1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
|
Require Import CoRN.algebra.RSetoid.
Require Import CoRN.model.metric2.Qmetric.
From Coq Require Export QArith.
Require Export CoRN.metric2.StepFunctionSetoid.
From Coq Require Import Qabs.
From Coq Require Import Bool.
Require Import CoRN.tactics.CornTac.
Require Import CoRN.logic.CornBasics.
Require Import CoRN.algebra.RSetoid.
Set Implicit Arguments.
Local Open Scope setoid_scope.
Local Open Scope sfstscope.
Section QS.
Definition QS : RSetoid := Build_RSetoid Q_Setoid.
Definition QabsS : QS-->QS.
Proof.
exists Qabs.
abstract( simpl; intros x1 x2 Hx; rewrite -> Hx; reflexivity).
Defined.
Definition Qplus0 : QS -> QS --> QS.
Proof.
intros q.
exists (Qplus q).
abstract ( simpl; intros x1 x2 Hx; rewrite -> Hx; reflexivity).
Defined.
Definition QplusS : QS --> QS --> QS.
Proof.
exists (Qplus0).
abstract ( intros x1 x2 Hx y; simpl in *; rewrite -> Hx; reflexivity).
Defined.
Definition QoppS : QS --> QS.
Proof.
exists (Qopp).
abstract ( simpl; intros x1 x2 Hx; simpl in *; rewrite -> Hx; reflexivity).
Defined.
Definition Qminus0 : QS -> QS --> QS.
Proof.
intros q.
exists (Qminus q).
abstract ( simpl; intros x1 x2 Hx; rewrite -> Hx; reflexivity).
Defined.
Definition QminusS : QS --> QS --> QS.
Proof.
exists (Qminus0).
abstract ( intros x1 x2 Hx y; simpl in *; rewrite -> Hx; reflexivity).
Defined.
Definition QscaleS : QS -> QS --> QS.
Proof.
intros q.
exists (Qmult q).
abstract ( intros x1 x2 Hx; simpl in *; rewrite -> Hx; reflexivity).
Defined.
Definition QmultS : QS --> QS --> QS.
Proof.
exists (QscaleS).
abstract ( intros x1 x2 Hx y; simpl in *; rewrite -> Hx; reflexivity).
Defined.
Definition Qle0 : QS -> QS --> iffSetoid.
Proof.
intros q.
exists (Qle q).
abstract ( simpl; intros x1 x2 Hx; rewrite -> Hx; reflexivity).
Defined.
Definition QleS : QS --> QS --> iffSetoid.
Proof.
exists (Qle0).
abstract ( intros x1 x2 Hx y; simpl in *; rewrite -> Hx; reflexivity).
Defined.
End QS.
Notation "'StepQ'" := (StepF QS) : StepQ_scope.
#[global]
Instance StepQ_default : @DefaultRelation (StepF QS) (@StepF_eq QS) | 2 := {}.
Delimit Scope StepQ_scope with SQ.
Bind Scope StepQ_scope with StepF.
Local Open Scope StepQ_scope.
Definition StepQplus (s t:StepQ) : StepQ := QplusS ^@> s <@> t.
Definition StepQopp (s:StepQ) : StepQ := QoppS ^@> s.
Definition StepQminus (s t:StepQ) : StepQ := QminusS ^@> s <@> t.
Definition StepQmult (s t:StepQ) : StepQ := QmultS ^@> s <@> t.
Notation "x + y" := (StepQplus x y) : StepQ_scope.
Notation "- x" := (StepQopp x) : StepQ_scope.
Notation "x - y" := (StepQminus x y) : StepQ_scope.
Notation "x * y" := (StepQmult x y) : StepQ_scope.
Add Morphism StepQplus with signature (@StepF_eq QS) ==> (@StepF_eq QS) ==> (@StepF_eq QS) as StepQplus_wd.
Proof.
intros.
unfold StepQplus.
rewrite -> H.
rewrite -> H0.
reflexivity.
Qed.
Add Morphism StepQopp with signature (@StepF_eq QS) ==> (@StepF_eq QS) as StepQopp_wd.
Proof.
intros.
unfold StepQopp.
rewrite -> H.
reflexivity.
Qed.
Add Morphism StepQminus with signature (@StepF_eq QS) ==> (@StepF_eq QS) ==> (@StepF_eq QS) as StepQminus_wd.
Proof.
intros.
unfold StepQminus.
rewrite -> H.
rewrite -> H0.
reflexivity.
Qed.
Add Morphism StepQmult with signature (@StepF_eq QS) ==> (@StepF_eq QS) ==> (@StepF_eq QS) as StepQmult_wd.
Proof.
intros.
unfold StepQmult.
rewrite -> H.
rewrite -> H0.
reflexivity.
Qed.
Definition StepQsrt : (@ring_theory (StepQ) (constStepF (0:QS)) (constStepF (1:QS)) StepQplus StepQmult StepQminus StepQopp (@StepF_eq QS)).
Proof.
constructor; intros; unfold StepF_eq, StepQplus, StepQminus, StepQopp, StepQmult; rewriteStepF;
set (g:=@st_eqS QS).
set (z:=QplusS 0).
set (f:=(join (compose g z))).
cut (StepFfoldProp (f ^@> x)).
unfold f; evalStepF; tauto.
apply StepFfoldPropForall_Map.
intros a.
unfold f; simpl; ring.
set (f:=ap (compose (@ap _ _ _) (compose (compose g) QplusS)) (flip (QplusS))).
cut (StepFfoldProp (f ^@> x <@> y)).
unfold f; evalStepF; tauto.
apply StepFfoldPropForall_Map2.
intros a b.
change (a + b == b + a)%Q.
ring.
set (f:=ap
(compose (@ap _ _ _) (compose (compose (compose (compose (@ap _ _ _)) (@compose _ _ _) g)) (compose (flip (@compose _ _ _) QplusS) (compose (@compose _ _ _) QplusS))))
(compose (compose QplusS) QplusS)).
cut (StepFfoldProp (f ^@> x <@> y <@> z)).
unfold f; evalStepF; tauto.
apply StepFfoldPropForall_Map3.
intros a b c.
change (a + (b + c) == a + b + c)%Q.
ring.
set (z:=(QmultS 1)).
set (f:=(join (compose g z))).
cut (StepFfoldProp (f ^@> x)).
unfold f; evalStepF; tauto.
apply StepFfoldPropForall_Map.
intros a.
unfold f; simpl; ring.
set (f:=ap (compose (@ap _ _ _) (compose (compose g) QmultS)) (flip (QmultS))).
cut (StepFfoldProp (f ^@> x <@> y)).
unfold f; evalStepF; tauto.
apply StepFfoldPropForall_Map2.
intros a b.
change (a * b == b * a)%Q.
ring.
set (f:=ap
(compose (@ap _ _ _) (compose (compose (compose (compose (@ap _ _ _)) (@compose _ _ _) g)) (compose (flip (@compose _ _ _) QmultS) (compose (@compose _ _ _) QmultS))))
(compose (compose QmultS) QmultS)).
cut (StepFfoldProp (f ^@> x <@> y <@> z)).
unfold f; evalStepF; tauto.
apply StepFfoldPropForall_Map3.
intros a b c.
change (a * (b * c) == a * b * c)%Q.
ring.
set (f:= ap
(compose (@ap _ _ _) (compose (compose (compose (@ap _ _ _) (compose (compose g) QmultS))) QplusS))
(compose (flip (@compose _ _ _) QmultS) (compose (@ap _ _ _) (compose (compose QplusS) QmultS)))).
cut (StepFfoldProp (f ^@> x <@> y <@> z)).
unfold f; evalStepF; tauto.
apply StepFfoldPropForall_Map3.
intros a b c.
change ((a + b) * c == a*c + b*c)%Q.
ring.
set (f:= ap (compose (@ap _ _ _) (compose (compose g) QminusS))
(compose (flip (@compose _ _ _) QoppS) QplusS)).
cut (StepFfoldProp (f ^@> x <@> y)).
unfold f; evalStepF; tauto.
apply StepFfoldPropForall_Map2.
intros a b.
change (a - b == a + - b)%Q.
ring.
set (z:=(0:QS)).
set (f:= compose (flip g z) (ap QplusS QoppS)).
cut (StepFfoldProp (f ^@> x)).
unfold f; evalStepF; tauto.
apply StepFfoldPropForall_Map.
intros a.
change (a + - a == 0)%Q.
ring.
Qed.
Definition StepQisZero:(StepQ)->bool:=(StepFfold (fun (x:QS) => Qeq_bool x 0) (fun _ x y => x && y)).
Definition StepQeq_bool (x y:StepQ) : bool := StepQisZero (x-y).
Lemma StepQeq_bool_correct : forall x y, StepQeq_bool x y = true -> x == y.
Proof.
intros x y H.
destruct StepQsrt.
rewrite <- (Radd_0_l x).
rewrite <- (Ropp_def y).
transitivity (y + (constStepF (0:QS))).
set (z:=constStepF (X:=QS) 0).
rewrite <- (Radd_assoc).
apply StepQplus_wd.
reflexivity.
rewrite -> Radd_comm.
rewrite <- Rsub_def.
unfold StepF_eq.
revert H.
unfold StepQeq_bool.
generalize (x-y).
intros s H.
induction s.
apply: Qeq_bool_eq;assumption.
symmetry in H.
destruct (andb_true_eq _ _ H) as [H1 H2].
split.
apply IHs1; symmetry; assumption.
apply IHs2; symmetry; assumption.
rewrite -> Radd_comm.
apply Radd_0_l.
Qed.
Lemma StepQRing_Morphism : ring_eq_ext StepQplus StepQmult StepQopp (@StepF_eq QS).
Proof.
split.
apply: StepQplus_wd.
apply: StepQmult_wd.
apply: StepQopp_wd.
Qed.
Ltac isStepQcst t :=
match t with
| constStepF ?q => isQcst q
| glue ?o ?l ?r =>
match isStepQcst l with
|true => match isStepQcst r with
|true => isQcst o
|false => false
end
|false => false
end
| _ => false
end.
Ltac StepQcst t :=
match isStepQcst t with
true => t
| _ => NotConstant
end.
Add Ring StepQRing : StepQsrt
(decidable StepQeq_bool_correct,
setoid (StepF_Sth QS) StepQRing_Morphism,
constants [StepQcst]).
Definition StepQabs (s:StepQ) : StepQ := QabsS ^@> s.
Add Morphism StepQabs with signature (@StepF_eq QS) ==> (@StepF_eq QS) as StepQabs_wd.
Proof.
intros.
unfold StepQabs.
rewrite -> H.
reflexivity.
Qed.
(**
** A Partial Order on Step Functions. *)
Definition StepQ_le x y := (StepFfoldProp (QleS ^@> x <@> y)).
(* begin hide *)
Add Morphism StepQ_le
with signature (@StepF_eq QS) ==> (@StepF_eq QS) ==> iff
as StepQ_le_wd.
Proof.
unfold StepQ_le.
intros x1 x2 Hx y1 y2 Hy.
rewrite -> Hx.
rewrite -> Hy.
reflexivity.
Qed.
(* end hide *)
Notation "x <= y" := (StepQ_le x y) (at level 70) : sfstscope.
Lemma StepQ_le_refl:forall x, (x <= x).
Proof.
intros x.
unfold StepQ_le.
cut (StepFfoldProp (join QleS ^@> x)).
evalStepF.
tauto.
apply StepFfoldPropForall_Map.
intros.
simpl.
auto with *.
Qed.
Lemma StepQ_le_trans:forall x y z,
(x <= y)-> (y <= z) ->(x <= z).
Proof.
intros x y z. unfold StepQ_le.
intros H.
apply StepF_imp_imp.
revert H.
apply StepF_imp_imp.
unfold StepF_imp.
pose (f:= ap (compose (@ap _ _ _) (compose (compose (compose (@compose _ _ _) imp)) QleS))
(compose (flip (compose (@ap _ _ _) (compose (compose imp) QleS))) QleS)).
cut (StepFfoldProp (f ^@> x <@> y <@> z)).
unfold f.
evalStepF.
tauto.
apply StepFfoldPropForall_Map3.
intros a b c Hab Hbc.
clear f.
simpl in *.
eauto with qarith.
Qed.
Lemma StepQabsOpp : forall x, StepQabs (-x) == StepQabs (x).
Proof.
intros x.
unfold StepF_eq.
set (g:=(@st_eqS QS)).
set (f:=(ap (compose g (compose QabsS QoppS)) QabsS)).
cut (StepFfoldProp (f ^@> x)).
unfold f.
evalStepF.
tauto.
apply StepFfoldPropForall_Map.
intros a.
apply: Qabs_opp.
Qed.
Lemma StepQabs_triangle : forall x y, StepQabs (x+y) <= StepQabs x + StepQabs y.
Proof.
intros x y.
set (f:=(ap (compose ap (compose (compose (compose QleS QabsS)) QplusS))
(compose (flip (@compose _ _ _) QabsS) (compose QplusS QabsS)))).
cut (StepFfoldProp (f ^@> x <@> y)).
unfold f.
evalStepF.
tauto.
apply StepFfoldPropForall_Map2.
intros a b.
apply: Qabs_triangle.
Qed.
|