1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
|
(* Copyright © 1998-2006
* Henk Barendregt
* Luís Cruz-Filipe
* Herman Geuvers
* Mariusz Giero
* Rik van Ginneken
* Dimitri Hendriks
* Sébastien Hinderer
* Bart Kirkels
* Pierre Letouzey
* Iris Loeb
* Lionel Mamane
* Milad Niqui
* Russell O’Connor
* Randy Pollack
* Nickolay V. Shmyrev
* Bas Spitters
* Dan Synek
* Freek Wiedijk
* Jan Zwanenburg
*
* This work is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This work is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this work; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*)
Require Export CoRN.ftc.PartInterval.
Require Export CoRN.ftc.DerivativeOps.
Section Definitions.
(**
* Differentiability
We will now use our work on derivatives to define a notion of
differentiable function and prove its main properties.
%\begin{convention}% Throughout this section, [a,b] will be real
numbers with [a [<] b], [I] will denote the interval [[a,b]]
and [F,G,H] will be differentiable functions.
%\end{convention}%
Usually a function [F] is said to be differentiable in a proper
compact interval [[a,b]] if there exists another function [F']
such that [F'] is a derivative of [F] in that interval. There is a
problem in formalizing this definition, as we pointed out earlier on,
which is that if we simply write it down as is we are not able to get
such a function [F'] from a hypothesis that [F] is differentiable.
However, it turns out that this is not altogether the best definition
for the following reason: if we say that [F] is differentiable in
[[a,b]], we mean that there is a partial function [F'] which is
defined in [[a,b]] and satisfies a certain condition in that
interval but nothing is required of the behaviour of the function
outside [[a,b]]. Thus we can argue that, from a mathematical
point of view, the [F'] that we get eliminating a hypothesis of
differentiability should be defined exactly on that interval. If we
do this, we can quantify over the set of setoid functions in that
interval and eliminate the existencial quantifier without any
problems.
*)
Definition Diffble_I (a b : IR) (Hab : a [<] b) (F : PartIR) :=
{f' : CSetoid_fun (subset (Compact (less_leEq _ _ _ Hab))) IR |
Derivative_I Hab F (PartInt f')}.
End Definitions.
Arguments Diffble_I [a b].
Section Local_Properties.
(**
From this point on, we just prove results analogous to the ones for derivability.
A function differentiable in [[a,b]] is differentiable in every proper compact subinterval of [[a,b]].
*)
Lemma included_imp_diffble : forall a b Hab c d Hcd F,
included (compact c d (less_leEq _ _ _ Hcd)) (compact a b (less_leEq _ _ _ Hab)) ->
Diffble_I Hab F -> Diffble_I Hcd F.
Proof.
intros a b Hab c d Hcd F H H0.
elim H0; clear H0; intros f' derF.
exists (IntPartIR (F:=(Frestr (F:=PartInt f') (compact_wd _ _ _) H)) (included_refl _ _)).
apply Derivative_I_wdr with (PartInt f').
FEQ.
simpl in |- *; apply csf_wd_unfolded; simpl in |- *; algebra.
exact (included_imp_deriv _ _ _ _ _ _ _ _ H derF).
Qed.
(**
A function differentiable in an interval is everywhere defined in that interval.
*)
Variables a b : IR.
Hypothesis Hab' : a [<] b.
(* begin hide *)
Let Hab := less_leEq _ _ _ Hab'.
Let I := Compact Hab.
(* end hide *)
Lemma diffble_imp_inc : forall F, Diffble_I Hab' F -> included I (Dom F).
Proof.
intros F H.
inversion_clear H.
unfold I, Hab in |- *; Included.
Qed.
(**
If a function has a derivative in an interval then it is differentiable in that interval.
*)
Lemma deriv_imp_Diffble_I : forall F F', Derivative_I Hab' F F' -> Diffble_I Hab' F.
Proof.
intros F F' H.
exists (IntPartIR (derivative_imp_inc' _ _ _ _ _ H)).
apply Derivative_I_wdr with F'.
apply int_part_int.
assumption.
Qed.
End Local_Properties.
#[global]
Hint Resolve diffble_imp_inc: included.
Section Operations.
(**
All the algebraic results carry on.
*)
Variables a b : IR.
Hypothesis Hab' : a [<] b.
(* begin hide *)
Let Hab := less_leEq _ _ _ Hab'.
Let I := Compact Hab.
(* end hide *)
Section Constants.
Lemma Diffble_I_const : forall c : IR, Diffble_I Hab' [-C-]c.
Proof.
intros.
exists (IConst (Hab:=Hab) [0]).
apply Derivative_I_wdr with ( [-C-][0]:PartIR).
apply part_int_const.
Deriv.
Qed.
Lemma Diffble_I_id : Diffble_I Hab' FId.
Proof.
exists (IConst (Hab:=Hab) [1]).
apply Derivative_I_wdr with ( [-C-][1]:PartIR).
apply part_int_const.
Deriv.
Qed.
Lemma Diffble_I_poly : forall p, Diffble_I Hab' (FPoly _ p).
Proof.
intros p.
exists (@IntPartIR (FPoly _ (_D_ p)) _ _ Hab (included_IR _)).
apply Derivative_I_wdr with (FPoly _ (_D_ p)).
apply int_part_int.
Deriv.
Qed.
End Constants.
Section Well_Definedness.
Variables F H : PartIR.
Hypothesis diffF : Diffble_I Hab' F.
Lemma Diffble_I_wd : Feq (Compact Hab) F H -> Diffble_I Hab' H.
Proof.
intro H0.
exists (ProjT1 diffF).
eapply Derivative_I_wdl.
apply H0.
apply projT2.
Qed.
End Well_Definedness.
Variables F G : PartIR.
Hypothesis diffF : Diffble_I Hab' F.
Hypothesis diffG : Diffble_I Hab' G.
Lemma Diffble_I_plus : Diffble_I Hab' (F{+}G).
Proof.
elim diffF; intros F' derF.
elim diffG; intros G' derG.
exists (IPlus F' G').
eapply Derivative_I_wdr.
apply part_int_plus with (F := PartInt F') (G := PartInt G').
apply Feq_reflexive; Included.
apply Feq_reflexive; Included.
Deriv.
Qed.
Lemma Diffble_I_inv : Diffble_I Hab' {--}F.
Proof.
elim diffF; intros F' derF.
exists (IInv F').
eapply Derivative_I_wdr.
apply part_int_inv with (F := PartInt F').
apply Feq_reflexive; Included.
Deriv.
Qed.
Lemma Diffble_I_mult : Diffble_I Hab' (F{*}G).
Proof.
elim diffF; intros F' derF.
elim diffG; intros G' derG.
exists (IPlus (IMult (IntPartIR (diffble_imp_inc _ _ _ _ diffF)) G')
(IMult F' (IntPartIR (diffble_imp_inc _ _ _ _ diffG)))).
eapply Derivative_I_wdr.
apply part_int_plus with (F := PartInt (IMult (IntPartIR (diffble_imp_inc _ _ _ _ diffF)) G'))
(G := PartInt (IMult F' (IntPartIR (diffble_imp_inc _ _ _ _ diffG)))).
apply Feq_reflexive; Included.
apply Feq_reflexive; Included.
eapply Derivative_I_wdr.
apply Feq_plus with (F := F{*}PartInt G') (G := PartInt F'{*}G).
apply part_int_mult.
FEQ.
apply Feq_reflexive; Included.
apply part_int_mult.
apply Feq_reflexive; Included.
FEQ.
Deriv.
Qed.
(* begin show *)
Hypothesis Gbnd : bnd_away_zero I G.
(* end show *)
Lemma Diffble_I_recip : Diffble_I Hab' {1/}G.
Proof.
elim diffG; intros G' derG.
cut (included I (Dom G)); [ intro Hg' | unfold I, Hab in |- *; Included ].
unfold I in Hg';
cut (forall x : subset I, IMult (IntPartIR Hg') (IntPartIR Hg') x [#] [0]). intro H.
exists (IInv (IDiv G' _ H)).
eapply Derivative_I_wdr.
apply part_int_inv with (F := PartInt (IDiv G' _ H)).
apply Feq_reflexive; Included.
eapply Derivative_I_wdr.
apply Feq_inv with (F := PartInt G'{/}PartInt (IMult (IntPartIR Hg') (IntPartIR Hg'))).
apply part_int_div.
apply Feq_reflexive; Included.
apply Feq_reflexive; simpl in |- *; Included.
red in |- *; intros.
split.
simpl in |- *; Included.
elim Gbnd; intros Hinc c.
elim c; clear c; intros c H0 H1.
exists (c[*]c).
apply mult_resp_pos; assumption.
intros.
simpl in |- *.
eapply leEq_wdr.
2: apply eq_symmetric_unfolded; apply AbsIR_resp_mult.
apply mult_resp_leEq_both; auto; apply less_leEq; assumption.
eapply Derivative_I_wdr.
apply Feq_inv with (F := PartInt G'{/}G{*}G).
apply Feq_div.
Included.
apply Feq_reflexive; Included.
apply part_int_mult.
FEQ.
FEQ.
Deriv.
intro x.
simpl in |- *.
apply mult_resp_ap_zero; apply bnd_imp_ap_zero with I; auto; apply scs_prf.
Qed.
End Operations.
Section Corollaries.
Variables a b : IR.
Hypothesis Hab' : a [<] b.
(* begin hide *)
Let Hab := less_leEq _ _ _ Hab'.
Let I := Compact Hab.
(* end hide *)
Variables F G : PartIR.
Hypothesis diffF : Diffble_I Hab' F.
Hypothesis diffG : Diffble_I Hab' G.
Lemma Diffble_I_minus : Diffble_I Hab' (F{-}G).
Proof.
apply Diffble_I_wd with (F{+}{--}G).
apply Diffble_I_plus.
assumption.
apply Diffble_I_inv; assumption.
FEQ.
Qed.
Lemma Diffble_I_scal : forall c : IR, Diffble_I Hab' (c{**}F).
Proof.
intro.
unfold Fscalmult in |- *.
apply Diffble_I_mult.
apply Diffble_I_const.
assumption.
Qed.
Lemma Diffble_I_nth : forall n : nat, Diffble_I Hab' (F{^}n).
Proof.
intro.
induction n as [| n Hrecn].
eapply Diffble_I_wd.
2: apply FNth_zero'; Included.
apply Diffble_I_const.
eapply Diffble_I_wd.
2: apply FNth_mult'; Included.
apply Diffble_I_mult; assumption.
Qed.
Hypothesis Gbnd : bnd_away_zero I G.
Lemma Diffble_I_div : Diffble_I Hab' (F{/}G).
Proof.
apply Diffble_I_wd with (F{*}{1/}G).
apply Diffble_I_mult.
assumption.
apply Diffble_I_recip; assumption.
FEQ.
Qed.
End Corollaries.
Section Other_Properties.
(**
Differentiability of families of functions is proved by
induction using the constant and addition rules.
*)
Variables a b : IR.
Hypothesis Hab' : a [<] b.
Lemma Diffble_I_Sum0 : forall (f : nat -> PartIR),
(forall n, Diffble_I Hab' (f n)) -> forall n, Diffble_I Hab' (FSum0 n f).
Proof.
intros f diffF.
induction n as [| n Hrecn].
apply Diffble_I_wd with (Fconst (S:=IR) [0]).
apply Diffble_I_const.
FEQ.
red in |- *; simpl in |- *; intros.
apply (diffble_imp_inc _ _ _ _ (diffF n)); assumption.
apply Diffble_I_wd with (FSum0 n f{+}f n).
apply Diffble_I_plus.
auto.
auto.
FEQ.
simpl in |- *; red in |- *; intros.
apply (diffble_imp_inc _ _ _ _ (diffF n0)); assumption.
simpl in |- *.
apply bin_op_wd_unfolded; try apply Sum0_wd; intros; rational.
Qed.
Lemma Diffble_I_Sumx : forall n (f : forall i, i < n -> PartIR),
(forall i Hi, Diffble_I Hab' (f i Hi)) -> Diffble_I Hab' (FSumx n f).
Proof.
intro; induction n as [| n Hrecn]; intros.
simpl in |- *; apply Diffble_I_const.
simpl in |- *.
apply Diffble_I_plus; auto.
Qed.
Lemma Diffble_I_Sum : forall (f : nat -> PartIR),
(forall n, Diffble_I Hab' (f n)) -> forall m n, Diffble_I Hab' (FSum m n f).
Proof.
intros.
eapply Diffble_I_wd.
2: apply Feq_symmetric; apply FSum_FSum0'; Included.
apply Diffble_I_minus; apply Diffble_I_Sum0; auto.
Qed.
End Other_Properties.
(**
Finally, a differentiable function is continuous.
%\begin{convention}% Let [F] be a partial function with derivative [F'] on [I].
%\end{convention}%
*)
Lemma diffble_imp_contin_I : forall a b (Hab' : a [<] b) (Hab : a [<=] b) F,
Diffble_I Hab' F -> Continuous_I Hab F.
Proof.
intros a b Hab' Hab F H.
apply deriv_imp_contin_I with Hab' (PartInt (ProjT1 H)).
apply projT2.
Qed.
#[global]
Hint Immediate included_imp_contin deriv_imp_contin_I deriv_imp_contin'_I
diffble_imp_contin_I: continuous.
#[global]
Hint Immediate included_imp_deriv: derivate.
|