File: AbsCC.v

package info (click to toggle)
coq-corn 8.20.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 7,216 kB
  • sloc: python: 112; haskell: 69; makefile: 39; sh: 4
file content (509 lines) | stat: -rw-r--r-- 15,669 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
(* Copyright © 1998-2006
 * Henk Barendregt
 * Luís Cruz-Filipe
 * Herman Geuvers
 * Mariusz Giero
 * Rik van Ginneken
 * Dimitri Hendriks
 * Sébastien Hinderer
 * Bart Kirkels
 * Pierre Letouzey
 * Iris Loeb
 * Lionel Mamane
 * Milad Niqui
 * Russell O’Connor
 * Randy Pollack
 * Nickolay V. Shmyrev
 * Bas Spitters
 * Dan Synek
 * Freek Wiedijk
 * Jan Zwanenburg
 *
 * This work is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This work is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License along
 * with this work; if not, write to the Free Software Foundation, Inc.,
 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 *)

Require Export CoRN.complex.CComplex.

(**
* Absolute value on [CC]
** Properties of [AbsCC] *)

Section AbsCC_properties.

Lemma AbsCC_nonneg : forall x : CC, [0] [<=] AbsCC x.
Proof.
 unfold AbsCC in |- *. intros.
 apply sqrt_nonneg.
Qed.

Lemma AbsCC_ap_zero_imp_pos : forall z : CC, AbsCC z [#] [0] -> [0] [<] AbsCC z.
Proof.
 intros z H.
 apply leEq_not_eq.
  apply AbsCC_nonneg.
 apply ap_symmetric_unfolded. assumption.
Qed.

Lemma AbsCC_wd : forall x y : CC, x [=] y -> AbsCC x [=] AbsCC y.
Proof.
 intros x y. elim x. intros x1 x2. elim y. intros y1 y2.
 simpl in |- *. unfold cc_eq in |- *. unfold AbsCC in |- *. simpl in |- *. intros.
 change (sqrt (x1[^]2[+]x2[^]2) (cc_abs_aid _ x1 x2) [=]
   sqrt (y1[^]2[+]y2[^]2) (cc_abs_aid _ y1 y2)) in |- *.
 elim H. clear H. intros.
 apply sqrt_wd. algebra.
Qed.

Hint Resolve AbsCC_wd: algebra_c.

Lemma cc_inv_abs : forall x : CC, AbsCC [--]x [=] AbsCC x.
Proof.
 intros.
 unfold AbsCC in |- *.
 apply sqrt_wd.
 apply bin_op_wd_unfolded.
  Step_final ( [--] (Re x) [^]2).
 Step_final ( [--] (Im x) [^]2).
Qed.

Hint Resolve cc_inv_abs: algebra.

Lemma cc_minus_abs : forall x y : CC, AbsCC (x[-]y) [=] AbsCC (y[-]x).
Proof.
 intros.
 apply eq_transitive_unfolded with (AbsCC [--] (y[-]x)).
  apply AbsCC_wd. rational.
  apply cc_inv_abs.
Qed.

Lemma cc_mult_abs : forall x y : CC, AbsCC (x[*]y) [=] AbsCC x[*]AbsCC y.
Proof.
 intros x y. elim x. intros x1 x2. elim y. intros y1 y2. intros.
 unfold AbsCC in |- *.
 apply sqrt_mult_wd.
 simpl in |- *.
 rational.
Qed.

Hint Resolve cc_mult_abs: algebra.

Lemma AbsCC_minzero : forall x : CC, AbsCC (x[-][0]) [=] AbsCC x.
Proof.
 intros.
 apply AbsCC_wd.
 algebra.
Qed.

Lemma AbsCC_IR : forall x : IR, [0] [<=] x -> AbsCC (cc_IR x) [=] x.
Proof.
 intros. unfold AbsCC in |- *.
 change (sqrt (x[^]2[+][0][^]2) (cc_abs_aid _ x [0]) [=] x) in |- *.
 apply eq_transitive_unfolded with (sqrt (x[^]2) (sqr_nonneg _ x)).
  apply sqrt_wd. rational.
  apply sqrt_to_nonneg. auto.
Qed.

Hint Resolve AbsCC_IR: algebra.

Lemma cc_div_abs : forall (x y : CC) y_ y__, AbsCC (x[/] y[//]y_) [=] (AbsCC x[/] AbsCC y[//]y__).
Proof.
 intros x y nz anz.
 rstepl (AbsCC y[*]AbsCC (x[/] y[//]nz) [/] AbsCC y[//]anz).
 apply div_wd. 2: algebra.
  astepl (AbsCC (y[*] (x[/] y[//]nz))).
 apply AbsCC_wd. rational.
Qed.

Lemma cc_div_abs' : forall (x : CC) (y : IR) y_ y__,
 [0] [<=] y -> AbsCC (x[/] cc_IR y[//]y__) [=] (AbsCC x[/] y[//]y_).
Proof.
 intros x y nz cnz H.
 rstepl (y[*]AbsCC (x[/] cc_IR y[//]cnz) [/] y[//]nz).
 apply div_wd. 2: algebra.
  astepl (AbsCC (cc_IR y) [*]AbsCC (x[/] cc_IR y[//]cnz)).
 astepl (AbsCC (cc_IR y[*] (x[/] cc_IR y[//]cnz))).
 apply AbsCC_wd.
 rational.
Qed.

Lemma AbsCC_zero : AbsCC [0] [=] [0].
Proof.
 astepl (AbsCC (cc_IR [0])).
 apply AbsCC_IR.
 apply leEq_reflexive.
Qed.

Hint Resolve AbsCC_zero: algebra.

Lemma AbsCC_one : AbsCC [1] [=] [1].
Proof.
 astepl (AbsCC (cc_IR [1])).
 apply AbsCC_IR.
 apply less_leEq. apply pos_one.
Qed.

Lemma cc_pow_abs : forall (x : CC) (n : nat), AbsCC (x[^]n) [=] AbsCC x[^]n.
Proof.
 intros. induction  n as [| n Hrecn]; intros.
 simpl in |- *. apply AbsCC_one.
  simpl in |- *. Step_final (AbsCC (x[^]n) [*]AbsCC x).
Qed.

Lemma AbsCC_pos : forall x : CC, x [#] [0] -> [0] [<] AbsCC x.
Proof.
 intro. elim x. intros x1 x2.
 unfold AbsCC in |- *. simpl in |- *. unfold cc_ap in |- *. simpl in |- *. intros H.
 change ([0] [<] sqrt (x1[^]2[+]x2[^]2) (cc_abs_aid _ x1 x2)) in |- *.
 apply power_cancel_less with 2. apply sqrt_nonneg.
  astepl ZeroR.
 astepr (x1[^]2[+]x2[^]2).
 elim H; clear H; intros.
  apply plus_resp_pos_nonneg.
   apply pos_square. auto. apply sqr_nonneg.
   apply plus_resp_nonneg_pos.
  apply sqr_nonneg. apply pos_square. auto.
Qed.

Lemma AbsCC_ap_zero : forall x : CC, [0] [#] AbsCC x -> x [#] [0].
Proof.
 intro. elim x. intros x1 x2. simpl in |- *. unfold AbsCC in |- *. unfold cc_ap in |- *.
 change ([0] [#] sqrt (x1[^]2[+]x2[^]2) (cc_abs_aid _ x1 x2) -> x1 [#] [0] or x2 [#] [0]) in |- *.
 intros H.
 cut (x1[^]2 [#] [0] or x2[^]2 [#] [0]). intro H0.
  elim H0; clear H0; intros.
   left.
   apply cring_mult_ap_zero with x1.
   astepl (x1[^]2). auto.
   right.
  apply cring_mult_ap_zero with x2.
  astepl (x2[^]2). auto.
  apply cg_add_ap_zero.
 astepl (sqrt (x1[^]2[+]x2[^]2) (cc_abs_aid _ x1 x2) [^]2).
 apply nexp_resp_ap_zero.
 apply ap_symmetric_unfolded. auto.
Qed.

Lemma AbsCC_small_imp_eq : forall x : CC, (forall e, [0] [<] e -> AbsCC x [<] e) -> x [=] [0].
Proof.
 intros x H.
 apply not_ap_imp_eq. intro.
 elim (less_irreflexive_unfolded _ (AbsCC x)).
 apply H.
 apply AbsCC_pos. auto.
Qed.

(* begin hide *)
Let l_1_1_2 :
  forall x y : IR, (x[+I*]y) [*] (x[+I*][--]y) [=] cc_IR (x[^]2[+]y[^]2).
Proof.
 intros. apply calculate_norm with (x := x) (y := y).
Qed.
(* end hide *)

Hint Resolve l_1_1_2: algebra.

Lemma AbsCC_square_Re_Im : forall x y : IR, x[^]2[+]y[^]2 [=] AbsCC (x[+I*]y) [^]2.
Proof.
 intros. unfold AbsCC in |- *.
 Step_final (Re (x[+I*]y) [^]2[+]Im (x[+I*]y) [^]2).
Qed.

Hint Resolve AbsCC_square_Re_Im: algebra.

(* begin hide *)
Let l_1_2_3_CC :
  forall x y : IR, cc_IR (x[^]2[+]y[^]2) [=] cc_IR (AbsCC (x[+I*]y) [^]2).
Proof.
 intros. apply cc_IR_wd. apply AbsCC_square_Re_Im.
Qed.
(* end hide *)

Hint Resolve l_1_2_3_CC: algebra.

Lemma AbsCC_mult_conj : forall z : CC, z[*]CC_conj z [=] cc_IR (AbsCC z[^]2).
Proof.
 intro z. unfold cc_IR in |- *.
 elim z. intros x y.
 apply eq_transitive_unfolded with (S := cc_csetoid) (y := cc_IR (x[^]2[+]y[^]2)).
  eapply l_1_1_2 with (x := x) (y := y).
 split; simpl in |- *.
  2: algebra.
 eapply AbsCC_square_Re_Im with (x := x) (y := y).
Qed.

Hint Resolve CC_conj_mult: algebra.

(* begin hide *)
Lemma l_2_1_2 :
 forall z1 z2 : CC,
 cc_IR (AbsCC (z1[*]z2) [^]2) [=] z1[*]z2[*]CC_conj z1[*]CC_conj z2.
Proof.
 intros z1 z2. apply eq_symmetric_unfolded.
 apply eq_transitive_unfolded with (z1[*]z2[*]CC_conj (z1[*]z2)).
  Step_final (z1[*]z2[*] (CC_conj z1[*]CC_conj z2)).
 apply AbsCC_mult_conj.
Qed.

Hint Resolve l_2_1_2: algebra.
(* end hide *)

Lemma AbsCC_mult_square : forall x y : CC, AbsCC (x[*]y) [^]2 [=] AbsCC x[^]2[*]AbsCC y[^]2.
Proof.
 intros. rstepr ((AbsCC x[*]AbsCC y) [^]2). algebra.
Qed.

Lemma AbsCC_square_ap_zero : forall z : CC, z [#] [0] -> AbsCC z[^]2 [#] [0].
Proof.
 intros z H.
 stepl (Re z[^]2[+]Im z[^]2).
  apply (cc_inv_aid (Re z) (Im z) H).
 apply AbsCC_square_Re_Im with (x := Re z) (y := Im z).
Qed.

Lemma cc_recip_char : forall (z : CC) z_ z__,
 cc_recip z z_ [=] (CC_conj z[/] cc_IR (AbsCC z[^]2) [//]z__).
Proof.
 intros z z_ HAbsCCz.
 unfold cc_recip in |- *.
 astepl (Re z[+I*][--] (Im z) [/] _[//] cc_IR_resp_ap _ _ (cc_inv_aid _ _ (cc_ap_zero _ z_))).
  2: simpl in |- *; split; simpl in |- *; rational.
 apply div_wd with (F := CC) (x := Re z[+I*][--] (Im z)) (y := cc_IR (Re z[^]2[+]Im z[^]2))
   (x' := CC_conj z) (y' := cc_IR (AbsCC z[^]2)).
  elim z. intros x y. simpl in |- *. split; simpl in |- *; algebra.
  apply cc_IR_wd.
 apply AbsCC_square_Re_Im with (x := Re z) (y := Im z).
Qed.

Lemma AbsCC_strext : fun_strext AbsCC.
Proof.
 unfold fun_strext in |- *.
 intros z1 z2 H.
 cut (AbsCC z1[^]2 [#] AbsCC z2[^]2).
  elim z1. intros x1 y1. elim z2. intros x2 y2.
  intro H'.
  assert (H'' : x1[^]2[+]y1[^]2 [#] x2[^]2[+]y2[^]2).
   astepl (AbsCC (x1[+I*]y1) [^]2). astepr (AbsCC (x2[+I*]y2) [^]2). assumption.
   cut (x1[^]2 [#] x2[^]2 or y1[^]2 [#] y2[^]2).
   intros H'''. elim H'''; intro H0.
   cut (x1 [#] x2).
     intro H1.
     simpl in |- *. unfold cc_ap in |- *. unfold Re, Im in |- *.
     left.
     assumption.
    apply (nexp_strong_ext IR 2).
    assumption.
   simpl in |- *. unfold cc_ap in |- *. simpl in |- *.
   right.
   apply (nexp_strong_ext IR 2).
   assumption.
  apply (bin_op_strext_unfolded _ _ _ _ _ _ H'').
 assert (H1 : AbsCC z1[-]AbsCC z2 [#] [0]).
  cut (AbsCC z1[-]AbsCC z2 [#] AbsCC z2[-]AbsCC z2).
   intro H0. astepr (AbsCC z2[-]AbsCC z2). assumption.
   apply minus_resp_ap_rht. assumption.
  assert (H2 : AbsCC z1[+]AbsCC z2 [#] [0]).
  apply Greater_imp_ap.
  assert (H0 : AbsCC z1 [#] [0] or [0] [#] AbsCC z2).
   apply ap_cotransitive_unfolded. assumption.
   elim H0.
   intro H'.
   assert (H'' : [0] [<] AbsCC z1).
    apply (AbsCC_ap_zero_imp_pos _ H').
   apply leEq_less_trans with (y := AbsCC z2).
    apply AbsCC_nonneg.
   rstepl (AbsCC z2[+][0]).
   rstepr (AbsCC z2[+]AbsCC z1).
   apply plus_resp_less_lft.
   assumption.
  intro H'.
  assert (H'' : [0] [<] AbsCC z2).
   apply AbsCC_ap_zero_imp_pos.
   apply ap_symmetric_unfolded. assumption.
   apply leEq_less_trans with (y := AbsCC z1).
   apply AbsCC_nonneg.
  rstepl (AbsCC z1[+][0]).
  apply plus_resp_less_lft.
  assumption.
 cut (AbsCC z1[^]2[-]AbsCC z2[^]2 [#] [0]).
  intro H3.
  cut (AbsCC z1[^]2[-]AbsCC z2[^]2 [#] AbsCC z2[^]2[-]AbsCC z2[^]2).
   intro H4.
   rstepl (AbsCC z1[^]2[-]AbsCC z2[^]2[+]AbsCC z2[^]2).
   rstepr ([0][+]AbsCC z2[^]2).
   apply op_rht_resp_ap with (x := AbsCC z1[^]2[-]AbsCC z2[^]2) (y := ZeroR) (z := AbsCC z2[^]2).
   rstepr (AbsCC z2[^]2[-]AbsCC z2[^]2).
   assumption.
  rstepr ZeroR.
  assumption.
 astepl ((AbsCC z1[-]AbsCC z2) [*] (AbsCC z1[+]AbsCC z2)).
 apply mult_resp_ap_zero; assumption.
Qed.

Definition AbsSmallCC (e : IR) (x : CC) := AbsCC x [<=] e.

Lemma Cexis_AFS_CC : forall x y eps, [0] [<] eps -> {y' : CC | AbsSmallCC eps (y'[-]y) | y' [#] x}.
Proof.
 unfold AbsSmallCC in |- *. intros.
 set (e := cc_IR eps) in *.
 elim (ap_cotransitive_unfolded _ (y[-]e) (y[+]e)) with x; try intro H0.
   exists (y[-]e).
    apply leEq_wdl with (AbsCC [--]e).
     unfold e in |- *.
     astepl (AbsCC (cc_IR eps)).
     apply eq_imp_leEq.
     apply AbsCC_IR.
     apply less_leEq; auto.
    apply AbsCC_wd. rational.
    auto.
  exists (y[+]e).
   apply leEq_wdl with (AbsCC e).
    apply eq_imp_leEq.
    unfold e in |- *; apply AbsCC_IR.
    apply less_leEq; auto.
   apply AbsCC_wd. rational.
   apply ap_symmetric_unfolded. auto.
  apply zero_minus_apart.
 apply ap_wdl_unfolded with (cc_IR ( [--]Two[*]eps)).
  astepr (cc_IR [0]).
  apply cc_IR_resp_ap. apply mult_resp_ap_zero.
  apply inv_resp_ap_zero. apply two_ap_zero.
   apply pos_ap_zero; auto.
 unfold e in |- *.
 astepl (cc_IR [--]Two[*]cc_IR eps).
 rstepr ( [--]Two[*]cc_IR eps).
 apply mult_wdl.
 simpl in |- *. unfold cc_eq in |- *. simpl in |- *.
 split; [ algebra | rational ].
Qed.

(* The following lemmas are just auxiliary results *)

(* begin hide *)
Let l_4_1_2 :
  forall (z : CC) (H : z [#] [0]),
  z[*]cc_recip z H [=]
  (z[*]CC_conj z[/] _[//]cc_IR_resp_ap _ _ (AbsCC_square_ap_zero _ H)).
Proof.
 intros z H.
 apply eq_transitive_unfolded with (S := cc_csetoid) (y := z[*]
   (CC_conj z[/] _[//]cc_IR_resp_ap _ _ (AbsCC_square_ap_zero _ H))).
  2: algebra.
  astepr (z[*] (CC_conj z[/] _[//]cc_IR_resp_ap _ _ (AbsCC_square_ap_zero _ H))).
  apply bin_op_wd_unfolded with (S := CC) (x1 := z) (x2 := z) (y1 := cc_recip z H)
    (y2 := CC_conj z[/] _[//]cc_IR_resp_ap _ _ (AbsCC_square_ap_zero _ H)).
   algebra.
  apply cc_recip_char.
 generalize H. clear H. elim z. intros x y H. simpl in |- *. split; simpl in |- *; rational.
Qed.

Let l_4_2_3 :
  forall (z : CC) (H : z [#] [0]),
  (z[*]CC_conj z[/] _[//]cc_IR_resp_ap _ _ (AbsCC_square_ap_zero _ H)) [=]
  (cc_IR (AbsCC z[^]2) [/] _[//]cc_IR_resp_ap _ _ (AbsCC_square_ap_zero _ H)).
Proof.
 intros z H.
 apply div_wd with (F := CC) (x := z[*]CC_conj z) (y := cc_IR (AbsCC z[^]2))
   (x' := cc_IR (AbsCC z[^]2)) (y' := cc_IR (AbsCC z[^]2)).
  apply AbsCC_mult_conj.
 algebra.
Qed.

Let l_4_3_4 :
  forall (z : CC) (H : z [#] [0]),
  (cc_IR (AbsCC z[^]2) [/] _[//]cc_IR_resp_ap _ _ (AbsCC_square_ap_zero _ H)) [=]
  [1].
Proof.
 intros.
 rational.
Qed.
(* end hide *)

End AbsCC_properties.

#[global]
Hint Resolve AbsCC_wd: algebra_c.
#[global]
Hint Resolve cc_inv_abs cc_mult_abs cc_div_abs cc_div_abs' cc_pow_abs
  AbsCC_zero AbsCC_one AbsCC_IR AbsCC_mult_conj AbsCC_mult_square
  cc_recip_char: algebra.

(**
** The triangle inequality *)

Lemma triangle : forall x y : CC, AbsCC (x[+]y) [<=] AbsCC x[+]AbsCC y.
Proof.
 intros.
 elim x. intros x1 x2.
 elim y. intros y1 y2.
 unfold AbsCC in |- *. simpl in |- *.
 apply power_cancel_leEq with 2. auto.
   astepl ([0][+]ZeroR).
  apply plus_resp_leEq_both; apply sqrt_nonneg.
 astepl ([1][*](x1[+]y1)[*](x1[+]y1)[+][1][*](x2[+]y2)[*](x2[+]y2)).
 rstepr (sqrt ([1][*]x1[*]x1[+][1][*]x2[*]x2) (cc_abs_aid _ x1 x2)[^]2[+]
   sqrt ([1][*]y1[*]y1[+][1][*]y2[*]y2) (cc_abs_aid _ y1 y2)[^]2[+]
     Two[*]sqrt ([1][*]x1[*]x1[+][1][*]x2[*]x2) (cc_abs_aid _ x1 x2)[*]
       sqrt ([1][*]y1[*]y1[+][1][*]y2[*]y2) (cc_abs_aid _ y1 y2)).
 astepr ([1][*]x1[*]x1[+][1][*]x2[*]x2[+]([1][*]y1[*]y1[+][1][*]y2[*]y2)[+]
   Two[*]sqrt ([1][*]x1[*]x1[+][1][*]x2[*]x2) (cc_abs_aid _ x1 x2)[*]
     sqrt ([1][*]y1[*]y1[+][1][*]y2[*]y2) (cc_abs_aid _ y1 y2)).
 apply shift_leEq_rht.
 rstepr (Two[*] (sqrt ([1][*]x1[*]x1[+][1][*]x2[*]x2) (cc_abs_aid _ x1 x2)[*]
   sqrt ([1][*]y1[*]y1[+][1][*]y2[*]y2) (cc_abs_aid _ y1 y2)[-] (x1[*]y1[+]x2[*]y2))).
 apply mult_resp_nonneg. apply less_leEq. apply pos_two.
  apply shift_leEq_lft.
 apply power_cancel_leEq with 2. auto.
   apply mult_resp_nonneg; apply sqrt_nonneg.
 astepr (sqrt ([1][*]x1[*]x1[+][1][*]x2[*]x2) (cc_abs_aid _ x1 x2)[^]2[*]
   sqrt ([1][*]y1[*]y1[+][1][*]y2[*]y2) (cc_abs_aid _ y1 y2)[^]2).
 astepr (([1][*]x1[*]x1[+][1][*]x2[*]x2)[*]([1][*]y1[*]y1[+][1][*]y2[*]y2)).
 apply shift_leEq_rht.
 rstepr ((x1[*]y2[-]x2[*]y1)[^]2).
 apply sqr_nonneg.
Qed.

Lemma triangle_Sum : forall m n (z : nat -> CC),
 m <= S n -> AbsCC (Sum m n z) [<=] Sum m n (fun i => AbsCC (z i)).
Proof.
 intros. induction  n as [| n Hrecn]; intros.
 generalize (toCle _ _ H); clear H; intro H.
  inversion H as [|m0 H1 H2].
   unfold Sum in |- *. unfold Sum1 in |- *.
   astepl (AbsCC [0]).
   astepr ZeroR.
   astepr (AbsCC [0]).
   apply leEq_reflexive.
  inversion H1.
  unfold Sum in |- *. unfold Sum1 in |- *. simpl in |- *.
  cut (AbsCC ([0][+]z 0[-][0])[<=][0][+]AbsCC (z 0)[-][0]).
   auto.
  apply eq_imp_leEq.
  rstepr (AbsCC (z 0)).
  apply AbsCC_wd.
  rational.
 elim (le_lt_eq_dec _ _ H); intro y.
  astepl (AbsCC (Sum m n z[+]z (S n))).
  apply leEq_wdr with (Sum m n (fun i : nat => AbsCC (z i))[+]AbsCC (z (S n))).
   apply leEq_transitive with (AbsCC (Sum m n z)[+]AbsCC (z (S n))).
    apply triangle.
   apply plus_resp_leEq.
   apply Hrecn. auto with arith.
   apply eq_symmetric_unfolded. apply Sum_last with (f := fun i : nat => AbsCC (z i)).
  rewrite y. unfold Sum in |- *. unfold Sum1 in |- *.
 astepl (AbsCC [0]).
 astepr ZeroR.
 astepr (AbsCC [0]).
 apply leEq_reflexive.
Qed.