1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693
|
(* Copyright © 1998-2006
* Henk Barendregt
* Luís Cruz-Filipe
* Herman Geuvers
* Mariusz Giero
* Rik van Ginneken
* Dimitri Hendriks
* Sébastien Hinderer
* Bart Kirkels
* Pierre Letouzey
* Iris Loeb
* Lionel Mamane
* Milad Niqui
* Russell O’Connor
* Randy Pollack
* Nickolay V. Shmyrev
* Bas Spitters
* Dan Synek
* Freek Wiedijk
* Jan Zwanenburg
*
* This work is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This work is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this work; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*)
(** printing Re %\ensuremath{\Re}% #ℜ# *)
(** printing Im %\ensuremath{\Im}% #ℑ# *)
(** printing CC %\ensuremath{\mathbb C}% #<b>C</b># *)
(** printing II %\ensuremath{\imath}% #i# *)
(** printing [+I*] %\ensuremath{+\imath}% *)
(** printing AbsCC %\ensuremath{|\cdot|_{\mathbb C}}% *)
(** printing CCX %\ensuremath{\mathbb C[X]}% #<b>C</b>[X]# *)
Require Export CoRN.reals.NRootIR.
(**
* Complex Numbers
** Algebraic structure
*)
Section Complex_Numbers.
Record CC_set : Type :=
{Re : IR;
Im : IR}.
Definition cc_ap (x y : CC_set) : CProp := Re x [#] Re y or Im x [#] Im y.
Definition cc_eq (x y : CC_set) : Prop := Re x [=] Re y /\ Im x [=] Im y.
Lemma cc_is_CSetoid : is_CSetoid _ cc_eq cc_ap.
Proof.
apply Build_is_CSetoid.
unfold irreflexive in |- *.
intros. elim x. intros x1 x2. unfold cc_ap in |- *. simpl in |- *.
intro H. elim H; clear H; intros H.
cut (Not (x1 [#] x1)). intros H0. elim (H0 H). apply ap_irreflexive_unfolded.
cut (Not (x2 [#] x2)). intros H0. elim (H0 H). apply ap_irreflexive_unfolded.
unfold Csymmetric in |- *.
intros x y. elim x. intros x1 x2. elim y. intros y1 y2. unfold cc_ap in |- *.
simpl in |- *. intros H. elim H; clear H; intros H.
left. apply ap_symmetric_unfolded. auto.
right. apply ap_symmetric_unfolded. auto.
unfold cotransitive in |- *.
intros x y. elim x. intros x1 x2. elim y. intros y1 y2. unfold cc_ap in |- *.
simpl in |- *. intro H. intro. elim z. intros z1 z2. simpl in |- *. intros.
elim H; clear H; intros H.
cut (x1 [#] z1 or z1 [#] y1). intro H0.
elim H0; clear H0; intros H0. left. left. auto. right. left. auto.
apply ap_cotransitive_unfolded. auto.
cut (x2 [#] z2 or z2 [#] y2). intro H0.
elim H0; clear H0; intros H0. left. right. auto. right. right. auto.
apply ap_cotransitive_unfolded. auto.
unfold tight_apart in |- *.
intros x y. elim x. intros x1 x2. elim y. intros y1 y2.
unfold cc_ap in |- *. unfold cc_eq in |- *. simpl in |- *. split.
intros. split.
apply not_ap_imp_eq. intro. apply H. left. auto.
apply not_ap_imp_eq. intro. apply H. right. auto.
intros. elim H. clear H. intros H H0. intro H1. elim H1; clear H1; intros H1.
cut (Not (x1 [#] y1)). intro. elim (H2 H1). apply eq_imp_not_ap. auto.
cut (Not (x2 [#] y2)). intro. elim (H2 H1). apply eq_imp_not_ap. auto.
Qed.
Definition cc_csetoid := Build_CSetoid CC_set cc_eq cc_ap cc_is_CSetoid.
Definition cc_plus x y := Build_CC_set (Re x[+]Re y) (Im x[+]Im y).
Definition cc_mult x y := Build_CC_set (Re x[*]Re y[-]Im x[*]Im y) (Re x[*]Im y[+]Im x[*]Re y).
Definition cc_zero := Build_CC_set ZeroR ZeroR.
Definition cc_one := Build_CC_set OneR ZeroR.
Definition cc_i := Build_CC_set ZeroR OneR.
Definition cc_inv (x : CC_set) : CC_set := Build_CC_set [--] (Re x) [--] (Im x).
(* not needed anymore
Lemma cc_plus_op_proof : (bin_op_wd cc_csetoid cc_plus).
Unfold bin_op_wd. Unfold bin_fun_wd.
Intros x1 x2 y1 y2. Elim x1. Elim x2. Elim y1. Elim y2.
Simpl. Unfold cc_eq. Simpl. Intros.
Elim H. Clear H. Intros. Elim H0. Clear H0. Intros.
Split; algebra.
Qed.
Lemma cc_mult_op_proof : (bin_op_wd cc_csetoid cc_mult).
Unfold bin_op_wd. Unfold bin_fun_wd.
Intros x1 x2 y1 y2. Elim x1. Elim x2. Elim y1. Elim y2.
Simpl. Unfold cc_eq. Simpl. Intros.
Elim H. Clear H. Intros. Elim H0. Clear H0. Intros.
Split; algebra.
Qed.
Lemma cc_inv_op_proof : (un_op_wd cc_csetoid cc_inv).
Unfold un_op_wd. Unfold fun_wd.
Intros x y. Elim x. Elim y.
Simpl. Unfold cc_eq. Simpl. Intros.
Elim H. Clear H. Intros.
Split; algebra.
Qed.
*)
Lemma cc_inv_strext : un_op_strext cc_csetoid cc_inv.
Proof.
unfold un_op_strext in |- *. unfold fun_strext in |- *.
intros x y. elim x. elim y.
simpl in |- *. unfold cc_ap in |- *. simpl in |- *. do 4 intro. intro H.
elim H; clear H; intros.
left. apply un_op_strext_unfolded with (cg_inv (c:=IR)). auto.
right. apply un_op_strext_unfolded with (cg_inv (c:=IR)). auto.
Qed.
Lemma cc_plus_strext : bin_op_strext cc_csetoid cc_plus.
Proof.
unfold bin_op_strext in |- *. unfold bin_fun_strext in |- *.
intros x1 x2 y1 y2. elim x1. elim x2. elim y1. elim y2.
simpl in |- *. unfold cc_ap in |- *. simpl in |- *. do 8 intro. intro H.
elim H; clear H; intros H.
elim (bin_op_strext_unfolded _ _ _ _ _ _ H); intros.
left. left. auto. right. left. auto.
elim (bin_op_strext_unfolded _ _ _ _ _ _ H); intros.
left. right. auto. right. right. auto.
Qed.
Lemma cc_mult_strext : bin_op_strext cc_csetoid cc_mult.
Proof.
unfold bin_op_strext in |- *. unfold bin_fun_strext in |- *.
intros x1 x2 y1 y2. elim x1. elim x2. elim y1. elim y2.
simpl in |- *. unfold cc_ap in |- *. simpl in |- *. do 8 intro. intro H.
elim H; clear H; intros H.
elim (bin_op_strext_unfolded _ (cg_minus_is_csetoid_bin_op _) _ _ _ _ H); intros H0.
elim (bin_op_strext_unfolded _ _ _ _ _ _ H0); intros H1.
left. left. auto. right. left. auto.
cut (Im3[*]Im1 [#] Im2[*]Im0). intro H1.
elim (bin_op_strext_unfolded _ _ _ _ _ _ H1); intros H2.
left. right. auto. right. right. auto.
auto.
elim (bin_op_strext_unfolded _ _ _ _ _ _ H); intros H0.
elim (bin_op_strext_unfolded _ _ _ _ _ _ H0); intros H1.
left. left. auto. right. right. auto.
elim (bin_op_strext_unfolded _ _ _ _ _ _ H0); intros.
left. right. auto. right. left. auto.
Qed.
Definition cc_inv_op := Build_CSetoid_un_op _ _ cc_inv_strext.
Definition cc_plus_op := Build_CSetoid_bin_op _ _ cc_plus_strext.
Definition cc_mult_op := Build_CSetoid_bin_op _ _ cc_mult_strext.
Lemma cc_csg_associative : associative cc_plus_op.
Proof.
unfold associative in |- *. intros. elim x. elim y. elim z. intros.
simpl in |- *. unfold cc_eq in |- *. simpl in |- *. split; algebra.
Qed.
Lemma cc_cr_mult_associative : associative cc_mult_op.
Proof.
unfold associative in |- *. intros. elim x. elim y. elim z. intros.
simpl in |- *. unfold cc_eq in |- *. simpl in |- *. split; rational.
Qed.
Definition cc_csemi_grp := Build_CSemiGroup cc_csetoid _ cc_csg_associative.
Lemma cc_cm_proof : is_CMonoid cc_csemi_grp cc_zero.
Proof.
apply Build_is_CMonoid.
unfold is_rht_unit in |- *. intros. elim x. intros.
simpl in |- *. unfold cc_eq in |- *. simpl in |- *. split; algebra.
unfold is_lft_unit in |- *. intros. elim x. intros.
simpl in |- *. unfold cc_eq in |- *. simpl in |- *. split; algebra.
Qed.
Definition cc_cmonoid := Build_CMonoid _ _ cc_cm_proof.
Lemma cc_cg_proof : is_CGroup cc_cmonoid cc_inv_op.
Proof.
unfold is_CGroup in |- *. intros. elim x. intros.
split.
simpl in |- *. unfold cc_eq in |- *. simpl in |- *. split; algebra.
simpl in |- *. unfold cc_eq in |- *. simpl in |- *. split; algebra.
Qed.
Lemma cc_cr_dist : distributive cc_mult_op cc_plus_op.
Proof.
unfold distributive in |- *. intros. elim x. elim y. elim z. intros.
simpl in |- *. unfold cc_eq in |- *. simpl in |- *. split; rational.
Qed.
Lemma cc_cr_non_triv : cc_ap cc_one cc_zero.
Proof.
unfold cc_ap in |- *. simpl in |- *. left. apply Greater_imp_ap. apply pos_one.
Qed.
Definition cc_cgroup := Build_CGroup cc_cmonoid cc_inv_op cc_cg_proof.
Definition cc_cabgroup : CAbGroup.
Proof.
apply Build_CAbGroup with cc_cgroup.
red in |- *; unfold commutes in |- *.
intros.
elim x; elim y; split; simpl in |- *; algebra.
Defined.
Lemma cc_cr_mult_mon : is_CMonoid
(Build_CSemiGroup (csg_crr cc_cgroup) _ cc_cr_mult_associative) cc_one.
Proof.
apply Build_is_CMonoid.
unfold is_rht_unit in |- *.
intros. elim x. intros. simpl in |- *. unfold cc_eq in |- *. simpl in |- *.
split; rational.
unfold is_lft_unit in |- *.
intros. elim x. intros. simpl in |- *. unfold cc_eq in |- *. simpl in |- *.
split; rational.
Qed.
Lemma cc_mult_commutes : commutes cc_mult_op.
Proof.
unfold commutes in |- *.
intros. elim x. intros. simpl in |- *. unfold cc_eq in |- *. simpl in |- *.
split; rational.
Qed.
Lemma cc_isCRing : is_CRing cc_cabgroup cc_one cc_mult_op.
Proof.
apply Build_is_CRing with cc_cr_mult_associative.
exact cc_cr_mult_mon.
exact cc_mult_commutes.
exact cc_cr_dist.
exact cc_cr_non_triv.
Qed.
Definition cc_cring : CRing := Build_CRing _ _ _ cc_isCRing.
Lemma cc_ap_zero : forall z : cc_cring, z [#] [0] -> Re z [#] [0] or Im z [#] [0].
Proof.
intro z. unfold cc_ap in |- *. intuition.
Qed.
Lemma cc_inv_aid : forall x y : IR, x [#] [0] or y [#] [0] -> x[^]2[+]y[^]2 [#] [0].
Proof.
intros x y H.
apply Greater_imp_ap.
elim H; clear H; intros.
apply plus_resp_pos_nonneg. apply pos_square. auto. apply sqr_nonneg.
apply plus_resp_nonneg_pos. apply sqr_nonneg. apply pos_square. auto.
Qed.
(**
If [x [~=] [0]] or [y [~=] [0]], then [x [/] x[^]2 [+] y[^]2 [~=] [0]] or
[[--]y[/]x[^]2[+]y[^]2 [~=] [0]].
*)
Lemma cc_inv_aid2 : forall (x y : IR) (H : x [#] [0] or y [#] [0]),
(x[/] _[//]cc_inv_aid _ _ H) [#] [0] or ( [--]y[/] _[//]cc_inv_aid _ _ H) [#] [0].
Proof.
intros x y H.
elim H; intro H0.
left.
apply div_resp_ap_zero_rev. auto.
right. apply div_resp_ap_zero_rev. apply inv_resp_ap_zero. auto.
Qed.
(*
REMARK KEPT FOR SENTIMENTAL REASONS...
This definition seems clever. Even though we *cannot* construct an
element of (NonZeros cc_cring) (a Set) by deciding which part of the
input (Re or Im) is NonZero (a Prop), we manage to construct the
actual function.
*)
Definition cc_recip : forall z : cc_cring, z [#] [0] -> cc_cring.
Proof.
intros z z_.
apply (Build_CC_set (Re z[/] _[//]cc_inv_aid _ _ z_) ( [--] (Im z) [/] _[//]cc_inv_aid _ _ z_)).
Defined.
Lemma cc_cfield_proof : is_CField cc_cring cc_recip.
Proof.
unfold is_CField in |- *. unfold is_inverse in |- *.
intro. elim x. intros x1 x2 Hx.
split; simpl in |- *; unfold cc_eq in |- *; simpl in |- *; split; rational.
Qed.
Lemma cc_Recip_proof : forall x y x_ y_, cc_recip x x_ [#] cc_recip y y_ -> x [#] y.
Proof.
intro. elim x. intros x1 x2 y.
intro Hx. elim y. intros y1 y2 Hy.
simpl in |- *. unfold cc_ap in |- *. simpl in |- *. intros H.
elim H; clear H; intros H.
cut (x1 [#] y1 or x1[^]2[+]x2[^]2 [#] y1[^]2[+]y2[^]2). intro H0.
elim H0; clear H0; intros H0.
left. auto.
cut (x1[^]2 [#] y1[^]2 or x2[^]2 [#] y2[^]2). intro H1.
elim H1; clear H1; intros.
left. apply un_op_strext_unfolded with (nexp_op (R:=IR) 2). auto.
right. apply un_op_strext_unfolded with (nexp_op (R:=IR) 2). auto.
apply bin_op_strext_unfolded with (csg_op (c:=IR)). auto.
apply div_strext with (cc_inv_aid x1 x2 Hx) (cc_inv_aid y1 y2 Hy). auto.
cut ( [--]x2 [#] [--]y2 or x1[^]2[+]x2[^]2 [#] y1[^]2[+]y2[^]2). intro H0.
elim H0; clear H0; intros H0.
right. apply un_op_strext_unfolded with (cg_inv (c:=IR)). auto.
cut (x1[^]2 [#] y1[^]2 or x2[^]2 [#] y2[^]2). intro H1.
elim H1; clear H1; intros H1.
left. apply un_op_strext_unfolded with (nexp_op (R:=IR) 2). auto.
right. apply un_op_strext_unfolded with (nexp_op (R:=IR) 2). auto.
apply bin_op_strext_unfolded with (csg_op (c:=IR)). auto.
apply div_strext with (cc_inv_aid x1 x2 Hx) (cc_inv_aid y1 y2 Hy). auto.
Qed.
Opaque cc_recip.
Opaque cc_inv.
Definition cc_cfield := Build_CField _ _ cc_cfield_proof cc_Recip_proof.
Definition CC := cc_cfield.
(**
Maps from reals to complex and vice-versa are defined, as well as conjugate,
absolute value and the imaginary unit [I] *)
Definition cc_set_CC : IR -> IR -> CC := Build_CC_set.
Definition cc_IR (x : IR) : CC := cc_set_CC x [0].
Definition CC_conj : CC -> CC := fun z : CC_set =>
match z with
| Build_CC_set Re0 Im0 => Build_CC_set Re0 [--]Im0
end.
(* old def
Definition CC_conj' : CC->CC := [z:CC_set] (CC_set_rec [_:CC_set]CC_set [Re0,Im0:IR] (Build_CC_set Re0 [--]Im0) z).
*)
Definition AbsCC (z : CC) : IR := sqrt (Re z[^]2[+]Im z[^]2) (cc_abs_aid _ (Re z) (Im z)).
Lemma TwoCC_ap_zero : (Two:CC) [#] [0].
Proof.
simpl in |- *. unfold cc_ap in |- *.
simpl in |- *. left.
astepl (Two:IR).
apply Greater_imp_ap. apply pos_two.
Qed.
End Complex_Numbers.
(* begin hide *)
Notation CCX := (cpoly_cring CC).
(* end hide *)
Definition II : CC := cc_i.
Infix "[+I*]" := cc_set_CC (at level 48, no associativity).
(**
** Properties of [II] *)
Section I_properties.
Lemma I_square : II[*]II [=] [--][1].
Proof.
simpl in |- *. unfold cc_mult in |- *. simpl in |- *. unfold cc_inv in |- *. simpl in |- *.
split. simpl in |- *. rational. simpl in |- *. rational.
Qed.
Hint Resolve I_square: algebra.
Lemma I_square' : II[^]2 [=] [--][1].
Proof.
Step_final (II[*]II).
Qed.
Lemma I_recip_lft : [--]II[*]II [=] [1].
Proof.
astepl ( [--] (II[*]II)).
Step_final ( [--][--] ([1]:CC)).
Qed.
Lemma I_recip_rht : II[*][--]II [=] [1].
Proof.
astepl ( [--] (II[*]II)).
Step_final ( [--][--] ([1]:CC)).
Qed.
Lemma mult_I : forall x y : IR, (x[+I*]y) [*]II [=] [--]y[+I*]x.
Proof.
simpl in |- *. unfold cc_eq in |- *. simpl in |- *. split; rational.
Qed.
Lemma I_wd : forall x x' y y' : IR, x [=] x' -> y [=] y' -> x[+I*]y [=] x'[+I*]y'.
Proof.
simpl in |- *. unfold cc_eq in |- *. simpl in |- *. algebra.
Qed.
(**
** Properties of [Re] and [Im] *)
Lemma calculate_norm : forall x y : IR, (x[+I*]y) [*]CC_conj (x[+I*]y) [=] cc_IR (x[^]2[+]y[^]2).
Proof.
intros. simpl in |- *. unfold cc_eq in |- *. simpl in |- *. split; rational.
Qed.
Lemma calculate_Re : forall c : CC, cc_IR (Re c) [*]Two [=] c[+]CC_conj c.
Proof.
intros. elim c. intros x y. intros.
simpl in |- *. unfold cc_eq in |- *. simpl in |- *. split; rational.
Qed.
Lemma calculate_Im : forall c : CC, cc_IR (Im c) [*] (Two[*]II) [=] c[-]CC_conj c.
Proof.
intros. elim c. intros x y. intros.
simpl in |- *. unfold cc_eq in |- *. simpl in |- *. split; rational.
Qed.
Lemma Re_wd : forall c c' : CC, c [=] c' -> Re c [=] Re c'.
Proof.
intros c c'. elim c. intros x y. elim c'. intros x' y'.
simpl in |- *. unfold cc_eq in |- *. simpl in |- *. intros. elim H. auto.
Qed.
Lemma Im_wd : forall c c' : CC, c [=] c' -> Im c [=] Im c'.
Proof.
intros c c'. elim c. intros x y. elim c'. intros x' y'.
simpl in |- *. unfold cc_eq in |- *. simpl in |- *. intros. elim H. auto.
Qed.
Lemma Re_resp_plus : forall x y : CC, Re (x[+]y) [=] Re x[+]Re y.
Proof.
intros. elim x. intros x1 x2. elim y. intros y1 y2.
simpl in |- *. unfold cc_eq in |- *. algebra.
Qed.
Lemma Re_resp_inv : forall x y : CC, Re (x[-]y) [=] Re x[-]Re y.
Proof.
intros. elim x. intros x1 x2. elim y. intros y1 y2.
simpl in |- *. unfold cc_eq in |- *. algebra.
Qed.
Lemma Im_resp_plus : forall x y : CC, Im (x[+]y) [=] Im x[+]Im y.
Proof.
intros. elim x. intros x1 x2. elim y. intros y1 y2.
simpl in |- *. unfold cc_eq in |- *. algebra.
Qed.
Lemma Im_resp_inv : forall x y : CC, Im (x[-]y) [=] Im x[-]Im y.
Proof.
intros. elim x. intros x1 x2. elim y. intros y1 y2.
simpl in |- *. unfold cc_eq in |- *. algebra.
Qed.
Lemma cc_calculate_square : forall x y, (x[+I*]y) [^]2 [=] (x[^]2[-]y[^]2) [+I*]x[*]y[*]Two.
Proof.
intros. simpl in |- *. unfold cc_eq in |- *. simpl in |- *. split; rational.
Qed.
End I_properties.
#[global]
Hint Resolve I_square I_square' I_recip_lft I_recip_rht mult_I calculate_norm
cc_calculate_square: algebra.
#[global]
Hint Resolve I_wd Re_wd Im_wd: algebra_c.
(**
** Properties of conjugation *)
Section Conj_properties.
Lemma CC_conj_plus : forall c c' : CC, CC_conj (c[+]c') [=] CC_conj c[+]CC_conj c'.
Proof.
intros c c'. elim c. intros x y. elim c'. intros x' y'.
simpl in |- *. unfold cc_eq in |- *. simpl in |- *. split; algebra.
Qed.
Lemma CC_conj_mult : forall c c' : CC, CC_conj (c[*]c') [=] CC_conj c[*]CC_conj c'.
Proof.
intros c c'. elim c. intros x y. elim c'. intros x' y'.
simpl in |- *. unfold cc_eq in |- *. simpl in |- *. split; rational.
Qed.
Hint Resolve CC_conj_mult: algebra.
Lemma CC_conj_strext : forall c c' : CC, CC_conj c [#] CC_conj c' -> c [#] c'.
Proof.
intros c c'. elim c. intros x y. elim c'. intros x' y'.
simpl in |- *. unfold cc_ap in |- *. simpl in |- *. intros H.
elim H; clear H; intros.
left. auto.
right. apply un_op_strext_unfolded with (cg_inv (c:=IR)). auto.
Qed.
Lemma CC_conj_conj : forall c : CC, CC_conj (CC_conj c) [=] c.
Proof.
intros. elim c. intros x y. simpl in |- *. unfold cc_eq in |- *. simpl in |- *. split; algebra.
Qed.
Lemma CC_conj_zero : CC_conj [0] [=] [0].
Proof.
simpl in |- *. unfold cc_eq in |- *. simpl in |- *. split; algebra.
Qed.
Lemma CC_conj_one : CC_conj [1] [=] [1].
Proof.
simpl in |- *. unfold cc_eq in |- *. simpl in |- *. split; algebra.
Qed.
Hint Resolve CC_conj_one: algebra.
Lemma CC_conj_nexp : forall (c : CC) n, CC_conj (c[^]n) [=] CC_conj c[^]n.
Proof.
intros. induction n as [| n Hrecn]; intros.
astepl (CC_conj [1]).
Step_final ([1]:CC).
astepl (CC_conj (c[^]n[*]c)).
astepl (CC_conj (c[^]n) [*]CC_conj c).
Step_final (CC_conj c[^]n[*]CC_conj c).
Qed.
End Conj_properties.
#[global]
Hint Resolve CC_conj_plus CC_conj_mult CC_conj_nexp CC_conj_conj
CC_conj_zero: algebra.
(**
** Properties of the real axis *)
Section cc_IR_properties.
Lemma Re_cc_IR : forall x : IR, Re (cc_IR x) [=] x.
Proof.
intro x. simpl in |- *. apply eq_reflexive.
Qed.
Lemma Im_cc_IR : forall x : IR, Im (cc_IR x) [=] [0].
Proof.
intro x. simpl in |- *. apply eq_reflexive.
Qed.
Lemma cc_IR_wd : forall x y : IR, x [=] y -> cc_IR x [=] cc_IR y.
Proof.
intros. simpl in |- *. unfold cc_eq in |- *. simpl in |- *. split; algebra.
Qed.
Hint Resolve cc_IR_wd: algebra_c.
Lemma cc_IR_resp_ap : forall x y : IR, x [#] y -> cc_IR x [#] cc_IR y.
Proof.
intros. simpl in |- *. unfold cc_ap in |- *. simpl in |- *. left. auto.
Qed.
Lemma cc_IR_mult : forall x y : IR, cc_IR x[*]cc_IR y [=] cc_IR (x[*]y).
Proof.
intros. simpl in |- *. unfold cc_eq in |- *. simpl in |- *. split; rational.
Qed.
Hint Resolve cc_IR_mult: algebra.
Lemma cc_IR_mult_lft : forall x y z, (x[+I*]y) [*]cc_IR z [=] x[*]z[+I*]y[*]z.
Proof.
intros. simpl in |- *. unfold cc_eq in |- *. simpl in |- *. split; rational.
Qed.
Lemma cc_IR_mult_rht : forall x y z, cc_IR z[*] (x[+I*]y) [=] z[*]x[+I*]z[*]y.
Proof.
intros. simpl in |- *. unfold cc_eq in |- *. simpl in |- *. split; rational.
Qed.
Lemma cc_IR_plus : forall x y : IR, cc_IR x[+]cc_IR y [=] cc_IR (x[+]y).
Proof.
intros. simpl in |- *. unfold cc_eq in |- *. simpl in |- *. split; algebra.
Qed.
Hint Resolve cc_IR_plus: algebra.
Lemma cc_IR_minus : forall x y : IR, cc_IR x[-]cc_IR y [=] cc_IR (x[-]y).
Proof.
intros. simpl in |- *. unfold cc_eq in |- *. simpl in |- *. split; algebra.
Qed.
Lemma cc_IR_zero : cc_IR [0] [=] [0].
Proof.
simpl in |- *. unfold cc_eq in |- *. simpl in |- *. split; algebra.
Qed.
Hint Resolve cc_IR_zero: algebra.
Lemma cc_IR_one : cc_IR [1] [=] [1].
Proof.
simpl in |- *. unfold cc_eq in |- *. simpl in |- *. split; algebra.
Qed.
Hint Resolve cc_IR_one: algebra.
Lemma cc_IR_nring : forall n : nat, cc_IR (nring n) [=] nring n.
Proof.
intros. induction n as [| n Hrecn]; intros.
astepl (cc_IR [0]).
Step_final ([0]:CC).
astepl (cc_IR (nring n[+][1])).
astepl (cc_IR (nring n) [+]cc_IR [1]).
Step_final (nring n[+] ([1]:CC)).
Qed.
Lemma cc_IR_nexp : forall (x : IR) (n : nat), cc_IR x[^]n [=] cc_IR (x[^]n).
Proof.
intros. induction n as [| n Hrecn]; intros.
astepl ([1]:CC).
Step_final (cc_IR [1]).
astepl (cc_IR x[^]n[*]cc_IR x).
astepl (cc_IR (x[^]n) [*]cc_IR x).
Step_final (cc_IR (x[^]n[*]x)).
Qed.
End cc_IR_properties.
#[global]
Hint Resolve Re_cc_IR Im_cc_IR: algebra.
#[global]
Hint Resolve cc_IR_wd: algebra_c.
#[global]
Hint Resolve cc_IR_mult cc_IR_nexp cc_IR_mult_lft cc_IR_mult_rht cc_IR_plus
cc_IR_minus: algebra.
#[global]
Hint Resolve cc_IR_nring cc_IR_zero: algebra.
(**
** [CC] has characteristic zero *)
Load "Transparent_algebra".
Lemma char0_CC : Char0 CC.
Proof.
unfold Char0 in |- *.
intros.
astepl (cc_IR (nring n)).
simpl in |- *.
unfold cc_ap in |- *.
simpl in |- *.
left.
apply char0_IR.
auto.
Qed.
Load "Opaque_algebra".
Lemma poly_apzero_CC : forall f : CCX, f [#] [0] -> {c : CC | f ! c [#] [0]}.
Proof.
intros.
apply poly_apzero.
exact char0_CC.
auto.
Qed.
Lemma poly_CC_extensional : forall p q : CCX, (forall x, p ! x [=] q ! x) -> p [=] q.
Proof.
intros.
apply poly_extensional.
exact char0_CC.
auto.
Qed.
|