1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
|
(* Copyright © 1998-2006
* Henk Barendregt
* Luís Cruz-Filipe
* Herman Geuvers
* Mariusz Giero
* Rik van Ginneken
* Dimitri Hendriks
* Sébastien Hinderer
* Bart Kirkels
* Pierre Letouzey
* Iris Loeb
* Lionel Mamane
* Milad Niqui
* Russell O’Connor
* Randy Pollack
* Nickolay V. Shmyrev
* Bas Spitters
* Dan Synek
* Freek Wiedijk
* Jan Zwanenburg
*
* This work is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This work is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this work; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*)
Require Export CoRN.ftc.IntervalFunct.
Section Conversion.
(**
* Correspondence
In this file we prove that there are mappings going in both ways
between the set of partial functions whose domain contains
[[a,b]] and the set of real-valued functions with domain on
that interval. These mappings form an adjunction, and thus they have
all the good properties for preservation results.
** Mappings
We begin by defining the map from partial functions to setoid
functions as simply being the restriction of the partial function to
the interval [[a,b]].
%\begin{convention}% Let [F] be a partial function and [a,b:IR] such
that [I [=] [a,b]] is included in the domain of [F].
%\end{convention}%
*)
Variable F : PartIR.
Variables a b : IR.
Hypothesis Hab : a [<=] b.
(* begin hide *)
Let I := compact a b Hab.
(* end hide *)
Hypothesis Hf : included I (Dom F).
Lemma IntPartIR_strext : fun_strext
(fun x : subset I => F (scs_elem _ _ x) (Hf _ (scs_prf _ _ x))).
Proof.
red in |- *; intros x y H.
generalize (pfstrx _ _ _ _ _ _ H).
case x; case y; auto.
Qed.
Definition IntPartIR : CSetoid_fun (subset I) IR.
Proof.
apply Build_CSetoid_fun with (fun x : subset I =>
Part F (scs_elem _ _ x) (Hf (scs_elem _ _ x) (scs_prf _ _ x))).
exact IntPartIR_strext.
Defined.
End Conversion.
Arguments IntPartIR [F a b Hab].
Section AntiConversion.
(**
To go the other way around, we simply take a setoid function [f] with
domain [[a,b]] and build the corresponding partial function.
*)
Variables a b : IR.
Hypothesis Hab : a [<=] b.
(* begin hide *)
Let I := compact a b Hab.
(* end hide *)
Variable f : CSetoid_fun (subset I) IR.
Lemma PartInt_strext : forall x y Hx Hy,
f (Build_subcsetoid_crr IR _ x Hx) [#] f (Build_subcsetoid_crr IR _ y Hy) -> x [#] y.
Proof.
intros x y Hx Hy H.
exact (csf_strext_unfolded _ _ _ _ _ H).
Qed.
Definition PartInt : PartIR.
apply Build_PartFunct with (pfpfun := fun (x : IR) Hx => f (Build_subcsetoid_crr IR _ x Hx)).
Proof.
exact (compact_wd _ _ _).
exact PartInt_strext.
Defined.
End AntiConversion.
Arguments PartInt [a b Hab].
Section Inverses.
(**
In one direction these operators are inverses.
*)
Lemma int_part_int : forall a b Hab F (Hf : included (compact a b Hab) (Dom F)),
Feq (compact a b Hab) F (PartInt (IntPartIR Hf)).
Proof.
intros; FEQ.
Qed.
End Inverses.
Section Equivalences.
(**
** Mappings Preserve Operations
We now prove that all the operations we have defined on both sets are
preserved by [PartInt].
%\begin{convention}% Let [F,G] be partial functions and [a,b:IR] and
denote by [I] the interval [[a,b]]. Let [f,g] be setoid functions of
type [I->IR] equal respectively to [F] and [G] in [I].
%\end{convention}%
*)
Variables F G : PartIR.
Variables a b c : IR.
Hypothesis Hab : a [<=] b.
(* begin hide *)
Let I := compact a b Hab.
(* end hide *)
Variables f g : CSetoid_fun (subset (compact a b Hab)) IR.
Hypothesis Ff : Feq I F (PartInt f).
Hypothesis Gg : Feq I G (PartInt g).
Lemma part_int_const : Feq I [-C-]c (PartInt (IConst (Hab:=Hab) c)).
Proof.
apply eq_imp_Feq.
red in |- *; simpl in |- *; intros; auto.
unfold I in |- *; apply included_refl.
intros; simpl in |- *; algebra.
Qed.
Lemma part_int_id : Feq I FId (PartInt (IId (Hab:=Hab))).
Proof.
apply eq_imp_Feq.
red in |- *; simpl in |- *; intros; auto.
unfold I in |- *; apply included_refl.
intros; simpl in |- *; algebra.
Qed.
Lemma part_int_plus : Feq I (F{+}G) (PartInt (IPlus f g)).
Proof.
elim Ff; intros incF Hf.
elim Hf; clear Ff Hf; intros incF' Hf.
elim Gg; intros incG Hg.
elim Hg; clear Gg Hg; intros incG' Hg.
apply eq_imp_Feq.
Included.
Included.
intros; simpl in |- *; simpl in Hf, Hg.
simpl in |- *; algebra.
Qed.
Lemma part_int_inv : Feq I {--}F (PartInt (IInv f)).
Proof.
elim Ff; intros incF Hf.
elim Hf; clear Ff Hf; intros incF' Hf.
apply eq_imp_Feq.
Included.
Included.
intros; simpl in |- *; simpl in Hf.
simpl in |- *; algebra.
Qed.
Lemma part_int_minus : Feq I (F{-}G) (PartInt (IMinus f g)).
Proof.
elim Ff; intros incF Hf.
elim Hf; clear Ff Hf; intros incF' Hf.
elim Gg; intros incG Hg.
elim Hg; clear Gg Hg; intros incG' Hg.
apply eq_imp_Feq.
Included.
Included.
intros; simpl in |- *; simpl in Hf, Hg.
simpl in |- *; algebra.
Qed.
Lemma part_int_mult : Feq I (F{*}G) (PartInt (IMult f g)).
Proof.
elim Ff; intros incF Hf.
elim Hf; clear Ff Hf; intros incF' Hf.
elim Gg; intros incG Hg.
elim Hg; clear Gg Hg; intros incG' Hg.
apply eq_imp_Feq.
Included.
Included.
intros; simpl in |- *; simpl in Hf, Hg.
simpl in |- *; algebra.
Qed.
Lemma part_int_nth : forall n : nat, Feq I (F{^}n) (PartInt (INth f n)).
Proof.
intro.
elim Ff; intros incF Hf.
elim Hf; clear Ff Hf; intros incF' Hf.
apply eq_imp_Feq.
Included.
Included.
intros; simpl in |- *; simpl in Hf.
astepl (Part F x Hx[^]n); astepr (f (Build_subcsetoid_crr IR _ x Hx')[^]n).
apply nexp_wd; algebra.
Qed.
(* begin show *)
Hypothesis HG : bnd_away_zero I G.
Hypothesis Hg : forall x : subset I, g x [#] [0].
(* end show *)
Lemma part_int_recip : Feq I {1/}G (PartInt (IRecip g Hg)).
Proof.
elim Gg; intros incG Hg'.
elim Hg'; clear Gg Hg'; intros incG' Hg'.
apply eq_imp_Feq.
Included.
Included.
intros; simpl in Hg'; simpl in |- *; algebra.
Qed.
Lemma part_int_div : Feq I (F{/}G) (PartInt (IDiv f g Hg)).
Proof.
elim Ff; intros incF Hf.
elim Hf; clear Ff Hf; intros incF' Hf.
elim Gg; intros incG Hg'.
elim Hg'; clear Gg Hg'; intros incG' Hg'.
apply eq_imp_Feq.
Included.
Included.
intros; simpl in Hf, Hg'; simpl in |- *.
algebra.
Qed.
End Equivalences.
|