File: RefSepRef.v

package info (click to toggle)
coq-corn 8.20.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 7,216 kB
  • sloc: python: 112; haskell: 69; makefile: 39; sh: 4
file content (728 lines) | stat: -rw-r--r-- 23,743 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
(* Copyright © 1998-2006
 * Henk Barendregt
 * Luís Cruz-Filipe
 * Herman Geuvers
 * Mariusz Giero
 * Rik van Ginneken
 * Dimitri Hendriks
 * Sébastien Hinderer
 * Bart Kirkels
 * Pierre Letouzey
 * Iris Loeb
 * Lionel Mamane
 * Milad Niqui
 * Russell O’Connor
 * Randy Pollack
 * Nickolay V. Shmyrev
 * Bas Spitters
 * Dan Synek
 * Freek Wiedijk
 * Jan Zwanenburg
 *
 * This work is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This work is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License along
 * with this work; if not, write to the Free Software Foundation, Inc.,
 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 *)

(* begin hide *)

Require Export CoRN.ftc.COrdLemmas.
Require Export CoRN.ftc.Partitions.
From Coq Require Import Lia.

Section Refining_Separated.

Variables a b : IR.
Hypothesis Hab : a[<=]b.
Let I := compact a b Hab.

Variable F : PartIR.
Hypothesis contF : Continuous_I Hab F.
Hypothesis incF : included (compact a b Hab) (Dom F).

Variables m n : nat.
Variable P : Partition Hab n.
Variable R : Partition Hab m.

Hypothesis HPR : Separated P R.

Lemma RSR_HP : _Separated P.
Proof.
 elim HPR; intros; assumption.
Qed.

Lemma RSR_HP' : a[=]b -> 0 = n.
Proof.
 intro.
 apply _Separated_imp_length_zero with (P := P).
  exact RSR_HP.
 assumption.
Qed.

Lemma RSR_HR : _Separated R.
Proof.
 elim HPR; intros.
 elim b0; intros; assumption.
Qed.

Lemma RSR_HR' : a[=]b -> 0 = m.
Proof.
 intro.
 apply _Separated_imp_length_zero with (P := R).
  exact RSR_HR.
 assumption.
Qed.

Lemma RSR_mn0 : 0 = m -> 0 = n.
Proof.
 intro; apply RSR_HP'; apply partition_length_zero with Hab.
 rewrite H; apply R.
Qed.

Lemma RSR_nm0 : 0 = n -> 0 = m.
Proof.
 intro; apply RSR_HR'; apply partition_length_zero with Hab.
 rewrite H; apply P.
Qed.

Lemma RSR_H' :
  forall i j : nat,
  0 < i ->
  0 < j ->
  i < n -> j < m -> forall (Hi : i <= n) (Hj : j <= m), P i Hi[#]R j Hj.
Proof.
 elim HPR; do 2 intro.
 elim b0; do 2 intro; assumption.
Qed.

Let f' (i : nat) (H : i < pred n) := P _ (lt_8 _ _ H).
Let g' (j : nat) (H : j < pred m) := R _ (lt_8 _ _ H).

Lemma RSR_f'_nlnf : nat_less_n_fun f'.
Proof.
 red in |- *; intros; unfold f' in |- *; apply prf1; auto.
Qed.

Lemma RSR_g'_nlnf : nat_less_n_fun g'.
Proof.
 red in |- *; intros; unfold g' in |- *; apply prf1; auto.
Qed.

Lemma RSR_f'_mon : forall (i i' : nat) Hi Hi', i < i' -> f' i Hi[<]f' i' Hi'.
Proof.
 intros.
 apply local_mon_imp_mon_lt with (n := pred n).
  intros; unfold f' in |- *; apply RSR_HP.
 assumption.
Qed.

Lemma RSR_g'_mon : forall (j j' : nat) Hj Hj', j < j' -> g' j Hj[<]g' j' Hj'.
Proof.
 intros.
 apply local_mon_imp_mon_lt with (n := pred m).
  intros; unfold g' in |- *; apply RSR_HR.
 assumption.
Qed.

Lemma RSR_f'_ap_g' : forall (i j : nat) Hi Hj, f' i Hi[#]g' j Hj.
Proof.
 intros.
 unfold f', g' in |- *; apply RSR_H'.
    apply Nat.lt_0_succ.
   apply Nat.lt_0_succ.
  apply pred_lt; assumption.
 apply pred_lt; assumption.
Qed.

Let h := om_fun _ _ _ _ _ RSR_f'_ap_g'.

Lemma RSR_h_nlnf : nat_less_n_fun h.
Proof.
 unfold h in |- *; apply om_fun_1.
  exact RSR_f'_nlnf.
 exact RSR_g'_nlnf.
Qed.

Lemma RSR_h_mon : forall (i i' : nat) Hi Hi', i < i' -> h i Hi[<]h i' Hi'.
Proof.
 unfold h in |- *; apply om_fun_2; auto.
    exact RSR_f'_nlnf.
   exact RSR_g'_nlnf.
  exact RSR_f'_mon.
 exact RSR_g'_mon.
Qed.

Lemma RSR_h_mon' : forall (i i' : nat) Hi Hi', i <= i' -> h i Hi[<=]h i' Hi'.
Proof.
 intros; apply mon_imp_mon'_lt with (n := pred m + pred n).
   apply RSR_h_nlnf.
  apply RSR_h_mon.
 assumption.
Qed.

Lemma RSR_h_f' : forall (i : nat) Hi, {j : nat | {Hj : _ < _ | f' i Hi[=]h j Hj}}.
Proof.
 unfold h in |- *; apply om_fun_3a; auto.
  exact RSR_f'_nlnf.
 exact RSR_g'_nlnf.
Qed.

Lemma RSR_h_g' : forall (j : nat) Hj, {i : nat | {Hi : _ < _ | g' j Hj[=]h i Hi}}.
Proof.
 unfold h in |- *; apply om_fun_3b; auto.
  exact RSR_f'_nlnf.
 exact RSR_g'_nlnf.
Qed.

Lemma RSR_h_PropAll :
  forall P : IR -> Prop,
  pred_wd' IR P ->
  (forall (i : nat) Hi, P (f' i Hi)) ->
  (forall (j : nat) Hj, P (g' j Hj)) -> forall (k : nat) Hk, P (h k Hk).
Proof.
 unfold h in |- *; apply om_fun_4b.
Qed.

Lemma RSR_h_PropEx :
  forall P : IR -> Prop,
  pred_wd' IR P ->
  {i : nat | {Hi : _ < _ | P (f' i Hi)}}
  or {j : nat | {Hj : _ < _ | P (g' j Hj)}} ->
  {k : nat | {Hk : _ < _ | P (h k Hk)}}.
Proof.
 unfold h in |- *; intros; apply om_fun_4d; auto.
  exact RSR_f'_nlnf.
 exact RSR_g'_nlnf.
Qed.

Definition Separated_Refinement_fun : forall i : nat, i <= pred (m + n) -> IR.
Proof.
 intros.
 elim (le_lt_eq_dec _ _ H); intro.
  elim (le_lt_dec i 0); intro.
   apply a.
  apply (h (pred i) (lt_10 _ _ _ b0 a0)).
 apply b.
Defined.

Lemma Separated_Refinement_lemma1 :
 forall i j : nat,
 i = j ->
 forall (Hi : i <= pred (m + n)) (Hj : j <= pred (m + n)),
 Separated_Refinement_fun i Hi[=]Separated_Refinement_fun j Hj.
Proof.
 do 3 intro.
 rewrite <- H; intros; unfold Separated_Refinement_fun in |- *; simpl in |- *.
 elim (le_lt_eq_dec _ _ Hi); elim (le_lt_eq_dec _ _ Hj); elim (le_lt_dec i 0); intros; simpl in |- *.
        algebra.
       apply RSR_h_nlnf; reflexivity.
      exfalso; rewrite <- b0 in a1; apply (Nat.lt_irrefl _ a1).
     exfalso; rewrite <- b1 in a0; apply (Nat.lt_irrefl _ a0).
    exfalso; rewrite <- b0 in a1; apply (Nat.lt_irrefl _ a1).
   exfalso; rewrite <- b1 in a0; apply (Nat.lt_irrefl _ a0).
  algebra.
 algebra.
Qed.

Lemma Separated_Refinement_lemma3 :
 forall H : 0 <= pred (m + n), Separated_Refinement_fun 0 H[=]a.
Proof.
 intros; unfold Separated_Refinement_fun in |- *; simpl in |- *.
 elim (le_lt_eq_dec _ _ H); elim (le_lt_dec 0 0); intros; simpl in |- *.
    algebra.
   exfalso; inversion b0.
  apply eq_symmetric_unfolded; apply partition_length_zero with Hab.
  cut (m + n <= 1); [ intro | lia ].
  elim (plus_eq_one_imp_eq_zero _ _ H0); intro.
   rewrite <- a1; apply R.
  rewrite <- b1; apply P.
 exfalso; inversion b0.
Qed.

Lemma Separated_Refinement_lemma4 :
 forall H : pred (m + n) <= pred (m + n),
 Separated_Refinement_fun (pred (m + n)) H[=]b.
Proof.
 intros; unfold Separated_Refinement_fun in |- *; simpl in |- *.
 elim (le_lt_eq_dec _ _ H); elim (le_lt_dec 0 0); intros; simpl in |- *.
    algebra.
    exfalso; apply (Nat.lt_irrefl _ a1).
   exfalso; apply (Nat.lt_irrefl _ a0).
  algebra.
 algebra.
Qed.

Lemma Separated_Refinement_lemma2 :
 forall (i : nat) (H : i <= pred (m + n)) (H' : S i <= pred (m + n)),
 Separated_Refinement_fun i H[<=]Separated_Refinement_fun (S i) H'.
Proof.
 intros; unfold Separated_Refinement_fun in |- *; simpl in |- *.
 elim (le_lt_eq_dec _ _ H); elim (le_lt_eq_dec _ _ H'); intros; simpl in |- *.
    elim (le_lt_dec i 0); elim (le_lt_dec (S i) 0); intros; simpl in |- *.
       exfalso; inversion a2.
      apply RSR_h_PropAll with (P := fun x : IR => a[<=]x).
        red in |- *; intros.
        apply leEq_wdr with x; assumption.
       intros; unfold f' in |- *.
       astepl (P 0 (Nat.le_0_l _)).
       apply Partition_mon; apply Nat.le_0_l.
      intros; unfold g' in |- *.
      astepl (R 0 (Nat.le_0_l _)).
      apply Partition_mon; apply Nat.le_0_l.
     exfalso; inversion a2.
    apply less_leEq; apply RSR_h_mon; auto with arith.
   elim (le_lt_dec i 0); elim (le_lt_dec (S i) 0); intros; simpl in |- *.
      exfalso; inversion a1.
     assumption.
    exfalso; inversion a1.
   apply RSR_h_PropAll with (P := fun x : IR => x[<=]b).
     red in |- *; intros.
     apply leEq_wdl with x; assumption.
    intros; unfold f' in |- *.
    apply leEq_wdr with (P _ (le_n _)).
     apply Partition_mon; apply Nat.le_trans with (pred n); auto with arith.
    apply finish.
   intros; unfold g' in |- *.
   apply leEq_wdr with (R _ (le_n _)).
    apply Partition_mon; apply Nat.le_trans with (pred m); auto with arith.
   apply finish.
  exfalso; rewrite <- b0 in H'; apply (Nat.nle_succ_diag_l _ H').
 apply leEq_reflexive.
Qed.

Definition Separated_Refinement : Partition Hab (pred (m + n)).
Proof.
 apply Build_Partition with Separated_Refinement_fun.
    exact Separated_Refinement_lemma1.
   exact Separated_Refinement_lemma2.
  exact Separated_Refinement_lemma3.
 exact Separated_Refinement_lemma4.
Defined.

Definition RSR_auxP : nat -> nat.
Proof.
 intro i.
 elim (le_lt_dec i 0); intro.
  apply 0.
 elim (le_lt_dec n i); intro.
  apply (pred (m + n) + (i - n)).
 apply (S (ProjT1 (RSR_h_f' (pred i) (lt_pred' _ _ b0 b1)))).
Defined.

Definition RSR_auxR : nat -> nat.
Proof.
 intro i.
 elim (le_lt_dec i 0); intro.
  apply 0.
 elim (le_lt_dec m i); intro.
  apply (pred (m + n) + (i - m)).
 apply (S (ProjT1 (RSR_h_g' (pred i) (lt_pred' _ _ b0 b1)))).
Defined.

Lemma RSR_auxP_lemma0 : RSR_auxP 0 = 0.
Proof.
 unfold RSR_auxP in |- *.
 elim (le_lt_dec 0 0); intro; simpl in |- *.
  reflexivity.
 exfalso; inversion b0.
Qed.

Lemma RSR_h_inj : forall (i j : nat) Hi Hj, h i Hi[=]h j Hj -> i = j.
Proof.
 intros.
 eapply mon_imp_inj_lt with (f := h).
  exact RSR_h_mon.
 apply H.
Qed.

Lemma RSR_auxP_lemmai :
  forall (i : nat) (Hi : 0 < i) (Hi' : i < n),
  RSR_auxP i = S (ProjT1 (RSR_h_f' (pred i) (lt_pred' _ _ Hi Hi'))).
Proof.
 intros.
 unfold RSR_auxP in |- *.
 elim (le_lt_dec n i); intro; simpl in |- *.
  exfalso; apply Nat.le_ngt with n i; auto.
 elim (le_lt_dec i 0); intro; simpl in |- *.
  exfalso; apply Nat.lt_irrefl with 0; apply Nat.lt_le_trans with i; auto.
 set (x := ProjT1 (RSR_h_f' _ (lt_pred' _ _ b1 b0))) in *.
 set (y := ProjT1 (RSR_h_f' _ (lt_pred' _ _ Hi Hi'))) in *.
 cut (x = y).
  intro; auto with arith.
 assert (H := ProjT2 (RSR_h_f' _ (lt_pred' _ _ b1 b0))).
 assert (H0 := ProjT2 (RSR_h_f' _ (lt_pred' _ _ Hi Hi'))).
 elim H; clear H; intros Hx Hx'.
 elim H0; clear H0; intros Hy Hy'.
 apply RSR_h_inj with Hx Hy.
 eapply eq_transitive_unfolded.
  2: apply Hy'.
 eapply eq_transitive_unfolded.
  apply eq_symmetric_unfolded; apply Hx'.
 apply RSR_f'_nlnf; reflexivity.
Qed.

Lemma RSR_auxP_lemman : RSR_auxP n = pred (m + n).
Proof.
 unfold RSR_auxP in |- *.
 elim (le_lt_dec n 0); intro; simpl in |- *.
  cut (n = 0); [ intro | auto with arith ].
  transitivity (pred m).
   2: rewrite H; auto.
  cut (0 = m); [ intro; rewrite <- H0; auto | apply RSR_HR' ].
  apply partition_length_zero with Hab; rewrite <- H; apply P.
 elim (le_lt_dec n n); intro; simpl in |- *.
  rewrite Nat.sub_diag; auto.
 exfalso; apply Nat.lt_irrefl with n; auto.
Qed.

Lemma RSR_auxP_lemma1 : forall i j : nat, i < j -> RSR_auxP i < RSR_auxP j.
Proof.
 intros; unfold RSR_auxP in |- *.
 assert (X:=not_not_lt); assert (X':=plus_pred_pred_plus).
 assert (X'':=RSR_mn0); assert (X''':=RSR_nm0).
 elim (le_lt_dec i 0); intro.
  elim (le_lt_dec j 0); intros; simpl in |- *.
   apply Nat.lt_le_trans with j; try apply Nat.le_lt_trans with i; auto with arith.
  elim (le_lt_dec n j); intros; simpl in |- *.
   lia.
  apply Nat.lt_0_succ.
 elim (le_lt_dec n i); elim (le_lt_dec j 0); intros; simpl in |- *.
    elim (Nat.lt_irrefl 0); apply Nat.lt_le_trans with j; try apply Nat.le_lt_trans with i; auto with arith.
   elim (le_lt_dec n j); intro; simpl in |- *.
    apply Nat.add_lt_mono_l.
    apply Nat.add_lt_mono_l with n.
    repeat (rewrite Nat.add_comm; rewrite Nat.sub_add); auto.
   lia; auto; apply Nat.lt_trans with j; auto.
  elim (Nat.lt_irrefl 0); apply Nat.lt_trans with i; auto; apply Nat.lt_le_trans with j; auto.
 elim (le_lt_dec n j); intro; simpl in |- *.
  apply Nat.lt_le_trans with (S (pred m + pred n)).
   apply -> Nat.succ_lt_mono.
   apply (ProjT1 (ProjT2 (RSR_h_f' (pred i) (lt_pred' _ _ b0 b2)))).
  rewrite plus_n_Sm.
  rewrite Nat.lt_succ_pred with 0 n.
   2: apply Nat.lt_trans with i; auto.
  replace (pred m + n) with (pred (m + n)).
   auto with arith.
  cut (S (pred (m + n)) = S (pred m + n)); auto.
  rewrite <- plus_Sn_m.
  rewrite <- (Nat.lt_succ_pred 0 m); auto with arith.
  apply Nat.neq_0_lt_0.
  intro.
  apply Nat.lt_irrefl with 0.
  apply Nat.lt_trans with i; auto.
  rewrite RSR_mn0; auto.
 apply -> Nat.succ_lt_mono.
 cut (~ ~ ProjT1 (RSR_h_f' (pred i) (lt_pred' _ _ b0 b2)) <
   ProjT1 (RSR_h_f' (pred j) (lt_pred' _ _ b1 b3))); intro.
  apply not_not_lt; assumption.
 cut (ProjT1 (RSR_h_f' (pred j) (lt_pred' _ _ b1 b3)) <=
   ProjT1 (RSR_h_f' (pred i) (lt_pred' _ _ b0 b2))); intros.
  2: apply not_lt; assumption.
 cut (h _ (ProjT1 (ProjT2 (RSR_h_f' (pred j) (lt_pred' _ _ b1 b3))))[<=]
   h _ (ProjT1 (ProjT2 (RSR_h_f' (pred i) (lt_pred' _ _ b0 b2))))).
  intro.
  2: apply RSR_h_mon'; assumption.
 cut (f' (pred j) (lt_pred' _ _ b1 b3)[<=]f' (pred i) (lt_pred' _ _ b0 b2)).
  2: apply leEq_wdl with (h _ (ProjT1 (ProjT2 (RSR_h_f' (pred j) (lt_pred' _ _ b1 b3))))).
   2: apply leEq_wdr with (h _ (ProjT1 (ProjT2 (RSR_h_f' (pred i) (lt_pred' _ _ b0 b2))))).
    2: assumption.
   3: apply eq_symmetric_unfolded; exact (ProjT2 (ProjT2 (RSR_h_f' (pred j) (lt_pred' _ _ b1 b3)))).
  2: apply eq_symmetric_unfolded; exact (ProjT2 (ProjT2 (RSR_h_f' (pred i) (lt_pred' _ _ b0 b2)))).
 clear H2 H1; intro.
 cut (f' _ (lt_pred' _ _ b0 b2)[<]f' _ (lt_pred' _ _ b1 b3)).
  2: apply RSR_f'_mon.
  2: apply lt_pred'; assumption.
 intro.
 exfalso.
 apply less_irreflexive_unfolded with (x := f' _ (lt_pred' _ _ b1 b3)).
 eapply leEq_less_trans; [ apply H1 | apply X0 ].
Qed.

Lemma RSR_auxP_lemma2 :
  forall (i : nat) (H : i <= n),
  {H' : RSR_auxP i <= _ | P i H[=]Separated_Refinement _ H'}.
Proof.
 intros.
 unfold Separated_Refinement in |- *; simpl in |- *.
 unfold Separated_Refinement_fun in |- *; simpl in |- *.
 elim (le_lt_dec i 0); intro; simpl in |- *.
  cut (i = 0); [ intro | auto with arith ].
  generalize H; clear a0 H; rewrite H0.
  rewrite RSR_auxP_lemma0.
  clear H0; intros.
  exists (Nat.le_0_l (pred (m + n))).
  elim le_lt_eq_dec; intro; simpl in |- *.
   elim (le_lt_dec 0 0); intro; simpl in |- *.
    apply start.
   exfalso; inversion b0.
  apply eq_transitive_unfolded with a.
   apply start.
  apply partition_length_zero with Hab.
  cut (m + n <= 1).
   intro.
   elim (plus_eq_one_imp_eq_zero _ _ H0); intro.
    rewrite <- a0; apply R.
   rewrite <- b1; apply P.
  generalize b0; clear b0.
  case (m + n).
   auto.
  intros.
  simpl in b0; rewrite <- b0; auto.
 elim (le_lt_eq_dec _ _ H); intro.
  cut (pred i < pred n); [ intro | apply Nat.lt_succ_lt_pred; rewrite Nat.lt_succ_pred with 0 i; auto ].
  cut (RSR_auxP i <= pred (m + n)).
   intro; exists H1.
   elim le_lt_eq_dec; intro; simpl in |- *.
    elim (le_lt_dec (RSR_auxP i) 0); intro; simpl in |- *.
     cut (RSR_auxP i = 0); [ intro | auto with arith ].
     rewrite <- RSR_auxP_lemma0 in H2.
     cut (RSR_auxP 0 < RSR_auxP i); [ intro | apply RSR_auxP_lemma1; assumption ].
     exfalso; rewrite H2 in H3; apply (Nat.lt_irrefl _ H3).
    generalize b1 a1; clear b1 a1.
    rewrite (RSR_auxP_lemmai i b0 a0); intros.
    simpl in |- *.
    elim (ProjT2 (RSR_h_f' _ (lt_pred' i n b0 a0))); intros.
    eapply eq_transitive_unfolded.
     2: eapply eq_transitive_unfolded.
      2: apply p.
     unfold f' in |- *.
     apply prf1; symmetry; apply Nat.lt_succ_pred with 0; auto.
    apply RSR_h_nlnf; reflexivity.
   rewrite <- RSR_auxP_lemman in b1.
   cut (i = n).
    intro; exfalso; rewrite H2 in a0; apply (Nat.lt_irrefl _ a0).
   apply nat_mon_imp_inj with (h := RSR_auxP).
    apply RSR_auxP_lemma1.
   assumption.
  unfold RSR_auxP in |- *.
  elim (le_lt_dec i 0); intro; simpl in |- *.
   apply Nat.le_0_l.
  elim (le_lt_dec n i); intro; simpl in |- *.
   elim (Nat.lt_irrefl n); apply Nat.le_lt_trans with i; auto.
  apply plus_pred_pred_plus.
  elim (ProjT2 (RSR_h_f' _ (lt_pred' i n b1 b2))); intros.
  assumption.
 generalize H; clear H; rewrite b1; intro.
 rewrite RSR_auxP_lemman.
 exists (le_n (pred (m + n))).
 elim le_lt_eq_dec; intro; simpl in |- *.
  exfalso; apply (Nat.lt_irrefl _ a0).
 apply finish.
Qed.

Lemma Separated_Refinement_lft : Refinement P Separated_Refinement.
Proof.
 exists RSR_auxP; repeat split.
   exact RSR_auxP_lemman.
  intros; apply RSR_auxP_lemma1; assumption.
 exact RSR_auxP_lemma2.
Qed.

Lemma RSR_auxR_lemma0 : RSR_auxR 0 = 0.
Proof.
 unfold RSR_auxR in |- *.
 elim (le_lt_dec 0 0); intro; simpl in |- *.
  reflexivity.
 exfalso; inversion b0.
Qed.

Lemma RSR_auxR_lemmai :
  forall (i : nat) (Hi : 0 < i) (Hi' : i < m),
  RSR_auxR i = S (ProjT1 (RSR_h_g' (pred i) (lt_pred' _ _ Hi Hi'))).
Proof.
 intros.
 unfold RSR_auxR in |- *.
 elim (le_lt_dec m i); intro; simpl in |- *.
  exfalso; apply Nat.le_ngt with m i; auto.
 elim (le_lt_dec i 0); intro; simpl in |- *.
  exfalso; apply Nat.lt_irrefl with 0; apply Nat.lt_le_trans with i; auto.
 set (x := ProjT1 (RSR_h_g' _ (lt_pred' _ _ b1 b0))) in *.
 set (y := ProjT1 (RSR_h_g' _ (lt_pred' _ _ Hi Hi'))) in *.
 cut (x = y).
  intro; auto with arith.
 assert (H := ProjT2 (RSR_h_g' _ (lt_pred' _ _ b1 b0))).
 assert (H0 := ProjT2 (RSR_h_g' _ (lt_pred' _ _ Hi Hi'))).
 elim H; clear H; intros Hx Hx'.
 elim H0; clear H0; intros Hy Hy'.
 apply RSR_h_inj with Hx Hy.
 eapply eq_transitive_unfolded.
  2: apply Hy'.
 eapply eq_transitive_unfolded.
  apply eq_symmetric_unfolded; apply Hx'.
 apply RSR_g'_nlnf; reflexivity.
Qed.

Lemma RSR_auxR_lemmam : RSR_auxR m = pred (m + n).
Proof.
 unfold RSR_auxR in |- *.
 elim (le_lt_dec m 0); intro; simpl in |- *.
  cut (m = 0); [ intro | auto with arith ].
  transitivity (pred m).
   rewrite H; auto.
  cut (0 = n); [ intro; rewrite <- H0; auto | apply RSR_HP' ].
  apply partition_length_zero with Hab; rewrite <- H; apply R.
 elim (le_lt_dec m m); intro; simpl in |- *.
  rewrite Nat.sub_diag; auto.
 elim (Nat.lt_irrefl _ b1).
Qed.

Lemma RSR_auxR_lemma1 : forall i j : nat, i < j -> RSR_auxR i < RSR_auxR j.
Proof.
 intros; unfold RSR_auxR in |- *.
 assert (X:=not_not_lt); assert (X':=plus_pred_pred_plus).
 assert (X'':=RSR_mn0); assert (X''':=RSR_nm0).
 elim (le_lt_dec i 0); intro.
  elim (le_lt_dec j 0); intros; simpl in |- *.
   apply Nat.le_lt_trans with i; try apply Nat.lt_le_trans with j; auto with arith.
  elim (le_lt_dec m j); intros; simpl in |- *.
   lia.
  apply Nat.lt_0_succ.
 elim (le_lt_dec m i); elim (le_lt_dec j 0); intros; simpl in |- *.
    elim (Nat.lt_irrefl 0); apply Nat.le_lt_trans with i; try apply Nat.lt_le_trans with j; auto with arith.
   elim (le_lt_dec m j); intro; simpl in |- *.
    apply Nat.add_lt_mono_l.
    apply Nat.add_lt_mono_l with m.
    repeat (rewrite Nat.add_comm; rewrite Nat.sub_add); auto.
   lia; auto; apply Nat.lt_trans with j; auto.
  elim (Nat.lt_irrefl 0); apply Nat.lt_trans with i; auto; apply Nat.lt_le_trans with j; auto.
 elim (le_lt_dec m j); intro; simpl in |- *.
  set (H0 := RSR_nm0) in *; set (H1 := RSR_mn0) in *; apply Nat.lt_le_trans with (S (pred m + pred n)).
   apply -> Nat.succ_lt_mono.
   apply (ProjT1 (ProjT2 (RSR_h_g' (pred i) (lt_pred' _ _ b0 b2)))).
  rewrite <- plus_Sn_m.
  rewrite Nat.lt_succ_pred with 0 m.
   2: apply Nat.lt_trans with i; auto.
  replace (m + pred n) with (pred (m + n)).
   auto with arith.
  cut (S (pred (m + n)) = S (m + pred n)); auto.
  rewrite plus_n_Sm.
  rewrite Nat.lt_succ_pred with 0 n; auto with arith.
   apply Nat.lt_succ_pred with 0.
   apply Nat.lt_le_trans with m; auto with arith.
   apply Nat.lt_trans with i; auto.
  apply Nat.neq_0_lt_0.
  intro.
  apply Nat.lt_irrefl with 0.
  apply Nat.lt_trans with i; auto.
  rewrite RSR_nm0; auto.
 apply -> Nat.succ_lt_mono.
 cut (~ ~ ProjT1 (RSR_h_g' (pred i) (lt_pred' _ _ b0 b2)) <
   ProjT1 (RSR_h_g' (pred j) (lt_pred' _ _ b1 b3))); intro.
  apply not_not_lt; assumption.
 cut (ProjT1 (RSR_h_g' (pred j) (lt_pred' _ _ b1 b3)) <=
   ProjT1 (RSR_h_g' (pred i) (lt_pred' _ _ b0 b2))); intros.
  2: apply not_lt; assumption.
 cut (h _ (ProjT1 (ProjT2 (RSR_h_g' (pred j) (lt_pred' _ _ b1 b3))))[<=]
   h _ (ProjT1 (ProjT2 (RSR_h_g' (pred i) (lt_pred' _ _ b0 b2))))).
  intro.
  2: apply RSR_h_mon'; assumption.
 cut (g' (pred j) (lt_pred' _ _ b1 b3)[<=]g' (pred i) (lt_pred' _ _ b0 b2)).
  2: apply leEq_wdl with (h _ (ProjT1 (ProjT2 (RSR_h_g' (pred j) (lt_pred' _ _ b1 b3))))).
   2: apply leEq_wdr with (h _ (ProjT1 (ProjT2 (RSR_h_g' (pred i) (lt_pred' _ _ b0 b2))))).
    2: assumption.
   3: apply eq_symmetric_unfolded; exact (ProjT2 (ProjT2 (RSR_h_g' (pred j) (lt_pred' _ _ b1 b3)))).
  2: apply eq_symmetric_unfolded; exact (ProjT2 (ProjT2 (RSR_h_g' (pred i) (lt_pred' _ _ b0 b2)))).
 clear H2 H1; intro.
 cut (g' _ (lt_pred' _ _ b0 b2)[<]g' _ (lt_pred' _ _ b1 b3)).
  2: apply RSR_g'_mon.
  2: apply lt_pred'; assumption.
 intro.
 exfalso.
 apply less_irreflexive_unfolded with (x := g' _ (lt_pred' _ _ b1 b3)).
 eapply leEq_less_trans; [ apply H1 | apply X0 ].
Qed.

Lemma RSR_auxR_lemma2 :
  forall (j : nat) (H : j <= m),
  {H' : RSR_auxR j <= _ | R j H[=]Separated_Refinement _ H'}.
Proof.
 intros.
 unfold Separated_Refinement in |- *; simpl in |- *.
 unfold Separated_Refinement_fun in |- *; simpl in |- *.
 elim (le_lt_dec j 0); intro; simpl in |- *.
  cut (j = 0); [ intro | auto with arith ].
  generalize H; clear a0 H; rewrite H0.
  rewrite RSR_auxR_lemma0.
  clear H0; intros.
  exists (Nat.le_0_l (pred (m + n))).
  elim le_lt_eq_dec; intro; simpl in |- *.
   elim (le_lt_dec 0 0); intro; simpl in |- *.
    apply start.
   exfalso; inversion b0.
  apply eq_transitive_unfolded with a.
   apply start.
  apply partition_length_zero with Hab.
  cut (m + n <= 1).
   intros.
   elim (plus_eq_one_imp_eq_zero _ _ H0); intro.
    rewrite <- a0; apply R.
   rewrite <- b1; apply P.
  generalize b0; clear b0.
  case (m + n).
   auto.
  intros.
  simpl in b0; rewrite <- b0; auto.
 elim (le_lt_eq_dec _ _ H); intro.
  cut (pred j < pred m); [ intro | red in |- *; rewrite Nat.lt_succ_pred with 0 j; auto; apply le_2; auto ].
  cut (RSR_auxR j <= pred (m + n)).
   intro; exists H1.
   elim le_lt_eq_dec; intro; simpl in |- *.
    elim (le_lt_dec (RSR_auxR j) 0); intro; simpl in |- *.
     cut (RSR_auxR j = 0); [ intro | auto with arith ].
     rewrite <- RSR_auxR_lemma0 in H2.
     cut (RSR_auxR 0 < RSR_auxR j); [ intro | apply RSR_auxR_lemma1; assumption ].
     exfalso; rewrite H2 in H3; apply (Nat.lt_irrefl _ H3).
    generalize b1 a1; clear b1 a1.
    rewrite (RSR_auxR_lemmai j b0 a0); intros.
    simpl in |- *.
    elim (ProjT2 (RSR_h_g' _ (lt_pred' _ _ b0 a0))); intros.
    eapply eq_transitive_unfolded.
     2: eapply eq_transitive_unfolded.
      2: apply p.
     unfold g' in |- *.
     apply prf1; symmetry; apply Nat.lt_succ_pred with 0; auto.
    apply RSR_h_nlnf; reflexivity.
   rewrite <- RSR_auxR_lemmam in b1.
   cut (j = m).
    intro; exfalso; rewrite H2 in a0; apply (Nat.lt_irrefl _ a0).
   apply nat_mon_imp_inj with (h := RSR_auxR).
    apply RSR_auxR_lemma1.
   assumption.
  unfold RSR_auxR in |- *.
  elim (le_lt_dec j 0); intro; simpl in |- *.
   apply Nat.le_0_l.
  elim (le_lt_dec m j); intro; simpl in |- *.
    rewrite (proj2 (Nat.sub_0_le j m)).
    rewrite <- plus_n_O; auto with arith.
    assumption.
  apply plus_pred_pred_plus.
  elim (ProjT2 (RSR_h_g' _ (lt_pred' _ _ b1 b2))); intros.
  assumption.
 generalize H; clear H; rewrite b1; intro.
 rewrite RSR_auxR_lemmam.
 exists (le_n (pred (m + n))).
 elim le_lt_eq_dec; intro; simpl in |- *.
  exfalso; apply (Nat.lt_irrefl _ a0).
 apply finish.
Qed.

Lemma Separated_Refinement_rht : Refinement R Separated_Refinement.
Proof.
 exists RSR_auxR; repeat split.
   exact RSR_auxR_lemmam.
  intros; apply RSR_auxR_lemma1; assumption.
 exact RSR_auxR_lemma2.
Qed.

End Refining_Separated.
(* end hide *)