1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
|
(* Copyright © 1998-2006
* Henk Barendregt
* Luís Cruz-Filipe
* Herman Geuvers
* Mariusz Giero
* Rik van Ginneken
* Dimitri Hendriks
* Sébastien Hinderer
* Bart Kirkels
* Pierre Letouzey
* Iris Loeb
* Lionel Mamane
* Milad Niqui
* Russell O’Connor
* Randy Pollack
* Nickolay V. Shmyrev
* Bas Spitters
* Dan Synek
* Freek Wiedijk
* Jan Zwanenburg
*
* This work is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This work is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this work; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*)
(** printing ExpCC %\ensuremath{\exp_{\mathbb C}}% *)
Require Export CoRN.complex.AbsCC.
Require Export CoRN.transc.Exponential.
Require Export CoRN.transc.Pi.
(**
** The Complex Exponential *)
Definition ExpCC (z : CC) := cc_IR (Exp (Re z)) [*] (Cos (Im z) [+I*]Sin (Im z)).
Lemma ExpCC_wd : forall z1 z2 : CC, z1 [=] z2 -> ExpCC z1 [=] ExpCC z2.
Proof.
intro z1. elim z1. intros x1 y1.
intro z2. elim z2. intros x2 y2.
unfold ExpCC in |- *. unfold Re, Im in |- *.
intros (H1, H2).
simpl in H1. simpl in H2.
apply bin_op_wd_unfolded.
apply cc_IR_wd. apply Exp_wd. assumption.
astepl (Cos y2[+I*]Sin y1).
astepl (Cos y2[+I*]Sin y2).
apply eq_reflexive.
Qed.
(* begin hide *)
Lemma ExpCC_equation_aid_1 :
forall z1 z2 : CC,
ExpCC (z1[+]z2) [=]
cc_IR (Exp (Re z1[+]Re z2)) [*] (Cos (Im z1[+]Im z2) [+I*]Sin (Im z1[+]Im z2)).
Proof.
intro z1. elim z1. intros x1 y1.
intro z2. elim z2. intros x2 y2.
unfold Re, Im in |- *.
unfold ExpCC in |- *.
apply bin_op_wd_unfolded.
apply cc_IR_wd.
apply Exp_wd.
algebra.
split; algebra.
Qed.
Lemma ExpCC_equation_aid_2 :
forall z1 z2 : CC,
cc_IR (Exp (Re z1[+]Re z2)) [*] (Cos (Im z1[+]Im z2) [+I*]Sin (Im z1[+]Im z2)) [=]
cc_IR (Exp (Re z1) [*]Exp (Re z2)) [*]
((Cos (Im z1) [*]Cos (Im z2) [-]Sin (Im z1) [*]Sin (Im z2)) [+I*]
(Sin (Im z1) [*]Cos (Im z2) [+]Cos (Im z1) [*]Sin (Im z2))).
Proof.
intros z1 z2. apply bin_op_wd_unfolded.
apply cc_IR_wd. algebra.
split; algebra.
Qed.
Lemma ExpCC_equation_aid_3 :
forall z1 z2 : CC,
cc_IR (Exp (Re z1) [*]Exp (Re z2)) [*]
((Cos (Im z1) [*]Cos (Im z2) [-]Sin (Im z1) [*]Sin (Im z2)) [+I*]
(Sin (Im z1) [*]Cos (Im z2) [+]Cos (Im z1) [*]Sin (Im z2))) [=]
cc_IR (Exp (Re z1) [*]Exp (Re z2)) [*]
((Cos (Im z1) [+I*]Sin (Im z1)) [*] (Cos (Im z2) [+I*]Sin (Im z2))).
Proof.
intros z1 z2. apply bin_op_wd_unfolded.
apply eq_reflexive.
set (c1 := Cos (Im z1)) in *.
set (c2 := Cos (Im z2)) in *.
set (s1 := Sin (Im z1)) in *.
set (s2 := Sin (Im z2)) in *.
split; simpl in |- *; algebra.
Qed.
Lemma ExpCC_equation_aid_4 :
forall z1 z2 : CC,
cc_IR (Exp (Re z1) [*]Exp (Re z2)) [*]
((Cos (Im z1) [+I*]Sin (Im z1)) [*] (Cos (Im z2) [+I*]Sin (Im z2))) [=]
ExpCC z1[*]ExpCC z2.
Proof.
intros z1 z2.
unfold ExpCC in |- *.
set (c := Cos (Im z1) [+I*]Sin (Im z1)) in *.
set (d := Cos (Im z2) [+I*]Sin (Im z2)) in *.
astepl (cc_IR (Exp (Re z1)) [*]cc_IR (Exp (Re z2)) [*] (c[*]d)).
rational.
Qed.
(* end hide *)
Lemma ExpCC_plus : forall z1 z2 : CC, ExpCC (z1[+]z2) [=] ExpCC z1[*]ExpCC z2.
Proof.
intros z1 z2.
apply eq_transitive_unfolded with (S := cc_csetoid) (y := cc_IR (Exp (Re z1) [*]Exp (Re z2)) [*]
((Cos (Im z1) [*]Cos (Im z2) [-]Sin (Im z1) [*]Sin (Im z2)) [+I*]
(Sin (Im z1) [*]Cos (Im z2) [+]Cos (Im z1) [*]Sin (Im z2)))).
eapply eq_transitive_unfolded.
apply ExpCC_equation_aid_1. apply ExpCC_equation_aid_2.
eapply eq_transitive_unfolded.
apply ExpCC_equation_aid_3. apply ExpCC_equation_aid_4.
Qed.
#[global]
Hint Resolve ExpCC_plus: algebra.
Lemma ExpCC_Zero : ExpCC [0] [=] [1].
Proof.
unfold ExpCC in |- *.
astepl (cc_IR (Exp [0]) [*] (Cos [0][+I*]Sin [0])).
astepl (cc_IR [1][*] (Cos [0][+I*]Sin [0])).
astepl (cc_IR [1][*] ([1][+I*][0])).
simpl in |- *. split; simpl in |- *; rational.
Qed.
#[global]
Hint Resolve ExpCC_Zero: algebra.
Lemma ExpCC_inv_aid : forall z : CC, ExpCC z[*]ExpCC [--]z [=] [1].
Proof.
intro z.
apply eq_transitive_unfolded with (S := cc_csetoid) (y := ExpCC [0]).
astepl (ExpCC (z[+][--]z)).
apply ExpCC_wd.
rational.
algebra.
Qed.
#[global]
Hint Resolve ExpCC_inv_aid: algebra.
Lemma ExpCC_ap_zero : forall z : CC, ExpCC z [#] [0].
Proof.
intro z.
cut (ExpCC z[*]ExpCC [--]z [#] [0]).
intro H.
apply (mult_cancel_ap_zero_lft _ _ _ H).
astepl ([1]:CC).
apply cc_cr_non_triv.
Qed.
Lemma ExpCC_inv : forall z z_, ([1][/] (ExpCC z) [//]z_) [=] ExpCC [--]z.
Proof.
intros z H.
astepl (ExpCC z[*]ExpCC [--]z[/] ExpCC z[//]H). rational.
Qed.
#[global]
Hint Resolve ExpCC_inv: algebra.
Lemma ExpCC_pow : forall z n, ExpCC z[^]n [=] ExpCC (nring n[*]z).
Proof.
intro z. simple induction n.
unfold nexp in |- *.
astepl ([1]:CC).
astepr (ExpCC [0]).
astepr ([1]:CC).
apply eq_reflexive.
apply ExpCC_wd.
rational.
intros n0 Hrec.
astepl (ExpCC z[^]n0[*]ExpCC z).
astepl (ExpCC (nring n0[*]z) [*]ExpCC z).
astepl (ExpCC (nring n0[*]z[+]z)).
apply ExpCC_wd.
algebra.
rstepl ((nring n0[+][1]) [*]z). algebra.
Qed.
#[global]
Hint Resolve ExpCC_pow: algebra.
Lemma AbsCC_ExpCC : forall z : CC, AbsCC (ExpCC z) [=] Exp (Re z).
Proof.
intro z. unfold ExpCC in |- *.
astepl (AbsCC (cc_IR (Exp (Re z))) [*]AbsCC (Cos (Im z) [+I*]Sin (Im z))).
astepr (Exp (Re z) [*][1]).
apply bin_op_wd_unfolded.
assert (H : AbsCC (cc_IR (Exp (Re z))) [=] Exp (Re z)).
apply AbsCC_IR.
apply less_leEq.
apply Exp_pos.
astepl (Exp (Re z)).
apply eq_reflexive.
cut (AbsCC (Cos (Im z) [+I*]Sin (Im z)) [^]2 [=] [1]).
set (x := AbsCC (Cos (Im z) [+I*]Sin (Im z))) in *.
intro H0.
assert (H1 : x[+][1][~=][0]).
apply ap_imp_neq.
apply Greater_imp_ap.
apply leEq_less_trans with (y := x).
unfold x in |- *. apply AbsCC_nonneg.
apply less_plusOne.
assert (H2 : (x[+][1]) [*] (x[-][1]) [=] [0]).
cut (x[^]2[-][1][^]2 [=] [0]).
intro H'.
astepl (x[^]2[-][1][^]2).
assumption.
astepl (x[^]2[-][1]).
astepr (OneR[-]OneR).
apply cg_minus_wd; [ assumption | apply eq_reflexive ].
assert (H3 : x[-][1] [=] [0]).
apply (mult_eq_zero _ _ _ H1 H2).
rstepl ([1][+] (x[-][1])).
astepr (OneR[+]ZeroR).
apply plus_resp_eq. assumption.
astepl (Cos (Im z) [^]2[+]Sin (Im z) [^]2).
astepl OneR.
apply eq_reflexive.
apply AbsCC_square_Re_Im.
Qed.
#[global]
Hint Resolve AbsCC_ExpCC: algebra.
Lemma ExpCC_Periodic : forall z, ExpCC (z[+]II[*]Two[*]cc_IR Pi) [=] ExpCC z.
Proof.
intro z. elim z. intros x y.
astepl (ExpCC (x[+I*] (y[+]Two[*]Pi))).
unfold ExpCC in |- *.
apply bin_op_wd_unfolded.
apply cc_IR_wd.
apply Exp_wd.
simpl in |- *. apply eq_reflexive_unfolded.
astepl (Cos (y[+]Two[*]Pi) [+I*]Sin (y[+]Two[*]Pi)).
astepl (Cos y[+I*]Sin y).
apply eq_reflexive.
apply ExpCC_wd.
split; simpl in |- *; rational.
Qed.
#[global]
Hint Resolve ExpCC_Periodic: algebra.
Lemma ExpCC_Exp : forall x : IR, ExpCC (cc_IR x) [=] cc_IR (Exp x).
Proof.
intro x. unfold ExpCC in |- *.
astepl (cc_IR (Exp x) [*] (Cos (Im (cc_IR x)) [+I*]Sin (Im (cc_IR x)))).
astepr (cc_IR (Exp x) [*][1]).
apply bin_op_wd_unfolded.
algebra.
astepl (Cos [0][+I*]Sin [0]).
Step_final ([1][+I*][0]).
Qed.
#[global]
Hint Resolve ExpCC_Exp: algebra.
Theorem Euler : (ExpCC (II[*] (cc_IR Pi))) [+][1] [=] [0].
Proof.
split.
Opaque Sin Cos Exp.
simpl.
rstepl ((Exp [0]) [*] (Cos Pi) [+][1]).
astepl (([1]:IR) [*][--][1][+][1]).
rational.
simpl.
rstepl ((Exp [0]) [*] (Sin Pi)).
Step_final (([1]:IR) [*][0]).
Qed.
|