. unfold AbsCC in |- *.
Step_final (Re (x[+I*]y) [^]2[+]Im (x[+I*]y) [^]2).
Qed.
Hint Resolve AbsCC_square_Re_Im: algebra.
(* begin hide *)
Let l_1_2_3_CC :
forall x y : IR, cc_IR (x[^]2[+]y[^]2) [=] cc_IR (AbsCC (x[+I*]y) [^]2).
Proof.
intros. apply cc_IR_wd. apply AbsCC_square_Re_Im.
Qed.
(* end hide *)
Hint Resolve l_1_2_3_CC: algebra.
Lemma AbsCC_mult_conj : forall z : CC, z[*]CC_conj z [=] cc_IR (AbsCC z[^]2).
Proof.
intro z. unfold cc_IR in |- *.
elim z. intros x y.
apply eq_transitive_unfolded with (S := cc_csetoid) (y := cc_IR (x[^]2[+]y[^]2)).
eapply l_1_1_2 with (x := x) (y := y).
split; simpl in |- *.
2: algebra.
eapply AbsCC_square_Re_Im with (x := x) (y := y).
Qed.
Hint Resolve CC_conj_mult: algebra.
(* begin hide *)
Lemma l_2_1_2 :
forall z1 z2 : CC,
cc_IR (AbsCC (z1[*]z2) [^]2) [=] z1[*]z2[*]CC_conj z1[*]CC_conj z2.
Proof.
intros z1 z2. apply eq_symmetric_unfolded.
apply eq_transitive_unfolded with (z1[*]z2[*]CC_conj (z1[*]z2)).
Step_final (z1[*]z2[*] (CC_conj z1[*]CC_conj z2)).
apply AbsCC_mult_conj.
Qed.
Hint Resolve l_2_1_2: algebra.
(* end hide *)
Lemma AbsCC_mult_square : forall x y : CC, AbsCC (x[*]y) [^]2 [=] AbsCC x[^]2[*]AbsCC y[^]2.
Proof.
intros. rstepr ((AbsCC x[*]AbsCC y) [^]2). algebra.
Qed.
Lemma AbsCC_square_ap_zero : forall z : CC, z [#] [0] -> AbsCC z[^]2 [#] [0].
Proof.
intros z H.
stepl (Re z[^]2[+]Im z[^]2).
apply (cc_inv_aid (Re z) (Im z) H).
apply AbsCC_square_Re_Im with (x := Re z) (y := Im z).
Qed.
Lemma cc_recip_char : forall (z : CC) z_ z__,
cc_recip z z_ [=] (CC_conj z[/] cc_IR (AbsCC z[^]2) [//]z__).
Proof.
intros z z_ HAbsCCz.
unfold cc_recip in |- *.
astepl (Re z[+I*][--] (Im z) [/] _[//] cc_IR_resp_ap _ _ (cc_inv_aid _ _ (cc_ap_zero _ z_))).
2: simpl in |- *; split; simpl in |- *; rational.
apply div_wd with (F := CC) (x := Re z[+I*][--] (Im z)) (y := cc_IR (Re z[^]2[+]Im z[^]2))
(x' := CC_conj z) (y' := cc_IR (AbsCC z[^]2)).
elim z. intros x y. simpl in |- *. split; simpl in |- *; algebra.
apply cc_IR_wd.
apply AbsCC_square_Re_Im with (x := Re z) (y := Im z).
Qed.
Lemma AbsCC_strext : fun_strext AbsCC.
Proof.
unfold fun_strext in |- *.
intros z1 z2 H.
cut (AbsCC z1[^]2 [#] AbsCC z2[^]2).
elim z1. intros x1 y1. elim z2. intros x2 y2.
intro H'.
assert (H'' : x1[^]2[+]y1[^]2 [#] x2[^]2[+]y2[^]2).
astepl (AbsCC (x1[+I*]y1) [^]2). astepr (AbsCC (x2[+I*]y2) [^]2). assumption.
cut (x1[^]2 [#] x2[^]2 or y1[^]2 [#] y2[^]2).
intros H'''. elim H'''; intro H0.
cut (x1 [#] x2).
intro H1.
simpl in |- *. unfold cc_ap in |- *. unfold Re, Im in |- *.
left.
assumption.
apply (nexp_strong_ext IR 2).
assumption.
simpl in |- *. unfold cc_ap in |- *. simpl in |- *.
right.
apply (nexp_strong_ext IR 2).
assumption.
apply (bin_op_strext_unfolded _ _ _ _ _ _ H'').
assert (H1 : AbsCC z1[-]AbsCC z2 [#] [0]).
cut (AbsCC z1[-]AbsCC z2 [#] AbsCC z2[-]AbsCC z2).
intro H0. astepr (AbsCC z2[-]AbsCC z2). assumption.
apply minus_resp_ap_rht. assumption.
assert (H2 : AbsCC z1[+]AbsCC z2 [#] [0]).
apply Greater_imp_ap.
assert (H0 : AbsCC z1 [#] [0] or [0] [#] AbsCC z2).
apply ap_cotransitive_unfolded. assumption.
elim H0.
intro H'.
assert (H'' : [0] [<] AbsCC z1).
apply (AbsCC_ap_zero_imp_pos _ H').
apply leEq_less_trans with (y := AbsCC z2).
apply AbsCC_nonneg.
rstepl (AbsCC z2[+][0]).
rstepr (AbsCC z2[+]AbsCC z1).
apply plus_resp_less_lft.
assumption.
intro H'.
assert (H'' : [0] [<] AbsCC z2).
apply AbsCC_ap_zero_imp_pos.
apply ap_symmetric_unfolded. assumption.
apply leEq_less_trans with (y := AbsCC z1).
apply AbsCC_nonneg.
rstepl (AbsCC z1[+][0]).
apply plus_resp_less_lft.
assumption.
cut (AbsCC z1[^]2[-]AbsCC z2[^]2 [#] [0]).
intro H3.
cut (AbsCC z1[^]2[-]AbsCC z2[^]2 [#] AbsCC z2[^]2[-]AbsCC z2[^]2).
intro H4.
rstepl (AbsCC z1[^]2[-]AbsCC z2[^]2[+]AbsCC z2[^]2).
rstepr ([0][+]AbsCC z2[^]2).
apply op_rht_resp_ap with (x := AbsCC z1[^]2[-]AbsCC z2[^]2) (y := ZeroR) (z := AbsCC z2[^]2).
rstepr (AbsCC z2[^]2[-]AbsCC z2[^]2).
assumption.
rstepr ZeroR.
assumption.
astepl ((AbsCC z1[-]AbsCC z2) [*] (AbsCC z1[+]AbsCC z2)).
apply mult_resp_ap_zero; assumption.
Qed.
Definition AbsSmallCC (e : IR) (x : CC) := AbsCC x [<=] e.
Lemma Cexis_AFS_CC : forall x y eps, [0] [<] eps -> {y' : CC | AbsSmallCC eps (y'[-]y) | y' [#] x}.
Proof.
unfold AbsSmallCC in |- *. intros.
set (e := cc_IR eps) in *.
elim (ap_cotransitive_unfolded _ (y[-]e) (y[+]e)) with x; try intro H0.
exists (y[-]e).
apply leEq_wdl with (AbsCC [--]e).
unfold e in |- *.
astepl (AbsCC (cc_IR eps)).
apply eq_imp_leEq.
apply AbsCC_IR.
apply less_leEq; auto.
apply AbsCC_wd. rational.
auto.
exists (y[+]e).
apply leEq_wdl with (AbsCC e).
apply eq_imp_leEq.
unfold e in |- *; apply AbsCC_IR.
apply less_leEq; auto.
apply AbsCC_wd. rational.
apply ap_symmetric_unfolded. auto.
apply zero_minus_apart.
apply ap_wdl_unfolded with (cc_IR ( [--]Two[*]eps)).
astepr (cc_IR [0]).
apply cc_IR_resp_ap. apply mult_resp_ap_zero.
apply inv_resp_ap_zero. apply two_ap_zero.
apply pos_ap_zero; auto.
unfold e in |- *.
astepl (cc_IR [--]Two[*]cc_IR eps).
rstepr ( [--]Two[*]cc_IR eps).
apply mult_wdl.
simpl in |- *. unfold cc_eq in |- *. simpl in |- *.
split; [ algebra | rational ].
Qed.
(* The following lemmas are just auxiliary results *)
(* begin hide *)
Let l_4_1_2 :
forall (z : CC) (H : z [#] [0]),
z[*]cc_recip z H [=]
(z[*]CC_conj z[/] _[//]cc_IR_resp_ap _ _ (AbsCC_square_ap_zero _ H)).
Proof.
intros z H.
apply eq_transitive_unfolded with (S := cc_csetoid) (y := z[*]
(CC_conj z[/] _[//]cc_IR_resp_ap _ _ (AbsCC_square_ap_zero _ H))).
2: algebra.
astepr (z[*] (CC_conj z[/] _[//]cc_IR_resp_ap _ _ (AbsCC_square_ap_zero _ H))).
apply bin_op_wd_unfolded with (S := CC) (x1 := z) (x2 := z) (y1 := cc_recip z H)
(y2 := CC_conj z[/] _[//]cc_IR_resp_ap _ _ (AbsCC_square_ap_zero _ H)).
algebra.
apply cc_recip_char.
generalize H. clear H. elim z. intros x y H. simpl in |- *. split; simpl in |- *; rational.
Qed.
Let l_4_2_3 :
forall (z : CC) (H : z [#] [0]),
(z[*]CC_conj z[/] _[//]cc_IR_resp_ap _ _ (AbsCC_square_ap_zero _ H)) [=]
(cc_IR (AbsCC z[^]2) [/] _[//]cc_IR_resp_ap _ _ (AbsCC_square_ap_zero _ H)).
Proof.
intros z H.
apply div_wd with (F := CC) (x := z[*]CC_conj z) (y := cc_IR (AbsCC z[^]2))
(x' := cc_IR (AbsCC z[^]2)) (y' := cc_IR (AbsCC z[^]2)).
apply AbsCC_mult_conj.
algebra.
Qed.
Let l_4_3_4 :
forall (z : CC) (H : z [#] [0]),
(cc_IR (AbsCC z[^]2) [/] _[//]cc_IR_resp_ap _ _ (AbsCC_square_ap_zero _ H)) [=]
[1].
Proof.
intros.
rational.
Qed.
(* end hide *)
End AbsCC_properties.
#[global]
Hint Resolve AbsCC_wd: algebra_c.
#[global]
Hint Resolve cc_inv_abs cc_mult_abs cc_div_abs cc_div_abs' cc_pow_abs
AbsCC_zero AbsCC_one AbsCC_IR AbsCC_mult_conj AbsCC_mult_square
cc_recip_char: algebra.
(**
** The triangle inequality *)
Lemma triangle : forall x y : CC, AbsCC (x[+]y) [<=] AbsCC x[+]AbsCC y.
Proof.
intros.
elim x. intros x1 x2.
elim y. intros y1 y2.
unfold AbsCC in |- *. simpl in |- *.
apply power_cancel_leEq with 2. auto.
astepl ([0][+]ZeroR).
apply plus_resp_leEq_both; apply sqrt_nonneg.
astepl ([1][*](x1[+]y1)[*](x1[+]y1)[+][1][*](x2[+]y2)[*](x2[+]y2)).
rstepr (sqrt ([1][*]x1[*]x1[+][1][*]x2[*]x2) (cc_abs_aid _ x1 x2)[^]2[+]
sqrt ([1][*]y1[*]y1[+][1][*]y2[*]y2) (cc_abs_aid _ y1 y2)[^]2[+]
Two[*]sqrt ([1][*]x1[*]x1[+][1][*]x2[*]x2) (cc_abs_aid _ x1 x2)[*]
sqrt ([1][*]y1[*]y1[+][1][*]y2[*]y2) (cc_abs_aid _ y1 y2)).
astepr ([1][*]x1[*]x1[+][1][*]x2[*]x2[+]([1][*]y1[*]y1[+][1][*]y2[*]y2)[+]
Two[*]sqrt ([1][*]x1[*]x1[+][1][*]x2[*]x2) (cc_abs_aid _ x1 x2)[*]
sqrt ([1][*]y1[*]y1[+][1][*]y2[*]y2) (cc_abs_aid _ y1 y2)).
apply shift_leEq_rht.
rstepr (Two[*] (sqrt ([1][*]x1[*]x1[+][1][*]x2[*]x2) (cc_abs_aid _ x1 x2)[*]
sqrt ([1][*]y1[*]y1[+][1][*]y2[*]y2) (cc_abs_aid _ y1 y2)[-] (x1[*]y1[+]x2[*]y2))).
apply mult_resp_nonneg. apply less_leEq. apply pos_two.
apply shift_leEq_lft.
apply power_cancel_leEq with 2. auto.
apply mult_resp_nonneg; apply sqrt_nonneg.
astepr (sqrt ([1][*]x1[*]x1[+][1][*]x2[*]x2) (cc_abs_aid _ x1 x2)[^]2[*]
sqrt ([1][*]y1[*]y1[+][1][*]y2[*]y2) (cc_abs_aid _ y1 y2)[^]2).
astepr (([1][*]x1[*]x1[+][1][*]x2[*]x2)[*]([1][*]y1[*]y1[+][1][*]y2[*]y2)).
apply shift_leEq_rht.
rstepr ((x1[*]y2[-]x2[*]y1)[^]2).
apply sqr_nonneg.
Qed.
Lemma triangle_Sum : forall m n (z : nat -> CC),
m <= S n -> AbsCC (Sum m n z) [<=] Sum m n (fun i => AbsCC (z i)).
Proof.
intros. induction n as [| n Hrecn]; intros.
generalize (toCle _ _ H); clear H; intro H.
inversion H as [|m0 H1 H2].
unfold Sum in |- *. unfold Sum1 in |- *.
astepl (AbsCC [0]).
astepr ZeroR.
astepr (AbsCC [0]).
apply leEq_reflexive.
inversion H1.
unfold Sum in |- *. unfold Sum1 in |- *. simpl in |- *.
cut (AbsCC ([0][+]z 0[-][0])[<=][0][+]AbsCC (z 0)[-][0]).
auto.
apply eq_imp_leEq.
rstepr (AbsCC (z 0)).
apply AbsCC_wd.
rational.
elim (le_lt_eq_dec _ _ H); intro y.
astepl (AbsCC (Sum m n z[+]z (S n))).
apply leEq_wdr with (Sum m n (fun i : nat => AbsCC (z i))[+]AbsCC (z (S n))).
apply leEq_transitive with (AbsCC (Sum m n z)[+]AbsCC (z (S n))).
apply triangle.
apply plus_resp_leEq.
apply Hrecn. auto with arith.
apply eq_symmetric_unfolded. apply Sum_last with (f := fun i : nat => AbsCC (z i)).
rewrite y. unfold Sum in |- *. unfold Sum1 in |- *.
astepl (AbsCC [0]).
astepr ZeroR.
astepr (AbsCC [0]).
apply leEq_reflexive.
Qed.
|