1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
|
Require Import Bignums.BigZ.BigZ CRArith model.totalorder.QposMinMax
ARbigD ARbigQ ARQ ARtrans ARsign.
Definition myAR := ARbigD.
Definition answer (n : positive) (r : ARbigD) : bigZ :=
let m := iter_pos _ (Pmult 10) 1%positive n in
let (a, b) := (approximate r (Qpos2QposInf (1#m)) : bigD) * 'Zpos m in
BigZ.shiftl a b.
(* To avoid timing the printing mechanism *)
Definition no_answer (n : positive) (r : myAR) :=
let m := iter_pos _ (Pmult 10) 1%positive n in
let _ := approximate r (Qpos2QposInf (1#m)) in
tt.
(* xkcd.org/217 *)
Definition xkcd : myAR := (ARexp ARpi)-ARpi.
Time Eval vm_compute in (answer 10 xkcd).
Example xkcd217A : ARltT xkcd ('20%Z).
Proof. Time AR_solve_ltT (-8)%Z. Defined.
(* Many of the following expressions are taken from the "Many Digits friendly competition" problem set *)
(* Instance resolution takes 3s *)
Time Definition P01 : myAR := ARsin (ARsin (AQsin 1)).
Time Eval vm_compute in (answer 500 P01).
Time Eval vm_compute in (no_answer 500 P01).
Definition P02 : myAR := ARsqrt (ARcompress ARpi).
Time Eval vm_compute in (answer 500 P02).
Definition P03 : myAR := ARsin (AQexp 1).
Time Eval vm_compute in (answer 500 P03).
Definition P04 : myAR := ARexp (ARcompress (ARpi * AQsqrt ('163%Z))).
Time Eval vm_compute in (answer 500 P04).
Definition P05 : myAR := ARexp (ARexp (AQexp 1)).
Time Eval vm_compute in (answer 500 P05).
Definition P07 : myAR := AQexp ('1000%Z).
Time Eval vm_compute in (answer 2000 P07).
Definition P08 : myAR := AQcos ('(10^50)%Z).
Time Eval vm_compute in (answer 2000 P08).
Definition C02_prf : ARapartT (ARpi : myAR) (0 : myAR).
Proof. AR_solve_apartT (-8)%Z. Defined.
Definition C02 : myAR := ARsqrt (AQexp 1 * ARinvT ARpi C02_prf).
Time Eval vm_compute in (answer 250 C02).
Definition C03 : myAR := ARsin (ARcompress ((AQexp 1 + 1) ^ (3:N))).
Time Eval vm_compute in (answer 500 C03).
Definition C04 : myAR := ARexp (ARcompress (ARpi * AQsqrt ('2011%Z))).
Time Eval vm_compute in (answer 500 C04).
Definition C05 : myAR := ARexp (ARexp (ARsqrt (AQexp 1))).
Time Eval vm_compute in (answer 500 C05).
(* slow *) (*
Definition C07 : myAR := ARpi ^ 1000%N.
Time Eval vm_compute in (answer 50 C07).
*)
Definition ARtest1 : myAR := ARpi.
Time Eval vm_compute in (answer 1500 ARtest1).
Definition ARtest2 : myAR := ARarctan (ARcompress ARpi).
Time Eval vm_compute in (answer 100 ARtest2).
Definition ARtest3 : myAR := ARsqrt 2.
Time Eval vm_compute in (answer 1000 ARtest3).
Definition ARtest4 : myAR := ARsin ARpi.
Time Eval vm_compute in (answer 500 ARtest4).
|