1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
|
(* Copyright © 1998-2006
* Henk Barendregt
* Luís Cruz-Filipe
* Herman Geuvers
* Mariusz Giero
* Rik van Ginneken
* Dimitri Hendriks
* Sébastien Hinderer
* Bart Kirkels
* Pierre Letouzey
* Iris Loeb
* Lionel Mamane
* Milad Niqui
* Russell O’Connor
* Randy Pollack
* Nickolay V. Shmyrev
* Bas Spitters
* Dan Synek
* Freek Wiedijk
* Jan Zwanenburg
*
* This work is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This work is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this work; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*)
(* ZMod.v, by Vince Barany *)
Require Export CoRN.model.Zmod.ZGcd.
(**
* Working modulo a positive number over Z
** Facts on `mod'
*)
Section zmod.
Definition Zmod_same := Z_mod_same.
Lemma Zmod_zero_lft : forall m : Z, (0 mod m)%Z = 0%Z.
Proof.
intro m.
case m; auto.
Qed.
Lemma Zmod_zero_rht : forall a : Z, (a mod 0)%Z =
ltac:(match eval hnf in (1 mod 0) with | 0 => exact 0%Z | _ => exact a end).
Proof.
intro a.
case a; auto.
Qed.
Lemma Zmod_Zmod :
forall m a : Z, (m > 0)%Z -> ((a mod m) mod m)%Z = (a mod m)%Z.
Proof.
intros m a Hm.
apply (Zdiv_remainder_unique (a mod m) m (a mod m / m) ((a mod m) mod m) 0 (a mod m)).
rewrite Zmult_comm.
apply Z_div_mod_eq_full.
apply Z_mod_lt; auto.
auto with zarith.
apply Z_mod_lt; auto.
Qed.
Lemma Zmod_cancel_multiple :
forall m a b : Z, (m > 0)%Z -> ((b * m + a) mod m)%Z = (a mod m)%Z.
Proof.
intros m a b Hm.
rewrite Zplus_comm.
apply Z_mod_plus.
exact Hm.
Qed.
Lemma Zmod_multiple : forall m a : Z, (m > 0)%Z -> ((a * m) mod m)%Z = 0%Z.
Proof.
intros m a Hm.
rewrite <- (Zplus_0_r (a * m)).
rewrite Zmod_cancel_multiple; auto.
Qed.
Lemma Zmod_minus_intro :
forall m a b : Z,
(m > 0)%Z -> ((a - b) mod m)%Z = 0%Z -> (a mod m)%Z = (b mod m)%Z.
Proof.
intros m a b Hm H0.
assert (Hdiv : Zdivides m (a - b)); auto with zarith.
elim Hdiv; intros q Hq.
replace a with (q * m + b)%Z; auto with zarith.
apply Zmod_cancel_multiple.
assumption.
Qed.
Lemma Zmod_plus_compat :
forall m a b : Z,
(m > 0)%Z -> ((a + b) mod m)%Z = ((a mod m + b mod m) mod m)%Z.
Proof.
intros m a b Hm.
rewrite <- (Zmod_Zmod m (a + b) Hm).
apply Zmod_minus_intro.
exact Hm.
apply Zmod0_Zdivides.
auto with zarith.
replace (a mod m)%Z with (a - m * (a / m))%Z.
replace (b mod m)%Z with (b - m * (b / m))%Z.
replace ((a + b) mod m)%Z with (a + b - m * ((a + b) / m))%Z.
unfold Zminus in |- *; repeat rewrite Zplus_assoc.
repeat rewrite Zopp_plus_distr; repeat rewrite Z.opp_involutive.
rewrite (Zplus_comm (a + b) (- (m * ((a + b) / m)))).
repeat rewrite <- Zplus_assoc.
apply Zdivides_plus_elim.
auto with zarith.
rewrite (Zplus_assoc (m * (a / m)) (- b) (m * (b / m))).
rewrite (Zplus_comm (m * (a / m)) (- b)).
rewrite <- (Zplus_assoc (- b) (m * (a / m)) (m * (b / m))).
rewrite (Zplus_assoc (- a) (- b) (m * (a / m) + m * (b / m))).
rewrite <- Zopp_plus_distr.
repeat rewrite Zplus_assoc.
rewrite Zplus_opp_r.
auto with zarith.
generalize (Z_div_mod_eq_full (a + b) m); auto with zarith.
generalize (Z_div_mod_eq_full b m); auto with zarith.
generalize (Z_div_mod_eq_full a m); auto with zarith.
Qed.
Lemma Zmod_plus_compat_rht :
forall m a b : Z, (m > 0)%Z -> ((a + b) mod m)%Z = ((a + b mod m) mod m)%Z.
Proof.
intros m a b Hm.
rewrite (Zmod_plus_compat m a b Hm).
rewrite <- (Zmod_Zmod m (a + b mod m) Hm).
rewrite (Zmod_plus_compat m a (b mod m) Hm).
rewrite Zmod_Zmod; auto.
rewrite Zmod_Zmod; auto.
Qed.
Lemma Zmod_plus_compat_lft :
forall m a b : Z, (m > 0)%Z -> ((a + b) mod m)%Z = ((a mod m + b) mod m)%Z.
Proof.
intros m a b Hm.
rewrite (Zplus_comm a b).
rewrite (Zplus_comm (a mod m) b).
apply Zmod_plus_compat_rht.
auto.
Qed.
Lemma Zmod_opp_elim :
forall m a : Z, (m > 0)%Z -> (- a mod m)%Z = ((m - a mod m) mod m)%Z.
Proof.
intros m a Hm.
apply Zmod_minus_intro.
exact Hm.
replace (- a - (m - a mod m))%Z with (- m + (a mod m - a))%Z; auto with zarith.
replace (- m)%Z with (-1 * m)%Z; auto with zarith.
rewrite Zmod_cancel_multiple; auto.
replace (a mod m - a)%Z with (- (a / m) * m)%Z; auto with zarith.
generalize (Z_div_mod_eq_full a m).
set (q := (a / m)%Z); set (r := (a mod m)%Z); intro Ha; rewrite Ha.
rewrite Zplus_comm; unfold Zminus in |- *; rewrite Zopp_plus_distr;
rewrite Zplus_assoc; rewrite Zplus_opp_r; rewrite Zplus_0_l;
rewrite Zopp_mult_distr_l_reverse; rewrite Zmult_comm; reflexivity.
Qed.
Lemma Zmod_minus_elim :
forall m a b : Z,
(m > 0)%Z -> (a mod m)%Z = (b mod m)%Z -> ((a - b) mod m)%Z = 0%Z.
Proof.
intros m a b Hm Heq.
unfold Zminus in |- *.
rewrite (Zmod_plus_compat m a (- b) Hm).
rewrite Heq.
rewrite Zmod_opp_elim; auto.
rewrite <- (Zmod_plus_compat m b (m - b mod m) Hm).
unfold Zminus in |- *.
rewrite Zplus_assoc.
rewrite (Zplus_comm b m).
rewrite <- Zplus_assoc.
fold (b - b mod m)%Z in |- *.
replace (b - b mod m)%Z with (b / m * m)%Z.
rewrite Zplus_comm.
rewrite Zmod_cancel_multiple; auto.
apply Zmod_same; auto.
set (q := (b / m)%Z); set (r := (b mod m)%Z).
rewrite (Z_div_mod_eq_full b m).
fold q in |- *; fold r in |- *.
rewrite Zmult_comm.
unfold Zminus in |- *.
rewrite <- Zplus_assoc.
rewrite Zplus_opp_r.
auto with zarith.
Qed.
Lemma Zmod_mult_compat :
forall m a b : Z,
(m > 0)%Z -> ((a * b) mod m)%Z = ((a mod m * (b mod m)) mod m)%Z.
Proof.
intros m a b Hm.
rewrite <- (Zmod_Zmod m (a * b) Hm).
apply Zmod_minus_intro; auto.
apply Zmod0_Zdivides.
auto with zarith.
replace (a mod m)%Z with (a - m * (a / m))%Z.
replace (b mod m)%Z with (b - m * (b / m))%Z.
replace ((a * b) mod m)%Z with (a * b - m * (a * b / m))%Z.
unfold Zminus in |- *; repeat rewrite Zplus_assoc.
repeat rewrite Zmult_plus_distr_l.
repeat rewrite Zmult_plus_distr_r.
repeat rewrite Zopp_plus_distr; repeat rewrite Z.opp_involutive.
rewrite (Zplus_comm (a * b)).
repeat rewrite <- Zplus_assoc.
apply Zdivides_plus_elim.
auto with zarith.
repeat rewrite Zplus_assoc.
rewrite Zplus_opp_r.
repeat rewrite Zopp_mult_distr_l_reverse; repeat rewrite Zopp_mult_distr_r;
repeat rewrite Z.opp_involutive.
simpl in |- *.
apply Zdivides_plus_elim; auto with zarith.
generalize (Z_div_mod_eq_full (a * b) m); auto with zarith.
generalize (Z_div_mod_eq_full b m); auto with zarith.
generalize (Z_div_mod_eq_full a m); auto with zarith.
Qed.
Lemma Zmod_mult_compat_rht :
forall m a b : Z, (m > 0)%Z -> ((a * b) mod m)%Z = ((a * (b mod m)) mod m)%Z.
Proof.
intros m a b Hm.
rewrite (Zmod_mult_compat m a b Hm).
rewrite <- (Zmod_Zmod m (a * (b mod m)) Hm).
rewrite (Zmod_mult_compat m a (b mod m) Hm).
rewrite Zmod_Zmod; auto.
rewrite Zmod_Zmod; auto.
Qed.
Lemma Zmod_mult_compat_lft :
forall m a b : Z, (m > 0)%Z -> ((a * b) mod m)%Z = ((a mod m * b) mod m)%Z.
Proof.
intros m a b Hm.
rewrite (Zmult_comm a b).
rewrite (Zmult_comm (a mod m) b).
apply Zmod_mult_compat_rht.
auto.
Qed.
Lemma Zmod_mult_elim_lft :
forall m a b c : Z,
(m > 0)%Z ->
Zrelprime a m ->
((a * b) mod m)%Z = ((a * c) mod m)%Z -> (b mod m)%Z = (c mod m)%Z.
Proof.
intros m a b c Hm Hrelprime Hmulteq.
assert (Hm0 : m <> 0%Z); auto with zarith.
generalize (Zdivides_Zmod0 _ _ Hm0 (Zmod_minus_elim m _ _ Hm Hmulteq)); intro Hdiv.
rewrite (Zmult_comm a b) in Hdiv; rewrite (Zmult_comm a c) in Hdiv;
rewrite <- BinInt.Zmult_minus_distr_r in Hdiv.
apply Zmod_minus_intro; auto.
apply Zmod0_Zdivides. auto with zarith.
apply (Zrelprime_div_mult_intro m a (b - c)).
apply Zrelprime_symm; assumption.
rewrite Zmult_comm; assumption.
Qed.
Lemma Zmod_mult_elim_rht :
forall m a b c : Z,
(m > 0)%Z ->
Zrelprime a m ->
((b * a) mod m)%Z = ((c * a) mod m)%Z -> (b mod m)%Z = (c mod m)%Z.
intros m a b c; rewrite (Zmult_comm b a); rewrite (Zmult_comm c a); apply Zmod_mult_elim_lft.
Qed.
Lemma Zmod_opp_zero :
forall m a : Z, (m > 0)%Z -> (a mod m)%Z = 0%Z -> (- a mod m)%Z = 0%Z.
Proof.
intros m a Hm Ha.
rewrite (Zmod_opp_elim m a Hm).
rewrite Ha.
unfold Zminus in |- *; simpl in |- *; rewrite Zplus_0_r.
apply (Z_mod_same m Hm).
Qed.
Lemma Zmod_small :
forall m a : Z, (m > 0)%Z -> (0 <= a < m)%Z -> (a mod m)%Z = a.
Proof.
intros m a Hm Ha.
apply (Zmodeq_small (a mod m) a m).
apply (Z_mod_lt a m Hm).
exact Ha.
replace (a mod m - a)%Z with (- m * (a / m))%Z.
auto with zarith.
generalize (Z_div_mod_eq_full a m).
set (q := (a / m)%Z); set (r := (a mod m)%Z); intro H; rewrite H.
rewrite Zplus_comm; unfold Zminus in |- *; rewrite Zopp_plus_distr;
rewrite Zplus_assoc; rewrite Zplus_opp_r; rewrite Zplus_0_l;
rewrite Zopp_mult_distr_l_reverse; rewrite Zmult_comm; reflexivity.
Qed.
Lemma Zmod_opp_nonzero :
forall m a : Z,
(m > 0)%Z -> (a mod m)%Z <> 0%Z -> (- a mod m)%Z = (m - a mod m)%Z.
Proof.
intros m a Hm Ha.
rewrite (Zmod_opp_elim m a Hm).
apply Zmod_small.
exact Hm.
generalize (Z_mod_lt a m Hm); intro Hlt.
auto with zarith.
Qed.
Lemma Zmod_one_lft : forall m : Z, (m > 1)%Z -> (1 mod m)%Z = 1%Z.
Proof.
intros m Hm.
apply Zmod_small; auto with zarith.
Qed.
Lemma Zmod_one_rht : forall a : Z, (a mod 1)%Z = 0%Z.
Proof.
intro a.
generalize (Z_mod_lt a 1).
auto with zarith.
Qed.
Lemma Zmod_lin_comb :
forall m a : Z,
(m > 0)%Z -> (Zgcd a m < m)%Z -> ((a * Zgcd_coeff_a a m) mod m)%Z = Zgcd a m.
Proof.
intros m a Hm Hgcd.
generalize (Zgcd_lin_comb a m); intro Hlincomb.
rewrite (Z_div_mod_eq_full (Zgcd_coeff_a a m * a) m) in Hlincomb.
rewrite Zmult_comm in Hlincomb.
rewrite Zplus_comm in Hlincomb.
rewrite Zplus_assoc in Hlincomb.
rewrite <- Zmult_plus_distr_l in Hlincomb.
replace (Zgcd a m) with (Zgcd a m mod m)%Z.
rewrite Hlincomb.
rewrite Zmod_plus_compat; auto.
rewrite Zmod_Zmod; auto.
rewrite <- Zmod_plus_compat; auto.
apply Zmod_minus_intro; auto.
set (u := Zgcd_coeff_a a m).
set (v := Zgcd_coeff_b a m).
rewrite (Zplus_comm ((v + u * a / m) * m) (u * a)).
unfold Zminus in |- *.
rewrite Zopp_plus_distr.
rewrite Zplus_assoc.
rewrite (Zmult_comm a u).
rewrite Zplus_opp_r.
rewrite Zplus_0_l.
rewrite <- Zopp_mult_distr_l_reverse.
apply Zmod_multiple; auto.
apply Zmod_small; auto.
auto with zarith.
Qed.
Lemma Zmod_relprime_inv :
forall m a : Z,
(m > 1)%Z -> Zrelprime a m -> ((a * Zgcd_coeff_a a m) mod m)%Z = 1%Z.
Proof.
intros m a Hm H1.
unfold Zrelprime in H1.
generalize (Zgcd_lin_comb a m).
intro Hlc.
rewrite H1 in Hlc.
rewrite (Zmult_comm (Zgcd_coeff_a a m) a) in Hlc.
assert (Hqr : (a * Zgcd_coeff_a a m)%Z = (- Zgcd_coeff_b a m * m + 1)%Z).
rewrite Zplus_comm.
rewrite Hlc.
rewrite <- Zplus_assoc.
rewrite Zopp_mult_distr_l_reverse.
auto with zarith.
set (Hdivmod:=Z_div_mod_eq_full (a * Zgcd_coeff_a a m) m).
rewrite (Zmult_comm m (a * Zgcd_coeff_a a m / m)) in Hdivmod.
apply (Zdiv_remainder_unique _ _ _ _ (- Zgcd_coeff_b a m) 1 Hdivmod).
apply Z_mod_lt.
auto with zarith.
exact Hqr.
auto with zarith.
Qed.
End zmod.
#[global]
Hint Resolve Zmod_zero_lft: zarith.
#[global]
Hint Resolve Zmod_zero_rht: zarith.
#[global]
Hint Resolve Zmod_same: zarith.
#[global]
Hint Resolve Zmod_Zmod: zarith.
#[global]
Hint Resolve Zmod_cancel_multiple: zarith.
#[global]
Hint Resolve Zmod_multiple: zarith.
#[global]
Hint Resolve Zmod_minus_intro: zarith.
#[global]
Hint Resolve Zmod_plus_compat: zarith.
#[global]
Hint Resolve Zmod_plus_compat_lft: zarith.
#[global]
Hint Resolve Zmod_plus_compat_rht: zarith.
#[global]
Hint Resolve Zmod_opp_elim: zarith.
#[global]
Hint Resolve Zmod_minus_elim: zarith.
#[global]
Hint Resolve Zmod_mult_compat: zarith.
#[global]
Hint Resolve Zmod_mult_compat_lft: zarith.
#[global]
Hint Resolve Zmod_mult_compat_rht: zarith.
#[global]
Hint Resolve Zmod_opp_zero: zarith.
#[global]
Hint Resolve Zmod_small: zarith.
#[global]
Hint Resolve Zmod_opp_nonzero: zarith.
#[global]
Hint Resolve Zmod_one_lft: zarith.
#[global]
Hint Resolve Zmod_one_rht: zarith.
#[global]
Hint Resolve Zmod_lin_comb: zarith.
#[global]
Hint Resolve Zmod_relprime_inv: zarith.
(*
** Equality modulo m
Let m be a positive number.
*)
Section zmodeq.
Variable m : positive.
Definition Zmodeq (a b : Z) := Zdivides m (a - b).
Lemma Zmodeq_dec : forall a b : Z, {Zmodeq a b} + {~ Zmodeq a b}.
Proof.
intros a b.
unfold Zmodeq in |- *.
apply Zdivides_dec.
Qed.
Lemma Zmodeq_modeq : forall a b : Z, Zmodeq a b -> (a mod m)%Z = (b mod m)%Z.
Proof.
intros a b H.
apply Zmod_minus_intro.
auto with zarith.
unfold Zmodeq in H.
apply Zmod0_Zdivides.
intro Hfalse; inversion Hfalse.
assumption.
Qed.
Lemma Zmodeq_eqmod : forall a b : Z, (a mod m)%Z = (b mod m)%Z -> Zmodeq a b.
Proof.
intros a b H.
unfold Zmodeq in |- *.
apply Zdivides_Zmod0.
intro Hfalse; inversion Hfalse.
apply Zmod_minus_elim; auto with zarith.
Qed.
Lemma Zmodeq_refl : forall a : Z, Zmodeq a a.
Proof.
intros.
unfold Zmodeq in |- *.
unfold Zminus in |- *.
rewrite Zplus_opp_r.
apply Zdivides_zero_rht.
Qed.
Lemma Zmodeq_symm : forall a b : Z, Zmodeq a b -> Zmodeq b a.
Proof.
unfold Zmodeq in |- *.
intros.
replace (b - a)%Z with (- (a - b))%Z; auto with zarith.
Qed.
Lemma Zmodeq_trans : forall a b c : Z, Zmodeq b a -> Zmodeq a c -> Zmodeq b c.
Proof.
unfold Zmodeq in |- *.
intros.
replace (b - c)%Z with (b - a + (a - c))%Z; auto with zarith.
Qed.
Lemma Zmodeq_zero : forall a : Z, Zmodeq a 0 <-> Zdivides m a.
Proof.
unfold Zmodeq in |- *; unfold Zdivides in |- *.
intros.
unfold Zminus in |- *.
simpl in |- *.
rewrite Zplus_0_r.
tauto.
Qed.
Lemma Zmodeq_rem : forall a : Z, Zmodeq a (a mod m).
Proof.
intros.
unfold Zmodeq in |- *.
exists (a / m)%Z.
rewrite Zmult_comm.
generalize (Z_div_mod_eq_full a m).
auto with zarith.
Qed.
Lemma Zmodeq_plus_compat :
forall a b c d : Z, Zmodeq a b -> Zmodeq c d -> Zmodeq (a + c) (b + d).
Proof.
intros a b c d.
unfold Zmodeq in |- *.
unfold Zdivides in |- *.
intros Hab Hcd.
elim Hab.
intros q1 H1.
elim Hcd.
intros q2 H2.
exists (q1 + q2)%Z.
rewrite Zmult_plus_distr_l.
auto with zarith.
Qed.
Definition Zmodeq_plus_elim := Zmodeq_plus_compat.
Lemma Zmodeq_plus_elim_lft :
forall a b c : Z, Zmodeq a b -> Zmodeq (c + a) (c + b).
Proof.
intros.
apply Zmodeq_plus_compat.
apply Zmodeq_refl.
assumption.
Qed.
Lemma Zmodeq_plus_elim_rht :
forall a b c : Z, Zmodeq a b -> Zmodeq (a + c) (b + c).
Proof.
intros.
apply Zmodeq_plus_compat.
assumption.
apply Zmodeq_refl.
Qed.
Lemma Zmodeq_mult_elim_lft :
forall a b c : Z, Zmodeq a b -> Zmodeq (c * a) (c * b).
Proof.
intros.
unfold Zmodeq in |- *.
unfold Zminus in |- *.
rewrite (Zmult_comm c b).
rewrite <- Zopp_mult_distr_l_reverse.
rewrite (Zmult_comm c a).
rewrite <- Zmult_plus_distr_l.
fold (a - b)%Z in |- *.
apply Zdivides_mult_elim_rht.
assumption.
Qed.
Lemma Zmodeq_mult_elim_rht :
forall a b c : Z, Zmodeq a b -> Zmodeq (a * c) (b * c).
Proof.
intros.
rewrite (Zmult_comm a c).
rewrite (Zmult_comm b c).
apply Zmodeq_mult_elim_lft.
assumption.
Qed.
Lemma Zmodeq_mult_compat :
forall a b c d : Z, Zmodeq a b -> Zmodeq c d -> Zmodeq (a * c) (b * d).
Proof.
intros a b c d Hab Hcd.
apply (Zmodeq_trans (b * c)).
apply Zmodeq_mult_elim_rht; assumption.
apply Zmodeq_mult_elim_lft; assumption.
Qed.
Definition Zmodeq_mult_elim := Zmodeq_mult_compat.
Lemma Zmodeq_opp_elim : forall a b : Z, Zmodeq a b -> Zmodeq (- a) (- b).
Proof.
intros a b H.
replace (- a)%Z with (-1 * a)%Z; auto with zarith.
replace (- b)%Z with (-1 * b)%Z; auto with zarith.
apply Zmodeq_mult_elim.
apply Zmodeq_refl.
exact H.
Qed.
Lemma Zmodeq_opp_intro : forall a b : Z, Zmodeq (- a) (- b) -> Zmodeq a b.
Proof.
intros a b H.
rewrite <- (Z.opp_involutive a).
rewrite <- (Z.opp_involutive b).
apply (Zmodeq_opp_elim _ _ H).
Qed.
Lemma Zmodeq_gcd_compat_lft :
forall a b : Z, Zmodeq a b -> Zgcd m a = Zgcd m b.
Proof.
unfold Zmodeq in |- *.
intros a b H0.
elim H0; intros q Hq.
replace (Zgcd m b) with (Zgcd m (b + q * m)); auto with zarith.
rewrite Hq.
replace (b + (a - b))%Z with a; auto with zarith.
Qed.
Lemma Zmodeq_gcd_compat_rht :
forall a b : Z, Zmodeq a b -> Zgcd a m = Zgcd b m.
Proof.
intros.
rewrite (Zgcd_symm a m).
rewrite (Zgcd_symm b m).
apply Zmodeq_gcd_compat_lft.
assumption.
Qed.
Lemma Zmodeq_relprime :
forall a b : Z, Zmodeq a b -> Zrelprime a m -> Zrelprime b m.
Proof.
intros a b H.
unfold Zrelprime in |- *.
rewrite (Zmodeq_gcd_compat_rht a b H).
tauto.
Qed.
Lemma Zmodeq_mod_elim :
forall a b : Z, Zmodeq a b -> Zmodeq (a mod m) (b mod m).
Proof.
intros a b H.
apply Zmodeq_eqmod.
rewrite Zmod_Zmod; auto with zarith.
rewrite Zmod_Zmod; auto with zarith.
Qed.
Lemma Zmodeq_mod_elim_lft : forall a b : Z, Zmodeq a b -> Zmodeq (a mod m) b.
Proof.
intros a b H.
apply Zmodeq_eqmod.
rewrite Zmod_Zmod; auto with zarith.
Qed.
Lemma Zmodeq_mod_elim_rht : forall a b : Z, Zmodeq a b -> Zmodeq a (b mod m).
Proof.
intros a b H.
apply Zmodeq_eqmod.
rewrite Zmod_Zmod; auto with zarith.
Qed.
Lemma Zmodeq_mod_intro :
forall a b : Z, Zmodeq (a mod m) (b mod m) -> Zmodeq a b.
Proof.
intros a b H.
apply Zmodeq_eqmod.
rewrite <- (Zmod_Zmod m a); auto with zarith.
rewrite <- (Zmod_Zmod m b); auto with zarith.
Qed.
Lemma Zmodeq_mod_intro_lft : forall a b : Z, Zmodeq (a mod m) b -> Zmodeq a b.
Proof.
intros a b H.
apply Zmodeq_eqmod.
rewrite <- (Zmod_Zmod m a); auto with zarith.
Qed.
Lemma Zmodeq_mod_intro_rht : forall a b : Z, Zmodeq a (b mod m) -> Zmodeq a b.
Proof.
intros a b H.
apply Zmodeq_eqmod.
rewrite <- (Zmod_Zmod m b); auto with zarith.
Qed.
End zmodeq.
#[global]
Hint Resolve Zmodeq_dec: zarith.
#[global]
Hint Resolve Zmodeq_modeq: zarith.
#[global]
Hint Resolve Zmodeq_eqmod: zarith.
#[global]
Hint Resolve Zmodeq_refl: zarith.
#[global]
Hint Resolve Zmodeq_symm: zarith.
#[global]
Hint Resolve Zmodeq_trans: zarith.
#[global]
Hint Resolve Zmodeq_zero: zarith.
#[global]
Hint Resolve Zmodeq_rem: zarith.
#[global]
Hint Resolve Zmodeq_plus_compat: zarith.
#[global]
Hint Resolve Zmodeq_plus_elim: zarith.
#[global]
Hint Resolve Zmodeq_plus_elim_lft: zarith.
#[global]
Hint Resolve Zmodeq_plus_elim_rht: zarith.
#[global]
Hint Resolve Zmodeq_mult_elim_lft: zarith.
#[global]
Hint Resolve Zmodeq_mult_elim_rht: zarith.
#[global]
Hint Resolve Zmodeq_mult_compat: zarith.
#[global]
Hint Resolve Zmodeq_mult_elim: zarith.
#[global]
Hint Resolve Zmodeq_opp_intro: zarith.
#[global]
Hint Resolve Zmodeq_opp_elim: zarith.
#[global]
Hint Resolve Zmodeq_gcd_compat_lft: zarith.
#[global]
Hint Resolve Zmodeq_gcd_compat_rht: zarith.
#[global]
Hint Resolve Zmodeq_relprime: zarith.
#[global]
Hint Resolve Zmodeq_mod_elim: zarith.
#[global]
Hint Resolve Zmodeq_mod_elim_lft: zarith.
#[global]
Hint Resolve Zmodeq_mod_elim_rht: zarith.
#[global]
Hint Resolve Zmodeq_mod_intro: zarith.
#[global]
Hint Resolve Zmodeq_mod_intro_lft: zarith.
#[global]
Hint Resolve Zmodeq_mod_intro_rht: zarith.
(*
Notation " a ~ b ( 'mod' m ) " := (Zmodeq m a b) (at level 1, a,b,m at level 10).
Syntax constr level 5:
Zmodeq_print [ (Zmodeq $c1 $c2 $c3) ] -> [ $c2 "~" $c3 "(" "mod" $c1 ")" ].
*)
|