File: ZMod.v

package info (click to toggle)
coq-corn 8.20.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 7,216 kB
  • sloc: python: 112; haskell: 69; makefile: 39; sh: 4
file content (755 lines) | stat: -rw-r--r-- 19,568 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
(* Copyright © 1998-2006
 * Henk Barendregt
 * Luís Cruz-Filipe
 * Herman Geuvers
 * Mariusz Giero
 * Rik van Ginneken
 * Dimitri Hendriks
 * Sébastien Hinderer
 * Bart Kirkels
 * Pierre Letouzey
 * Iris Loeb
 * Lionel Mamane
 * Milad Niqui
 * Russell O’Connor
 * Randy Pollack
 * Nickolay V. Shmyrev
 * Bas Spitters
 * Dan Synek
 * Freek Wiedijk
 * Jan Zwanenburg
 *
 * This work is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This work is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License along
 * with this work; if not, write to the Free Software Foundation, Inc.,
 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 *)
(* ZMod.v, by Vince Barany *)

Require Export CoRN.model.Zmod.ZGcd.


(**
* Working modulo a positive number over Z
** Facts on `mod'
*)


Section zmod.


Definition Zmod_same := Z_mod_same.

Lemma Zmod_zero_lft : forall m : Z, (0 mod m)%Z = 0%Z.
Proof.
 intro m.
 case m; auto.
Qed.

Lemma Zmod_zero_rht : forall a : Z, (a mod 0)%Z = 
ltac:(match eval hnf in (1 mod 0) with | 0 => exact 0%Z | _ => exact a end).
Proof.
 intro a.
 case a; auto.
Qed.

Lemma Zmod_Zmod :
 forall m a : Z, (m > 0)%Z -> ((a mod m) mod m)%Z = (a mod m)%Z.
Proof.
 intros m a Hm.
 apply (Zdiv_remainder_unique (a mod m) m (a mod m / m) ((a mod m) mod m) 0 (a mod m)).
    rewrite Zmult_comm.
    apply Z_div_mod_eq_full.
   apply Z_mod_lt; auto.
  auto with zarith.
 apply Z_mod_lt; auto.
Qed.

Lemma Zmod_cancel_multiple :
 forall m a b : Z, (m > 0)%Z -> ((b * m + a) mod m)%Z = (a mod m)%Z.
Proof.
 intros m a b Hm.
 rewrite Zplus_comm.
 apply Z_mod_plus.
 exact Hm.
Qed.

Lemma Zmod_multiple : forall m a : Z, (m > 0)%Z -> ((a * m) mod m)%Z = 0%Z.
Proof.
 intros m a Hm.
 rewrite <- (Zplus_0_r (a * m)).
 rewrite Zmod_cancel_multiple; auto.
Qed.

Lemma Zmod_minus_intro :
 forall m a b : Z,
 (m > 0)%Z -> ((a - b) mod m)%Z = 0%Z -> (a mod m)%Z = (b mod m)%Z.
Proof.
 intros m a b Hm H0.
 assert (Hdiv : Zdivides m (a - b)); auto with zarith.
 elim Hdiv; intros q Hq.
 replace a with (q * m + b)%Z; auto with zarith.
 apply Zmod_cancel_multiple.
 assumption.
Qed.

Lemma Zmod_plus_compat :
 forall m a b : Z,
 (m > 0)%Z -> ((a + b) mod m)%Z = ((a mod m + b mod m) mod m)%Z.
Proof.
 intros m a b Hm.
 rewrite <- (Zmod_Zmod m (a + b) Hm).
 apply Zmod_minus_intro.
  exact Hm.
 apply Zmod0_Zdivides.
  auto with zarith.
 replace (a mod m)%Z with (a - m * (a / m))%Z.
  replace (b mod m)%Z with (b - m * (b / m))%Z.
   replace ((a + b) mod m)%Z with (a + b - m * ((a + b) / m))%Z.
    unfold Zminus in |- *; repeat rewrite Zplus_assoc.
    repeat rewrite Zopp_plus_distr; repeat rewrite Z.opp_involutive.
    rewrite (Zplus_comm (a + b) (- (m * ((a + b) / m)))).
    repeat rewrite <- Zplus_assoc.
    apply Zdivides_plus_elim.
     auto with zarith.
    rewrite (Zplus_assoc (m * (a / m)) (- b) (m * (b / m))).
    rewrite (Zplus_comm (m * (a / m)) (- b)).
    rewrite <- (Zplus_assoc (- b) (m * (a / m)) (m * (b / m))).
    rewrite (Zplus_assoc (- a) (- b) (m * (a / m) + m * (b / m))).
    rewrite <- Zopp_plus_distr.
    repeat rewrite Zplus_assoc.
    rewrite Zplus_opp_r.
    auto with zarith.
   generalize (Z_div_mod_eq_full (a + b) m); auto with zarith.
  generalize (Z_div_mod_eq_full b m); auto with zarith.
 generalize (Z_div_mod_eq_full a m); auto with zarith.
Qed.

Lemma Zmod_plus_compat_rht :
 forall m a b : Z, (m > 0)%Z -> ((a + b) mod m)%Z = ((a + b mod m) mod m)%Z.
Proof.
 intros m a b Hm.
 rewrite (Zmod_plus_compat m a b Hm).
 rewrite <- (Zmod_Zmod m (a + b mod m) Hm).
 rewrite (Zmod_plus_compat m a (b mod m) Hm).
 rewrite Zmod_Zmod; auto.
 rewrite Zmod_Zmod; auto.
Qed.

Lemma Zmod_plus_compat_lft :
 forall m a b : Z, (m > 0)%Z -> ((a + b) mod m)%Z = ((a mod m + b) mod m)%Z.
Proof.
 intros m a b Hm.
 rewrite (Zplus_comm a b).
 rewrite (Zplus_comm (a mod m) b).
 apply Zmod_plus_compat_rht.
 auto.
Qed.

Lemma Zmod_opp_elim :
 forall m a : Z, (m > 0)%Z -> (- a mod m)%Z = ((m - a mod m) mod m)%Z.
Proof.
 intros m a Hm.
 apply Zmod_minus_intro.
  exact Hm.
 replace (- a - (m - a mod m))%Z with (- m + (a mod m - a))%Z; auto with zarith.
 replace (- m)%Z with (-1 * m)%Z; auto with zarith.
 rewrite Zmod_cancel_multiple; auto.
 replace (a mod m - a)%Z with (- (a / m) * m)%Z; auto with zarith.
 generalize (Z_div_mod_eq_full a m).
 set (q := (a / m)%Z); set (r := (a mod m)%Z); intro Ha; rewrite Ha.
 rewrite Zplus_comm; unfold Zminus in |- *; rewrite Zopp_plus_distr;
   rewrite Zplus_assoc; rewrite Zplus_opp_r; rewrite Zplus_0_l;
     rewrite Zopp_mult_distr_l_reverse; rewrite Zmult_comm; reflexivity.
Qed.

Lemma Zmod_minus_elim :
 forall m a b : Z,
 (m > 0)%Z -> (a mod m)%Z = (b mod m)%Z -> ((a - b) mod m)%Z = 0%Z.
Proof.
 intros m a b Hm Heq.
 unfold Zminus in |- *.
 rewrite (Zmod_plus_compat m a (- b) Hm).
 rewrite Heq.
 rewrite Zmod_opp_elim; auto.
 rewrite <- (Zmod_plus_compat m b (m - b mod m) Hm).
 unfold Zminus in |- *.
 rewrite Zplus_assoc.
 rewrite (Zplus_comm b m).
 rewrite <- Zplus_assoc.
 fold (b - b mod m)%Z in |- *.
 replace (b - b mod m)%Z with (b / m * m)%Z.
  rewrite Zplus_comm.
  rewrite Zmod_cancel_multiple; auto.
  apply Zmod_same; auto.
 set (q := (b / m)%Z); set (r := (b mod m)%Z).
 rewrite (Z_div_mod_eq_full b m).
 fold q in |- *; fold r in |- *.
 rewrite Zmult_comm.
 unfold Zminus in |- *.
 rewrite <- Zplus_assoc.
 rewrite Zplus_opp_r.
 auto with zarith.
Qed.

Lemma Zmod_mult_compat :
 forall m a b : Z,
 (m > 0)%Z -> ((a * b) mod m)%Z = ((a mod m * (b mod m)) mod m)%Z.
Proof.
 intros m a b Hm.
 rewrite <- (Zmod_Zmod m (a * b) Hm).
 apply Zmod_minus_intro; auto.
 apply Zmod0_Zdivides.
  auto with zarith.
 replace (a mod m)%Z with (a - m * (a / m))%Z.
  replace (b mod m)%Z with (b - m * (b / m))%Z.
   replace ((a * b) mod m)%Z with (a * b - m * (a * b / m))%Z.
    unfold Zminus in |- *; repeat rewrite Zplus_assoc.
    repeat rewrite Zmult_plus_distr_l.
    repeat rewrite Zmult_plus_distr_r.
    repeat rewrite Zopp_plus_distr; repeat rewrite Z.opp_involutive.
    rewrite (Zplus_comm (a * b)).
    repeat rewrite <- Zplus_assoc.
    apply Zdivides_plus_elim.
     auto with zarith.
    repeat rewrite Zplus_assoc.
    rewrite Zplus_opp_r.
    repeat rewrite Zopp_mult_distr_l_reverse; repeat rewrite Zopp_mult_distr_r;
      repeat rewrite Z.opp_involutive.
    simpl in |- *.
    apply Zdivides_plus_elim; auto with zarith.
   generalize (Z_div_mod_eq_full (a * b) m); auto with zarith.
  generalize (Z_div_mod_eq_full b m); auto with zarith.
 generalize (Z_div_mod_eq_full a m); auto with zarith.
Qed.

Lemma Zmod_mult_compat_rht :
 forall m a b : Z, (m > 0)%Z -> ((a * b) mod m)%Z = ((a * (b mod m)) mod m)%Z.
Proof.
 intros m a b Hm.
 rewrite (Zmod_mult_compat m a b Hm).
 rewrite <- (Zmod_Zmod m (a * (b mod m)) Hm).
 rewrite (Zmod_mult_compat m a (b mod m) Hm).
 rewrite Zmod_Zmod; auto.
 rewrite Zmod_Zmod; auto.
Qed.

Lemma Zmod_mult_compat_lft :
 forall m a b : Z, (m > 0)%Z -> ((a * b) mod m)%Z = ((a mod m * b) mod m)%Z.
Proof.
 intros m a b Hm.
 rewrite (Zmult_comm a b).
 rewrite (Zmult_comm (a mod m) b).
 apply Zmod_mult_compat_rht.
 auto.
Qed.

Lemma Zmod_mult_elim_lft :
 forall m a b c : Z,
 (m > 0)%Z ->
 Zrelprime a m ->
 ((a * b) mod m)%Z = ((a * c) mod m)%Z -> (b mod m)%Z = (c mod m)%Z.
Proof.
 intros m a b c Hm Hrelprime Hmulteq.
 assert (Hm0 : m <> 0%Z); auto with zarith.
 generalize (Zdivides_Zmod0 _ _ Hm0 (Zmod_minus_elim m _ _ Hm Hmulteq)); intro Hdiv.
 rewrite (Zmult_comm a b) in Hdiv; rewrite (Zmult_comm a c) in Hdiv;
   rewrite <- BinInt.Zmult_minus_distr_r in Hdiv.
 apply Zmod_minus_intro; auto.
 apply Zmod0_Zdivides. auto with zarith.
  apply (Zrelprime_div_mult_intro m a (b - c)).
  apply Zrelprime_symm; assumption.
 rewrite Zmult_comm; assumption.
Qed.

Lemma Zmod_mult_elim_rht :
 forall m a b c : Z,
 (m > 0)%Z ->
 Zrelprime a m ->
 ((b * a) mod m)%Z = ((c * a) mod m)%Z -> (b mod m)%Z = (c mod m)%Z.
 intros m a b c; rewrite (Zmult_comm b a); rewrite (Zmult_comm c a); apply Zmod_mult_elim_lft.
Qed.

Lemma Zmod_opp_zero :
 forall m a : Z, (m > 0)%Z -> (a mod m)%Z = 0%Z -> (- a mod m)%Z = 0%Z.
Proof.
 intros m a Hm Ha.
 rewrite (Zmod_opp_elim m a Hm).
 rewrite Ha.
 unfold Zminus in |- *; simpl in |- *; rewrite Zplus_0_r.
 apply (Z_mod_same m Hm).
Qed.

Lemma Zmod_small :
 forall m a : Z, (m > 0)%Z -> (0 <= a < m)%Z -> (a mod m)%Z = a.
Proof.
 intros m a Hm Ha.
 apply (Zmodeq_small (a mod m) a m).
   apply (Z_mod_lt a m Hm).
  exact Ha.
 replace (a mod m - a)%Z with (- m * (a / m))%Z.
  auto with zarith.
 generalize (Z_div_mod_eq_full a m).
 set (q := (a / m)%Z); set (r := (a mod m)%Z); intro H; rewrite H.
 rewrite Zplus_comm; unfold Zminus in |- *; rewrite Zopp_plus_distr;
   rewrite Zplus_assoc; rewrite Zplus_opp_r; rewrite Zplus_0_l;
     rewrite Zopp_mult_distr_l_reverse; rewrite Zmult_comm; reflexivity.
Qed.

Lemma Zmod_opp_nonzero :
 forall m a : Z,
 (m > 0)%Z -> (a mod m)%Z <> 0%Z -> (- a mod m)%Z = (m - a mod m)%Z.
Proof.
 intros m a Hm Ha.
 rewrite (Zmod_opp_elim m a Hm).
 apply Zmod_small.
  exact Hm.
 generalize (Z_mod_lt a m Hm); intro Hlt.
 auto with zarith.
Qed.

Lemma Zmod_one_lft : forall m : Z, (m > 1)%Z -> (1 mod m)%Z = 1%Z.
Proof.
 intros m Hm.
 apply Zmod_small; auto with zarith.
Qed.

Lemma Zmod_one_rht : forall a : Z, (a mod 1)%Z = 0%Z.
Proof.
 intro a.
 generalize (Z_mod_lt a 1).
 auto with zarith.
Qed.

Lemma Zmod_lin_comb :
 forall m a : Z,
 (m > 0)%Z -> (Zgcd a m < m)%Z -> ((a * Zgcd_coeff_a a m) mod m)%Z = Zgcd a m.
Proof.
 intros m a Hm Hgcd.
 generalize (Zgcd_lin_comb a m); intro Hlincomb.
 rewrite (Z_div_mod_eq_full (Zgcd_coeff_a a m * a) m) in Hlincomb.
 rewrite Zmult_comm in Hlincomb.
 rewrite Zplus_comm in Hlincomb.
 rewrite Zplus_assoc in Hlincomb.
 rewrite <- Zmult_plus_distr_l in Hlincomb.
 replace (Zgcd a m) with (Zgcd a m mod m)%Z.
  rewrite Hlincomb.
  rewrite Zmod_plus_compat; auto.
  rewrite Zmod_Zmod; auto.
  rewrite <- Zmod_plus_compat; auto.
  apply Zmod_minus_intro; auto.
  set (u := Zgcd_coeff_a a m).
  set (v := Zgcd_coeff_b a m).
  rewrite (Zplus_comm ((v + u * a / m) * m) (u * a)).
  unfold Zminus in |- *.
  rewrite Zopp_plus_distr.
  rewrite Zplus_assoc.
  rewrite (Zmult_comm a u).
  rewrite Zplus_opp_r.
  rewrite Zplus_0_l.
  rewrite <- Zopp_mult_distr_l_reverse.
  apply Zmod_multiple; auto.
 apply Zmod_small; auto.
 auto with zarith.
Qed.

Lemma Zmod_relprime_inv :
 forall m a : Z,
 (m > 1)%Z -> Zrelprime a m -> ((a * Zgcd_coeff_a a m) mod m)%Z = 1%Z.
Proof.
 intros m a Hm H1.
 unfold Zrelprime in H1.
 generalize (Zgcd_lin_comb a m).
 intro Hlc.
 rewrite H1 in Hlc.
 rewrite (Zmult_comm (Zgcd_coeff_a a m) a) in Hlc.
 assert (Hqr : (a * Zgcd_coeff_a a m)%Z = (- Zgcd_coeff_b a m * m + 1)%Z).
  rewrite Zplus_comm.
  rewrite Hlc.
  rewrite <- Zplus_assoc.
  rewrite Zopp_mult_distr_l_reverse.
  auto with zarith.
 set (Hdivmod:=Z_div_mod_eq_full (a * Zgcd_coeff_a a m) m).
 rewrite (Zmult_comm m (a * Zgcd_coeff_a a m / m)) in Hdivmod.
 apply (Zdiv_remainder_unique _ _ _ _ (- Zgcd_coeff_b a m) 1 Hdivmod).
   apply Z_mod_lt.
   auto with zarith.
  exact Hqr.
 auto with zarith.
Qed.

End zmod.


#[global]
Hint Resolve Zmod_zero_lft: zarith.
#[global]
Hint Resolve Zmod_zero_rht: zarith.
#[global]
Hint Resolve Zmod_same: zarith.
#[global]
Hint Resolve Zmod_Zmod: zarith.
#[global]
Hint Resolve Zmod_cancel_multiple: zarith.
#[global]
Hint Resolve Zmod_multiple: zarith.
#[global]
Hint Resolve Zmod_minus_intro: zarith.
#[global]
Hint Resolve Zmod_plus_compat: zarith.
#[global]
Hint Resolve Zmod_plus_compat_lft: zarith.
#[global]
Hint Resolve Zmod_plus_compat_rht: zarith.
#[global]
Hint Resolve Zmod_opp_elim: zarith.
#[global]
Hint Resolve Zmod_minus_elim: zarith.
#[global]
Hint Resolve Zmod_mult_compat: zarith.
#[global]
Hint Resolve Zmod_mult_compat_lft: zarith.
#[global]
Hint Resolve Zmod_mult_compat_rht: zarith.
#[global]
Hint Resolve Zmod_opp_zero: zarith.
#[global]
Hint Resolve Zmod_small: zarith.
#[global]
Hint Resolve Zmod_opp_nonzero: zarith.
#[global]
Hint Resolve Zmod_one_lft: zarith.
#[global]
Hint Resolve Zmod_one_rht: zarith.
#[global]
Hint Resolve Zmod_lin_comb: zarith.
#[global]
Hint Resolve Zmod_relprime_inv: zarith.

(*
** Equality modulo m
Let m be a positive number.
*)

Section zmodeq.

Variable m : positive.

Definition Zmodeq (a b : Z) := Zdivides m (a - b).

Lemma Zmodeq_dec : forall a b : Z, {Zmodeq a b} + {~ Zmodeq a b}.
Proof.
 intros a b.
 unfold Zmodeq in |- *.
 apply Zdivides_dec.
Qed.

Lemma Zmodeq_modeq : forall a b : Z, Zmodeq a b -> (a mod m)%Z = (b mod m)%Z.
Proof.
 intros a b H.
 apply Zmod_minus_intro.
  auto with zarith.
 unfold Zmodeq in H.
 apply Zmod0_Zdivides.
  intro Hfalse; inversion Hfalse.
 assumption.
Qed.

Lemma Zmodeq_eqmod : forall a b : Z, (a mod m)%Z = (b mod m)%Z -> Zmodeq a b.
Proof.
 intros a b H.
 unfold Zmodeq in |- *.
 apply Zdivides_Zmod0.
  intro Hfalse; inversion Hfalse.
 apply Zmod_minus_elim; auto with zarith.
Qed.

Lemma Zmodeq_refl : forall a : Z, Zmodeq a a.
Proof.
 intros.
 unfold Zmodeq in |- *.
 unfold Zminus in |- *.
 rewrite Zplus_opp_r.
 apply Zdivides_zero_rht.
Qed.

Lemma Zmodeq_symm : forall a b : Z, Zmodeq a b -> Zmodeq b a.
Proof.
 unfold Zmodeq in |- *.
 intros.
 replace (b - a)%Z with (- (a - b))%Z; auto with zarith.
Qed.

Lemma Zmodeq_trans : forall a b c : Z, Zmodeq b a -> Zmodeq a c -> Zmodeq b c.
Proof.
 unfold Zmodeq in |- *.
 intros.
 replace (b - c)%Z with (b - a + (a - c))%Z; auto with zarith.
Qed.

Lemma Zmodeq_zero : forall a : Z, Zmodeq a 0 <-> Zdivides m a.
Proof.
 unfold Zmodeq in |- *; unfold Zdivides in |- *.
 intros.
 unfold Zminus in |- *.
 simpl in |- *.
 rewrite Zplus_0_r.
 tauto.
Qed.

Lemma Zmodeq_rem : forall a : Z, Zmodeq a (a mod m).
Proof.
 intros.
 unfold Zmodeq in |- *.
 exists (a / m)%Z.
 rewrite Zmult_comm.
 generalize (Z_div_mod_eq_full a m).
 auto with zarith.
Qed.

Lemma Zmodeq_plus_compat :
 forall a b c d : Z, Zmodeq a b -> Zmodeq c d -> Zmodeq (a + c) (b + d).
Proof.
 intros a b c d.
 unfold Zmodeq in |- *.
 unfold Zdivides in |- *.
 intros Hab Hcd.
 elim Hab.
 intros q1 H1.
 elim Hcd.
 intros q2 H2.
 exists (q1 + q2)%Z.
 rewrite Zmult_plus_distr_l.
 auto with zarith.
Qed.

Definition Zmodeq_plus_elim := Zmodeq_plus_compat.

Lemma Zmodeq_plus_elim_lft :
 forall a b c : Z, Zmodeq a b -> Zmodeq (c + a) (c + b).
Proof.
 intros.
 apply Zmodeq_plus_compat.
  apply Zmodeq_refl.
 assumption.
Qed.

Lemma Zmodeq_plus_elim_rht :
 forall a b c : Z, Zmodeq a b -> Zmodeq (a + c) (b + c).
Proof.
 intros.
 apply Zmodeq_plus_compat.
  assumption.
 apply Zmodeq_refl.
Qed.


Lemma Zmodeq_mult_elim_lft :
 forall a b c : Z, Zmodeq a b -> Zmodeq (c * a) (c * b).
Proof.
 intros.
 unfold Zmodeq in |- *.
 unfold Zminus in |- *.
 rewrite (Zmult_comm c b).
 rewrite <- Zopp_mult_distr_l_reverse.
 rewrite (Zmult_comm c a).
 rewrite <- Zmult_plus_distr_l.
 fold (a - b)%Z in |- *.
 apply Zdivides_mult_elim_rht.
 assumption.
Qed.

Lemma Zmodeq_mult_elim_rht :
 forall a b c : Z, Zmodeq a b -> Zmodeq (a * c) (b * c).
Proof.
 intros.
 rewrite (Zmult_comm a c).
 rewrite (Zmult_comm b c).
 apply Zmodeq_mult_elim_lft.
 assumption.
Qed.

Lemma Zmodeq_mult_compat :
 forall a b c d : Z, Zmodeq a b -> Zmodeq c d -> Zmodeq (a * c) (b * d).
Proof.
 intros a b c d Hab Hcd.
 apply (Zmodeq_trans (b * c)).
  apply Zmodeq_mult_elim_rht; assumption.
 apply Zmodeq_mult_elim_lft; assumption.
Qed.

Definition Zmodeq_mult_elim := Zmodeq_mult_compat.


Lemma Zmodeq_opp_elim : forall a b : Z, Zmodeq a b -> Zmodeq (- a) (- b).
Proof.
 intros a b H.
 replace (- a)%Z with (-1 * a)%Z; auto with zarith.
 replace (- b)%Z with (-1 * b)%Z; auto with zarith.
 apply Zmodeq_mult_elim.
  apply Zmodeq_refl.
 exact H.
Qed.

Lemma Zmodeq_opp_intro : forall a b : Z, Zmodeq (- a) (- b) -> Zmodeq a b.
Proof.
 intros a b H.
 rewrite <- (Z.opp_involutive a).
 rewrite <- (Z.opp_involutive b).
 apply (Zmodeq_opp_elim _ _ H).
Qed.


Lemma Zmodeq_gcd_compat_lft :
 forall a b : Z, Zmodeq a b -> Zgcd m a = Zgcd m b.
Proof.
 unfold Zmodeq in |- *.
 intros a b H0.
 elim H0; intros q Hq.
 replace (Zgcd m b) with (Zgcd m (b + q * m)); auto with zarith.
 rewrite Hq.
 replace (b + (a - b))%Z with a; auto with zarith.
Qed.

Lemma Zmodeq_gcd_compat_rht :
 forall a b : Z, Zmodeq a b -> Zgcd a m = Zgcd b m.
Proof.
 intros.
 rewrite (Zgcd_symm a m).
 rewrite (Zgcd_symm b m).
 apply Zmodeq_gcd_compat_lft.
 assumption.
Qed.

Lemma Zmodeq_relprime :
 forall a b : Z, Zmodeq a b -> Zrelprime a m -> Zrelprime b m.
Proof.
 intros a b H.
 unfold Zrelprime in |- *.
 rewrite (Zmodeq_gcd_compat_rht a b H).
 tauto.
Qed.

Lemma Zmodeq_mod_elim :
 forall a b : Z, Zmodeq a b -> Zmodeq (a mod m) (b mod m).
Proof.
 intros a b H.
 apply Zmodeq_eqmod.
 rewrite Zmod_Zmod; auto with zarith.
 rewrite Zmod_Zmod; auto with zarith.
Qed.

Lemma Zmodeq_mod_elim_lft : forall a b : Z, Zmodeq a b -> Zmodeq (a mod m) b.
Proof.
 intros a b H.
 apply Zmodeq_eqmod.
 rewrite Zmod_Zmod; auto with zarith.
Qed.

Lemma Zmodeq_mod_elim_rht : forall a b : Z, Zmodeq a b -> Zmodeq a (b mod m).
Proof.
 intros a b H.
 apply Zmodeq_eqmod.
 rewrite Zmod_Zmod; auto with zarith.
Qed.

Lemma Zmodeq_mod_intro :
 forall a b : Z, Zmodeq (a mod m) (b mod m) -> Zmodeq a b.
Proof.
 intros a b H.
 apply Zmodeq_eqmod.
 rewrite <- (Zmod_Zmod m a); auto with zarith.
 rewrite <- (Zmod_Zmod m b); auto with zarith.
Qed.

Lemma Zmodeq_mod_intro_lft : forall a b : Z, Zmodeq (a mod m) b -> Zmodeq a b.
Proof.
 intros a b H.
 apply Zmodeq_eqmod.
 rewrite <- (Zmod_Zmod m a); auto with zarith.
Qed.

Lemma Zmodeq_mod_intro_rht : forall a b : Z, Zmodeq a (b mod m) -> Zmodeq a b.
Proof.
 intros a b H.
 apply Zmodeq_eqmod.
 rewrite <- (Zmod_Zmod m b); auto with zarith.
Qed.


End zmodeq.


#[global]
Hint Resolve Zmodeq_dec: zarith.
#[global]
Hint Resolve Zmodeq_modeq: zarith.
#[global]
Hint Resolve Zmodeq_eqmod: zarith.
#[global]
Hint Resolve Zmodeq_refl: zarith.
#[global]
Hint Resolve Zmodeq_symm: zarith.
#[global]
Hint Resolve Zmodeq_trans: zarith.
#[global]
Hint Resolve Zmodeq_zero: zarith.
#[global]
Hint Resolve Zmodeq_rem: zarith.
#[global]
Hint Resolve Zmodeq_plus_compat: zarith.
#[global]
Hint Resolve Zmodeq_plus_elim: zarith.
#[global]
Hint Resolve Zmodeq_plus_elim_lft: zarith.
#[global]
Hint Resolve Zmodeq_plus_elim_rht: zarith.
#[global]
Hint Resolve Zmodeq_mult_elim_lft: zarith.
#[global]
Hint Resolve Zmodeq_mult_elim_rht: zarith.
#[global]
Hint Resolve Zmodeq_mult_compat: zarith.
#[global]
Hint Resolve Zmodeq_mult_elim: zarith.
#[global]
Hint Resolve Zmodeq_opp_intro: zarith.
#[global]
Hint Resolve Zmodeq_opp_elim: zarith.
#[global]
Hint Resolve Zmodeq_gcd_compat_lft: zarith.
#[global]
Hint Resolve Zmodeq_gcd_compat_rht: zarith.
#[global]
Hint Resolve Zmodeq_relprime: zarith.
#[global]
Hint Resolve Zmodeq_mod_elim: zarith.
#[global]
Hint Resolve Zmodeq_mod_elim_lft: zarith.
#[global]
Hint Resolve Zmodeq_mod_elim_rht: zarith.
#[global]
Hint Resolve Zmodeq_mod_intro: zarith.
#[global]
Hint Resolve Zmodeq_mod_intro_lft: zarith.
#[global]
Hint Resolve Zmodeq_mod_intro_rht: zarith.


(*
Notation " a ~ b  ( 'mod' m ) "  := (Zmodeq m a b) (at level 1, a,b,m at level 10).

Syntax constr level 5:
  Zmodeq_print [ (Zmodeq $c1 $c2 $c3) ] -> [ $c2 "~" $c3 "(" "mod" $c1 ")" ].
*)