1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500
|
(** An abstract interface for integrable uniformly continuous functions from Q to CR,
with a proof that integrals satisfying this interface are unique. *)
Require Import CoRN.algebra.RSetoid.
Require Import CoRN.metric2.Metric.
Require Import CoRN.metric2.UniformContinuity.
Require Import CoRN.model.reals.CRreal.
From Coq Require Import Utf8 Program.
Require Import CoRN.reals.fast.CRArith CoRN.reals.fast.CRabs
CoRN.tactics.Qauto.
From Coq Require Import Qround.
Require Import CoRN.model.metric2.Qmetric
CoRN.stdlib_omissions.P
CoRN.stdlib_omissions.Z
CoRN.stdlib_omissions.Q
CoRN.stdlib_omissions.N.
Require Import CoRN.ode.metric CoRN.ode.FromMetric2 CoRN.ode.SimpleIntegration.
Require CoRN.model.structures.Qinf CoRN.model.structures.QnonNeg CoRN.model.structures.QnnInf CoRN.reals.fast.CRball.
Import Qinf.notations QnonNeg.notations QnnInf.notations CRball.notations Qabs (*canonical_names*).
Require CoRN.reals.fast.CRtrans CoRN.reals.faster.ARtrans. (* This is almost all CoRN *)
Import Qinf.coercions QnonNeg.coercions QnnInf.coercions CoRN.stdlib_omissions.Q.
Ltac done :=
trivial; hnf; intros; solve
[ repeat (first [solve [trivial | apply: sym_equal; trivial]
| discriminate | contradiction | split])
(* | case not_locked_false_eq_true; assumption*)
| match goal with H : ~ _ |- _ => solve [case H; trivial] end ].
Local Open Scope Q_scope.
Local Open Scope CR_scope.
(* [SearchAbout ((Cmap _ _) (Cunit _)).] does not find anything, but it
should find metric2.Prelength.fast_MonadLaw3 *)
(** Any nonnegative width can be split up into an integral number of
equal-sized pieces no bigger than a given bound: *)
Add Field Qfield : Qsft
(decidable Qeq_bool_eq,
completeness Qeq_eq_bool,
constants [Qcst],
power_tac Qpower_theory [Qpow_tac]).
(* To be added to stdlib.omissions.Q *)
Section QFacts.
Open Scope Q_scope.
Lemma Qmult_inv_l (x : Q) : ~ x == 0 -> / x * x == 1.
Proof. intros; rewrite Qmult_comm; apply Qmult_inv_r; trivial. Qed.
Lemma Qinv_0 (x : Q) : / x == 0 <-> x == 0.
Proof.
split; intro H; [| now rewrite H].
destruct x as [m n]; destruct m as [| p | p]; unfold Qinv in *; simpl in *; [reflexivity | |];
unfold Qeq in H; simpl in H; rewrite Pos.mul_1_r in H; discriminate H.
Qed.
Lemma Qinv_not_0 (x : Q) : ~ / x == 0 <-> ~ x == 0.
Proof. now rewrite Qinv_0. Qed.
Lemma Qdiv_l (x y z : Q) : ~ x == 0 -> (x * y == z <-> y == z / x).
Proof.
intro H1.
rewrite <- (Qmult_injective_l x H1 y (z / x)). unfold Qdiv.
now rewrite <- Qmult_assoc, (Qmult_inv_l x H1), Qmult_1_r, Qmult_comm.
Qed.
Lemma Qdiv_r (x y z : Q) : ~ y == 0 -> (x * y == z <-> x == z / y).
Proof. rewrite Qmult_comm; apply Qdiv_l. Qed.
Lemma Q_of_nat_inj (m n : nat) : m == n <-> m = n.
Proof.
split; intro H; [| now rewrite H].
rewrite QArith_base.inject_Z_injective in H. now apply Nat2Z.inj in H.
Qed.
End QFacts.
Definition split (w: QnonNeg) (bound: QposInf):
{ x: nat * QnonNeg | (from_nat (fst x) * snd x == w)%Qnn
/\ (QnnInf.Finite (snd x) <= from_QposInf bound)%QnnInf }.
Proof with simpl; auto with *.
unfold QnonNeg.eq. simpl.
destruct bound; simpl.
Focus 2. exists (1%nat, w). simpl. split... ring.
induction w using QnonNeg.rect.
exists (0%nat, 0%Qnn)...
set (p := SimpleIntegration.QposCeiling (proj1_sig ((n#d) * Qpos_inv q)%Qpos)).
exists (nat_of_P p, from_Qpos (((n#d) * Qpos_inv (p#1))%Qpos))...
split.
rewrite <- Zpos_eq_Z_of_nat_o_nat_of_P.
change (p * ((n#d) * / p) == (n#d))%Q.
field. discriminate.
subst p.
apply Qle_shift_div_r. reflexivity.
rewrite SimpleIntegration.QposCeiling_Qceiling. simpl.
setoid_replace (n#d:Q)
with (proj1_sig q * ((n#d) * / proj1_sig q))%Q at 1 by (simpl; field)...
apply Qmult_le_l. apply Qpos_ispos.
apply Qle_ceiling.
Qed.
(** Riemann sums will play an important role in the theory about integrals, so let's
define very simple summation and a key property thereof: *)
Definition cmΣ {M: CMonoid} (n: nat) (f: nat -> M) : M
:= cm_Sum (map f (enum n)).
(*Lemma cmΣ_sum {M: CMonoid} (n : nat) (f g : nat -> M) : cmΣ n
M := cm_Sum (map f (enum n)).
SearchAbout cm_Sum.*)
(** If the elementwise distance between two summations over the same domain
is bounded, then so is the distance between the summations: *)
(*
Lemma CRΣ_gball_ex (f g: nat -> CR) (e: QnnInf) (n: nat):
(forall m, (m < n)%nat -> gball_ex e (f m) (g m)) ->
(gball_ex (n * e)%QnnInf (cmΣ n f) (cmΣ n g)).
Proof with simpl; auto.
destruct e...
induction n.
reflexivity.
intros.
change (gball (inject_Z (S n) * `q) (cmΣ (S n) f) (cmΣ (S n) g)).
rewrite Q.S_Qplus.
setoid_replace ((n+1) * q)%Q with (q + n * q)%Q by (simpl; ring).
unfold cmΣ. simpl @cm_Sum.
apply CRgball_plus...
Qed.
*)
Lemma cmΣ_0 (f : nat -> CR) (n : nat) :
(forall m, (m < n)%nat -> f m == 0) -> @cmΣ CRasCMonoid n f == 0.
Proof.
induction n as [| n IH]; intro H; [reflexivity |].
unfold cmΣ. simpl @cm_Sum. rewrite H by apply Nat.lt_succ_diag_r.
rewrite IH; [apply CRplus_0_l |].
intros m H1; apply H. now apply Nat.lt_lt_succ_r.
Qed.
Lemma CRΣ_gball (f g: nat -> CR) (e : Q) (n : nat):
(forall m, (m < n)%nat -> ball e (f m) (g m)) ->
(ball (n * e) (@cmΣ CRasCMonoid n f) (@cmΣ CRasCMonoid n g)).
Proof.
induction n.
- intros. apply ball_refl. rewrite Qmult_0_l. apply Qle_refl.
- intros.
rewrite Q.S_Qplus.
setoid_replace ((n + 1) * e)%Q with (e + n * e)%Q by ring.
unfold cmΣ. simpl @cm_Sum.
apply CRgball_plus; auto.
Qed.
(*Instance cmΣ_proper : Proper (eq ==> @ext_equiv nat _ CR _ ==> @st_eq CR) cmΣ.
Proof.
intros n1 n2 E1 f1 f2 E2. rewrite E1.
change (gball 0 (cmΣ n2 f1) (cmΣ n2 f2)).
setoid_replace 0%Q with (n2 * 0)%Q by ring.
apply CRΣ_gball. now intros m _; apply E2.
Qed.*)
#[global]
Hint Immediate ball_refl Qle_refl.
(** Next up, the actual interface for integrable functions. *)
Bind Scope Q_scope with Q.
(*Arguments integral_additive {f} {_} {_} a b c _ _.*)
Section integral_approximation.
Context (f: Q → CR) `{Int: Integrable f}.
(** The additive property implies that zero width intervals have zero surface: *)
Lemma zero_width_integral q: ∫ f q 0%Qnn == 0.
Proof with auto.
apply CRplus_eq_l with (∫ f q 0%Qnn).
generalize (integral_additive q 0%Qnn 0%Qnn).
rewrite Qplus_0_r, QnonNeg.plus_0_l, CRplus_0_l...
Qed.
(** Iterating the additive property yields: *)
Lemma integral_repeated_additive (a: Q) (b: QnonNeg) (n: nat):
@cmΣ CRasCMonoid n (fun i: nat => ∫ f (a + i * ` b) b)
== ∫ f a (from_nat n * b)%Qnn.
Proof.
unfold cmΣ.
induction n; simpl @cm_Sum.
assert (QnonNeg.eq (from_nat 0 * b)%Qnn 0%Qnn) by reflexivity.
rewrite H. clear H.
rewrite zero_width_integral. reflexivity.
rewrite IHn.
rewrite CRplus_comm.
assert (QnonNeg.eq (from_nat (S n) * b)%Qnn (from_nat n * b + b)%Qnn).
{ change (S n * proj1_sig b == n * proj1_sig b + proj1_sig b)%Q.
rewrite S_Qplus. ring. }
rewrite H. clear H.
apply integral_additive.
Qed.
(** As promised, we now move toward the aforementioned generalizations of the
boundedness property. We start by generalizing mid to CR: *)
Lemma bounded_with_real_mid (from: Q) (width: Qpos) (mid: CR) (r: Qpos):
(forall x, from <= x <= from+proj1_sig width -> ball (proj1_sig r) (f x) mid) ->
ball (proj1_sig (width * r)%Qpos) (∫ f from (from_Qpos width)) (scale (proj1_sig width) mid).
Proof with auto.
intros H d1 d2.
simpl approximate.
destruct (Qscale_modulus_pos width d2) as [P E].
rewrite E. simpl.
set (v := (exist (Qlt 0) (/ (proj1_sig width) * proj1_sig d2)%Q P)).
assert (QposEq (d1 + width * r + d2)%Qpos (d1 + width * (r + v))%Qpos).
{ unfold QposEq; simpl; field. apply Qpos_nonzero. }
unfold QposEq in H0. rewrite H0. clear H0.
apply regFunBall_Cunit.
apply integral_bounded_prim.
intros.
apply ball_triangle with mid...
apply ball_approx_r.
Qed.
(** Next, we generalize r to QnonNeg: *)
Lemma bounded_with_nonneg_radius (from: Q) (width: Qpos) (mid: CR) (r: QnonNeg):
(forall (x: Q), (from <= x <= from+ proj1_sig width) -> ball (proj1_sig r) (f x) mid) ->
ball (proj1_sig width * proj1_sig r) (∫ f from (from_Qpos width)) (scale (proj1_sig width) mid).
Proof with auto.
pattern r.
apply QnonNeg.Qpos_ind.
- intros ?? E.
split. intros H ?. rewrite <- E. apply H. intros. rewrite E...
intros H ?. rewrite E. apply H. intros. rewrite <- E...
- rewrite Qmult_0_r.
intros.
apply ball_eq. intros e epos.
setoid_replace e with (proj1_sig (width * (exist _ _ epos * Qpos_inv width))%Qpos)
by (simpl; field; apply Qpos_nonzero).
apply bounded_with_real_mid.
intros q ?.
setoid_replace (f q) with mid...
apply ball_refl. apply Qpos_nonneg.
apply H, H0.
- intros.
apply bounded_with_real_mid.
intros. apply H, H0.
Qed.
(** Next, we generalize r to a full CR: *)
Lemma bounded_with_real_radius (from: Q) (width: Qpos) (mid: CR) (r: CR) (rnn: CRnonNeg r):
(forall (x: Q), from <= x <= from+` width -> CRball r mid (f x)) ->
CRball (scale (proj1_sig width) r) (∫ f from (from_Qpos width)) (scale (proj1_sig width) mid).
Proof with auto.
intro A.
unfold CRball.
intros.
unfold CRball in A.
setoid_replace q with (proj1_sig width * (q / proj1_sig width))%Q
by (simpl; field; auto).
assert (r <= ' (q / proj1_sig width)).
{ apply (mult_cancel_leEq CRasCOrdField) with (' (proj1_sig width)).
simpl. apply CRlt_Qlt...
rewrite mult_commutes.
change (' (proj1_sig width) * r <= ' (q / proj1_sig width) * ' (proj1_sig width)).
rewrite CRmult_Qmult.
unfold Qdiv.
rewrite <- Qmult_assoc.
rewrite (Qmult_comm (/ proj1_sig width)).
rewrite Qmult_inv_r...
rewrite Qmult_1_r.
rewrite CRmult_scale... }
assert (0 <= (q / proj1_sig width))%Q as E.
apply CRle_Qle.
apply CRle_trans with r...
apply -> CRnonNeg_le_0...
apply (bounded_with_nonneg_radius from width mid (exist _ _ E)).
intros. apply ball_sym...
Qed.
(** Finally, we generalize to nonnegative width: *)
Lemma integral_bounded (from: Q) (width: QnonNeg) (mid: CR) (r: CR) (rnn: CRnonNeg r)
(A: forall (x: Q), (from <= x <= from+` width) -> CRball r mid (f x)):
CRball (scale (proj1_sig width) r) (∫ f from width) (scale (proj1_sig width) mid).
Proof with auto.
revert A.
pattern width.
apply QnonNeg.Qpos_ind; intros.
intros ?? E.
assert (forall z, scale (`x) z == scale (`y) z) as scale_wd.
{ intro z. apply Cmap_wd. rewrite E. reflexivity. reflexivity. }
split; intro; intros.
rewrite <- scale_wd, <- scale_wd, <- E. apply H. intros. apply A. rewrite <- E...
rewrite scale_wd, scale_wd, E. apply H. intros. apply A. rewrite E...
rewrite zero_width_integral, scale_0, scale_0.
apply CRball.reflexive, CRnonNeg_0.
apply (bounded_with_real_radius from q mid r rnn)...
Qed.
(** In some context a lower-bound-upper-bound formulation is more convenient
than the the ball-based formulation: *)
Lemma integral_lower_upper_bounded (from: Q) (width: QnonNeg) (lo hi: CR):
(forall (x: Q), (from <= x <= from+` width)%Q -> lo <= f x /\ f x <= hi) ->
scale (` width) lo <= ∫ f from width /\ ∫ f from width <= scale (` width) hi.
Proof with auto with *.
intro A.
assert (from <= from <= from + `width) as B.
split...
rewrite <- (Qplus_0_r from) at 1.
apply Qplus_le_compat...
assert (lo <= hi) as lohi by (destruct (A _ B); now apply CRle_trans with (f from)).
set (r := ' (1#2) * (hi - lo)).
set (mid := ' (1#2) * (lo + hi)).
assert (mid - r == lo) as loE by (subst mid r; ring).
assert (mid + r == hi) as hiE by (subst mid r; ring).
rewrite <- loE, <- hiE.
rewrite scale_CRplus, scale_CRplus, scale_CRopp, CRdistance_CRle, CRdistance_comm.
apply CRball.as_distance_bound.
apply integral_bounded.
subst r.
apply CRnonNeg_le_0.
apply mult_resp_nonneg.
simpl. apply CRle_Qle...
rewrite <- (CRplus_opp lo).
apply (CRplus_le_r lo hi (-lo))...
intros.
apply CRball.as_distance_bound. apply -> CRdistance_CRle.
rewrite loE, hiE...
Qed.
(** We now work towards unicity, for which we use that implementations must agree with Riemann
approximations. But since those are only valid for locally uniformly continuous functions, our proof
of unicity only works for such functions. Todo: There should really be a proof that does not depend
on continuity. *)
Context `{L : @IsLocallyUniformlyContinuous
Q (msp_mspc_ball Q_as_MetricSpace)
CR (msp_mspc_ball CR) f lmu}.
(*
Lemma gball_integral (e: Qpos) (a a': Q) (ww: Qpos) (w: QnonNeg):
(w <= @uc_mu _ _ _ (@luc_mu Q _ CR f _ (a, ww)) e)%QnnInf ->
gball ww a a' ->
gball_ex (w * e)%QnnInf (' w * f a') (∫ f a' w).
Proof with auto.
intros ??.
simpl QnnInf.mult.
apply in_CRgball.
simpl.
rewrite <- CRmult_Qmult.
CRring_replace (' w * f a' - ' w * ' e) (' w * (f a' - ' e)).
CRring_replace (' w * f a' + ' w * ' e) (' w * (f a' + ' e)).
repeat rewrite CRmult_scale.
apply (integral_lower_upper_bounded a' w (f a' - ' e) (f a' + ' e)).
intros x [lo hi].
apply in_CRball.
apply (locallyUniformlyContinuous f a ww e).
apply ball_gball...
set (luc_mu f a ww e) in *.
destruct q...
apply in_Qball.
split.
unfold Qminus.
rewrite <- (Qplus_0_r x).
apply Qplus_le_compat...
change (-q <= -0)%Q.
apply Qopp_le_compat...
apply Qle_trans with (a' + `w)%Q...
apply Qplus_le_compat...
Qed.
*)
(** Iterating this result shows that Riemann sums are arbitrarily good approximations: *)
Open Scope Q_scope.
Lemma luc_gball (a w delta eps x y : Q) :
0 < eps ->
(delta <= lmu a w eps)%Qinf ->
@ball Q_as_MetricSpace w a x
-> @ball Q_as_MetricSpace w a y
-> @ball Q_as_MetricSpace delta x y
-> ball eps (f x) (f y).
Proof.
intros A A1 A2 A3 A4.
destruct (@luc_prf
Q (msp_mspc_ball Q_as_MetricSpace)
CR (msp_mspc_ball CR)
f lmu L a w) as [_ H].
change (f x) with (@restrict Q (msp_mspc_ball Q_as_MetricSpace) CR
f a w (exist _ _ A2)).
change (f y) with (@restrict Q (msp_mspc_ball Q_as_MetricSpace) CR
f a w (exist _ _ A3)).
apply H; [apply A |].
destruct (lmu a w eps) as [q |] eqn:A5; [| easy].
apply (@mspc_monotone _ _
(@sig_mspc Q (msp_mspc_ball Q_as_MetricSpace)
(msp_mspc_ball_ext Q_as_MetricSpace)
(@mspc_ball Q (msp_mspc_ball Q_as_MetricSpace) w a) )
delta).
apply A1. apply A4.
Qed.
Lemma Riemann_sums_approximate_integral (a: Q) (w: QnonNeg) (e: Qpos) (iw: Q) (n: nat):
(S n * iw == proj1_sig w)%Q ->
(iw <= lmu a (proj1_sig w) (proj1_sig e))%Qinf ->
ball (proj1_sig e * proj1_sig w)
(@cmΣ CRasCMonoid (S n) (fun i => 'iw * f (a + i * iw))%CR) (∫ f a w).
Proof.
intros A B.
assert (ne_sn_0 : ~ S n == 0) by
(change 0 with (inject_Z (Z.of_nat 0)); rewrite Q_of_nat_inj; apply S_O).
assert (iw_nn : 0 <= iw) by
(apply Qdiv_l in A; [| assumption]; rewrite A; apply Qmult_le_0_compat; [now auto|];
apply Qinv_le_0_compat, Qle_nat). (* This should be automated *)
set (iw' := exist _ iw iw_nn : QnonNeg ).
change iw with (proj1_sig iw').
change (from_nat (S n) * iw' == w)%Qnn in A.
rewrite <- A at 2.
rewrite <- integral_repeated_additive.
setoid_replace (proj1_sig e * proj1_sig w)%Q with (S n * (iw * proj1_sig e))%Q by
(unfold QnonNeg.eq in A; simpl in A;
rewrite Qmult_assoc; rewrite A; apply Qmult_comm).
apply CRΣ_gball.
intros m H.
rewrite CRmult_scale.
apply ball_sym. apply CRball.rational.
setoid_replace (' (iw * proj1_sig e)) with (scale (proj1_sig iw') (' ` e))
by now rewrite <- scale_Qmult.
apply integral_bounded; [apply CRnonNegQpos |].
intros x [A1 A2]. apply CRball.rational.
apply (luc_gball a (proj1_sig w) (`iw')); trivial.
+ apply gball_Qabs.
setoid_replace (a - (a + m * proj1_sig iw')) with (- (m * proj1_sig iw')) by ring.
rewrite Qabs_opp. apply Qabs_le_nonneg; [Qauto_nonneg |].
apply Qle_trans with (y := (S n * proj1_sig iw')).
apply Qmult_le_compat_r. apply Qlt_le_weak.
rewrite <- Zlt_Qlt. now apply inj_lt.
apply (proj2_sig iw').
change (S n * proj1_sig iw' == proj1_sig w) in A. rewrite <- A; reflexivity.
+ apply gball_Qabs, Qabs_Qle_condition.
split.
apply Qplus_le_l with (z := x), Qplus_le_l with (z := proj1_sig w).
setoid_replace (- proj1_sig w + x + proj1_sig w) with x by ring.
setoid_replace (a - x + x + proj1_sig w) with (a + proj1_sig w) by ring.
apply Qle_trans with (y := (a + m * ` iw' + ` iw')); [easy |].
setoid_rewrite <- (Qmult_1_l (` iw')) at 2. change 1%Q with (inject_Z (Z.of_nat 1)).
rewrite <- Qplus_assoc, <- Qmult_plus_distr_l, <- Zplus_Qplus, <- Nat2Z.inj_add.
apply Qplus_le_r. change (S n * proj1_sig iw' == proj1_sig w) in A. rewrite <- A.
apply Qmult_le_compat_r. rewrite <- Zle_Qle. apply inj_le. rewrite Nat.add_comm.
now apply Nat.le_succ_l.
apply (proj2_sig iw').
apply Qplus_le_l with (z := x), Qplus_le_l with (z := - proj1_sig w).
setoid_replace (a - x + x + - proj1_sig w) with (a - proj1_sig w) by ring.
setoid_replace (proj1_sig w + x + - proj1_sig w) with x by ring.
apply Qle_trans with (y := a). rewrite <- (Qplus_0_r a) at 2.
apply Qplus_le_r. change 0 with (-0). apply Qopp_le_compat, (proj2_sig w).
apply Qle_trans with (y := a + m * ` iw'); [| easy].
rewrite <- (Qplus_0_r a) at 1. apply Qplus_le_r, Qmult_le_0_compat; [apply Qle_nat | apply (proj2_sig iw')].
+ apply gball_Qabs, Qabs_Qle_condition; split.
apply (Qplus_le_r (x + `iw')).
setoid_replace (x + `iw' + - `iw') with x by ring.
setoid_replace (x + (proj1_sig iw') + (a + m * proj1_sig iw' - x))
with (a + m * proj1_sig iw' + proj1_sig iw') by ring. apply A2.
apply (Qplus_le_r (x - `iw')).
setoid_replace (x - proj1_sig iw' + (a + m * proj1_sig iw' - x))
with (a + m * proj1_sig iw' - proj1_sig iw') by ring.
setoid_replace (x - `iw' + `iw') with x by ring.
apply Qle_trans with (y := a + m * proj1_sig iw'); [| easy].
apply Qminus_less. apply (proj2_sig iw').
Qed.
Definition step (w : Q) (n : positive) : Q := w * (1 # n).
Lemma step_nonneg (w : Q) (n : positive) : 0 <= w -> 0 <= step w n.
Proof. intros w_nn; unfold step; Qauto_nonneg. Qed.
Lemma step_0 (n : positive) : step 0 n == 0.
Proof. unfold step; now rewrite Qmult_0_l. Qed.
Lemma step_mult (w : Q) (n : positive) : (inject_Z n : Q) * step w n == w.
Proof.
unfold step.
rewrite Qmake_Qdiv. unfold Qdiv. rewrite Qmult_1_l, (Qmult_comm w), Qmult_assoc.
rewrite Qmult_inv_r, Qmult_1_l; [reflexivity | auto with qarith].
Qed.
Definition riemann_sum (a w : Q) (n : positive) :=
let iw := step w n in
@cmΣ CRasCMonoid (Pos.to_nat n) (fun i => 'iw * f (a + i * iw))%CR.
(*Instance : Proper (Qeq ==> Qeq ==> eq ==> @st_eq CR) riemann_sum.
Proof.
intros a1 a2 Ea w1 w2 Ew n1 n2 En. apply cmΣ_proper; [now rewrite En |].
intros i1 i2 Ei.*)
Lemma riemann_sum_0 (a : Q) (n : positive) : riemann_sum a 0 n [=] 0%CR.
Proof.
unfold riemann_sum. apply cmΣ_0.
intros m _.
generalize (f(a+m*step 0 n)). intros.
rewrite (step_0 n). ring.
Qed.
Lemma Riemann_sums_approximate_integral' (a : Q) (w : QnonNeg) (e : Qpos) (n : positive) :
(step (proj1_sig w) n <= lmu a (proj1_sig w) (proj1_sig e))%Qinf ->
ball (proj1_sig e * proj1_sig w) (riemann_sum a (proj1_sig w) n) (∫ f a w).
Proof.
intro A; unfold riemann_sum.
destruct (Pos2Nat.is_succ n) as [m M]. rewrite M.
apply Riemann_sums_approximate_integral; [rewrite <- M | easy].
unfold step. change (Pos.to_nat n * (proj1_sig w * (1 # n)) == proj1_sig w).
rewrite positive_nat_Z. unfold inject_Z.
rewrite Qmult_comm, <- Qmult_assoc.
setoid_replace ((1 # n) * (n # 1)) with (1#1) by reflexivity.
ring.
Qed.
Lemma integral_approximation (a : Q) (w : QnonNeg) (e : Qpos) :
exists N : positive, forall n : positive, (N <= n)%positive ->
mspc_ball e (riemann_sum a (proj1_sig w) n) (∫ f a w).
Proof.
destruct (Qlt_le_dec 1 (proj1_sig w)) as [A1 | A1].
* assert (0 < proj1_sig w) by (apply (Qlt_trans _ 1); auto with qarith).
set (N := Z.to_pos (Qceiling (comp_inf (λ x, proj1_sig w / x) (lmu a (proj1_sig w)) 0 (proj1_sig e / proj1_sig w)))).
exists N; intros n A2.
assert (Qinf.eq (proj1_sig e) (proj1_sig e / proj1_sig w * proj1_sig w)).
{ simpl. unfold canonical_names.equiv.
unfold stdlib_rationals.Q_eq. field. intro abs.
rewrite abs in H. exact (Qlt_irrefl 0 H). }
rewrite H0. clear H0.
(* [apply Riemann_sums_approximate_integral'] does not unify because in
this lemma, the radius is [(QposAsQ e) * (QnonNeg.proj1_sig w)], and in the
goal the radius is [(QposAsQ e) / (QnonNeg.proj1_sig w) * (QnonNeg.proj1_sig w)]. *)
assert (P : 0 < proj1_sig e / proj1_sig w).
{ (apply Qmult_lt_0_compat; [| apply Qinv_lt_0_compat]; auto). }
change (proj1_sig e / proj1_sig w) with (proj1_sig (exist _ _ P)).
apply (Riemann_sums_approximate_integral'
a w ((exist (Qlt 0) (proj1_sig e / proj1_sig w) P))).
change (` (exist (Qlt 0) (` e / proj1_sig w) P)) with (proj1_sig e / proj1_sig w).
destruct (lmu a (proj1_sig w) (proj1_sig e / proj1_sig w)) as [mu |] eqn:A3; [| easy].
subst N; unfold comp_inf in A2; rewrite A3 in A2.
change (step (proj1_sig w) n <= mu); unfold step.
setoid_replace (1#n) with (/(n#1)) by reflexivity.
assert (0 < mu) as A4. change (Qinf.lt 0 mu). rewrite <- A3.
apply (@uc_pos
_ (@sig_mspc_ball Q (msp_mspc_ball Q_as_MetricSpace)
(@mspc_ball Q (msp_mspc_ball Q_as_MetricSpace) (proj1_sig w) a))
CR (msp_mspc_ball CR)
(@restrict Q (msp_mspc_ball Q_as_MetricSpace) CR f a (proj1_sig w))
(lmu a (proj1_sig w))).
trivial. trivial.
apply Qle_div_l; auto. reflexivity.
now apply Z.Ple_Zle_to_pos, Q.Zle_Qle_Qceiling in A2.
* set (N := Z.to_pos (Qceiling (comp_inf (λ x, 1 / x) (lmu a (proj1_sig w)) 0 (proj1_sig e)))).
exists N; intros n A2.
apply (mspc_monotone (proj1_sig e * proj1_sig w)).
+ change (proj1_sig e * proj1_sig w <= proj1_sig e).
rewrite <- (Qmult_1_r (proj1_sig e)) at 2. apply Qmult_le_compat_l; auto.
apply Qpos_nonneg.
+ apply Riemann_sums_approximate_integral'.
destruct (lmu a (proj1_sig w) (proj1_sig e)) as [mu |] eqn:A3; [| easy].
subst N; unfold comp_inf in A2; rewrite A3 in A2.
change (step (proj1_sig w) n <= mu); unfold step.
setoid_replace (1#n) with (/(n#1)) by reflexivity.
assert (0 < mu) as A4. change (Qinf.lt 0 mu). rewrite <- A3.
apply (@uc_pos _ (@sig_mspc_ball Q (msp_mspc_ball Q_as_MetricSpace)
(@mspc_ball Q (msp_mspc_ball Q_as_MetricSpace) (proj1_sig w) a))
CR (msp_mspc_ball CR)
(@restrict Q (msp_mspc_ball Q_as_MetricSpace) CR f a (proj1_sig w)) (lmu a (proj1_sig w))).
trivial. apply (proj2_sig e).
apply Qle_div_l; auto. reflexivity.
apply Z.Ple_Zle_to_pos, Q.Zle_Qle_Qceiling in A2.
apply (Qle_trans _ (1 / mu)); trivial. apply Qmult_le_compat_r; trivial.
now apply Qinv_le_0_compat, Qlt_le_weak.
Qed.
(** Unicity itself will of course have to be stated w.r.t. *two* integrals: *)
(*
Lemma unique
`{!LocallyUniformlyContinuous_mu f} `{!LocallyUniformlyContinuous f}
(c1: Integral f)
(c2: Integral f)
(P1: @Integrable c1)
(P2: @Integrable c2):
forall (a: Q) (w: QnonNeg),
@integrate f c1 a w == @integrate f c2 a w.
Proof with auto.
intros. apply ball_eq. intros.
revert w.
apply QnonNeg.Qpos_ind.
intros ?? E. rewrite E. reflexivity.
do 2 rewrite zero_width_integral...
intro x.
destruct (split x (@uc_mu _ _ _ (@luc_mu Q _ CR f _ (a, x)) ((1 # 2) * e * Qpos_inv x)))%Qpos as [[n t] [H H0]].
simpl in H.
simpl @snd in H0.
setoid_replace e with (((1 # 2) * e / x) * x + ((1 # 2) * e / x) * x)%Qpos by (unfold QposEq; simpl; field)...
apply ball_triangle with (cmΣ n (fun i: nat => (' `t * f (a + i * `t)%Q))).
apply ball_sym.
apply ball_gball.
apply (Riemann_sums_approximate_integral a x ((1 # 2) * e / x)%Qpos t n H H0).
apply ball_gball.
apply (Riemann_sums_approximate_integral a x ((1 # 2) * e / x)%Qpos t n H H0).
Qed.
*)
End integral_approximation.
(** If f==g, then an integral for f is an integral for g. *)
Lemma Integrable_proper_l (f g: Q → CR) {fint: Integral f}:
canonical_names.equiv f g → Integrable f → @Integrable g fint.
Proof with auto.
constructor.
replace (@integrate g) with (@integrate f) by reflexivity.
intros.
apply integral_additive.
replace (@integrate g) with (@integrate f) by reflexivity.
intros.
apply integral_bounded_prim...
intros.
assert (msp_eq (f x) (g x)).
{ apply H. reflexivity. }
rewrite H3...
replace (@integrate g) with (@integrate f) by reflexivity.
apply integral_wd...
Qed.
Import canonical_names abstract_algebra.
Local Open Scope mc_scope.
Add Ring CR : (rings.stdlib_ring_theory CR).
Lemma mult_comm `{SemiRing R} : Commutative (.*.).
Proof. apply commonoid_commutative with (Aunit := one), _. Qed.
Lemma mult_assoc `{SemiRing R} (x y z : R) : x * (y * z) = x * y * z.
Proof. apply sg_ass, _. Qed.
(* Should this lemma be used to CoRN.reals.fast.CRabs? That file does not use
type class notations from canonical_names like ≤ *)
Lemma CRabs_nonneg (x : CR) : 0 ≤ abs x.
Proof.
apply -> CRabs_cases; [| apply _ | apply _].
split; [trivial | apply (proj1 (rings.flip_nonpos_negate x))].
Qed.
Lemma cmΣ_empty {M : CMonoid} (f : nat -> M) : cmΣ 0 f = [0].
Proof. reflexivity. Qed.
Lemma cmΣ_succ {M : CMonoid} (n : nat) (f : nat -> M) : cmΣ (S n) f = f n [+] cmΣ n f.
Proof. reflexivity. Qed.
Lemma cmΣ_plus (n : nat) (f g : nat -> CR)
: @cmΣ CRasCMonoid n (f + g) == @cmΣ CRasCMonoid n f + @cmΣ CRasCMonoid n g.
Proof.
induction n as [| n IH].
+ symmetry.
apply (@cm_rht_unit CRasCMonoid (@cmΣ CRasCMonoid 0 (f + g))).
+ rewrite cmΣ_succ.
transitivity ((f + g)%mc n + (@cmΣ CRasCMonoid n f + @cmΣ CRasCMonoid n g))%CR.
apply ucFun2_wd. reflexivity.
exact IH. clear IH.
rewrite cmΣ_succ.
transitivity (f n + @cmΣ CRasCMonoid n f + (g n + @cmΣ CRasCMonoid n g))%CR.
2: reflexivity.
do 2 rewrite CRplus_assoc.
apply CRplus_eq_l.
rewrite <- CRplus_assoc.
rewrite <- (CRplus_comm (g n)), CRplus_assoc.
apply CRplus_eq_r. reflexivity.
Qed.
Lemma cmΣ_negate (n : nat) (f : nat -> CR)
: @cmΣ CRasCMonoid n (- f) = - @cmΣ CRasCMonoid n f.
Proof.
induction n as [| n IH].
- apply CRopp_0.
- rewrite cmΣ_succ.
transitivity ( (- f)%mc n + - @cmΣ CRasCMonoid n f)%CR.
apply ucFun2_wd. reflexivity.
exact IH. clear IH.
change (- @cmΣ CRasCMonoid (S n) f) with (-(f n + @cmΣ CRasCMonoid n f))%CR.
rewrite CRopp_plus_distr.
reflexivity.
Qed.
Lemma cmΣ_const (n : nat) (m : CR) : @cmΣ CRasCMonoid n (λ _, m) = m * '(n : Q).
Proof.
induction n as [| n IH].
- rewrite cmΣ_empty.
simpl. rewrite CRmult_0_r. reflexivity.
- rewrite cmΣ_succ.
transitivity (m + (m*'n))%CR.
apply ucFun2_wd. reflexivity.
exact IH. clear IH. rewrite S_Qplus, <- CRplus_Qplus.
rewrite CRmult_plus_distr_l.
rewrite CRplus_comm.
apply ucFun2_wd. reflexivity.
rewrite CRmult_1_r. reflexivity.
Qed.
Lemma riemann_sum_const (a : Q) (w : Q) (m : CR) (n : positive) :
riemann_sum (λ _, m) a w n = 'w * m.
Proof.
unfold riemann_sum. rewrite cmΣ_const, positive_nat_Z.
change ('step w n * m * '(n : Q) = 'w * m).
rewrite (mult_comm _ ('(inject_Z n : Q))), mult_assoc, CRmult_Qmult, step_mult; reflexivity.
Qed.
Lemma riemann_sum_plus (f g : Q -> CR) (a w : Q) (n : positive) :
riemann_sum (f + g) a w n = riemann_sum f a w n + riemann_sum g a w n.
Proof.
unfold riemann_sum. rewrite <- cmΣ_plus.
apply (@cm_Sum_eq CRasCMonoid). intro k.
unfold plus, ext_plus.
apply CRmult_plus_distr_l.
Qed.
Lemma riemann_sum_negate (f : Q -> CR) (a w : Q) (n : positive) :
riemann_sum (- f) a w n = - riemann_sum f a w n.
Proof.
unfold riemann_sum. rewrite <- cmΣ_negate.
apply (@cm_Sum_eq CRasCMonoid). intro k.
unfold negate, ext_negate.
symmetry. apply CRopp_mult_distr_r.
Qed.
Section RiemannSumBounds.
Context (f : Q -> CR).
Global Instance Qle_nat (n : nat) : PropHolds (0 ≤ (n : Q)).
Proof. apply Qle_nat. Qed.
Instance step_nonneg' (w : Q) (n : positive) : PropHolds (0 ≤ w) -> PropHolds (0 ≤ step w n).
Proof. apply step_nonneg. Qed.
Lemma index_inside_l (a w : Q) (k : nat) (n : positive) :
0 ≤ w -> k < Pos.to_nat n -> a ≤ a + (k : Q) * step w n.
Proof. intros; apply semirings.nonneg_plus_le_compat_r; solve_propholds. Qed.
Lemma index_inside_r (a w : Q) (k : nat) (n : positive) :
0 ≤ w -> k < Pos.to_nat n -> a + (k : Q) * step w n ≤ a + w.
Proof.
intros A1 A2. apply (orders.order_preserving (a +)).
mc_setoid_replace w with ((inject_Z n : Q) * (step w n)) at 2 by (symmetry; apply step_mult).
apply (orders.order_preserving (.* step w n)).
rewrite <- Zle_Qle, <- positive_nat_Z. apply inj_le. change (k ≤ Pos.to_nat n). solve_propholds.
Qed.
Lemma riemann_sum_bounds (a w : Q) (m : CR) (e : Q) (n : positive) :
0 ≤ w -> (forall (x : Q), (a ≤ x ≤ a + w) -> ball e (f x) m) ->
ball (w * e) (riemann_sum f a w n) ('w * m).
Proof.
intros w_nn A.
pose proof (riemann_sum_const a w m n).
rewrite <- H. clear H.
unfold riemann_sum.
rewrite <- (step_mult w n), <- (Qmult_assoc (inject_Z n) _ e), <- (positive_nat_Z n).
apply CRΣ_gball. intros k A1. apply CRball.gball_CRmult_Q_nonneg; [now apply step_nonneg |].
apply A. split; [apply index_inside_l | apply index_inside_r]; trivial.
Qed.
End RiemannSumBounds.
Section IntegralBound.
Context (f : Q -> CR) `{Integrable f}.
Lemma scale_0_r (x : Q) : scale x 0 == 0.
Proof.
rewrite <- CRmult_scale.
apply CRmult_0_r.
Qed.
Require Import MathClasses.misc.propholds.
Lemma integral_abs_bound (from : Q) (width : QnonNeg) (M : Q) :
(forall (x : Q), (from ≤ x ≤ from + proj1_sig width) -> CRabs (f x) ≤ 'M) ->
CRabs (∫ f from width) ≤ '(`width * M).
Proof.
intro A. rewrite <- (CRplus_0_r (∫ f from width)), <- CRopp_0.
apply CRball.as_distance_bound. rewrite <- (scale_0_r (proj1_sig width)).
rewrite <- CRmult_Qmult, CRmult_scale.
apply integral_bounded; trivial.
+ apply CRnonNeg_le_0.
apply CRle_trans with (y := CRabs (f from)); [apply CRabs_nonneg |].
apply A. split; [reflexivity |].
apply semirings.nonneg_plus_le_compat_r; change (0 <= proj1_sig width)%Q; Qauto_nonneg.
+ intros x A2. apply CRball.as_distance_bound. rewrite CRdistance_comm.
change (CRabs (f x - 0) ≤ 'M).
rewrite rings.minus_0_r; now apply A.
Qed.
(*apply CRball.as_distance_bound, CRball.rational. rewrite <- (scale_0_r width).
assert (A1 : 0 ≤ M).
+ apply CRle_Qle. apply CRle_trans with (y := CRabs (f from)); [apply CRabs_nonneg |].
apply A. split; [reflexivity |].
apply semirings.nonneg_plus_le_compat_r; change (0 <= width)%Q; Qauto_nonneg.
+ change M with (QnonNeg.proj1_sig (exist _ M A1)).
apply bounded_with_nonneg_radius; [easy |].
intros x A2. apply CRball.gball_CRabs. change (f x - 0%mc)%CR with (f x - 0).
rewrite rings.minus_0_r; now apply A.
Qed.*)
End IntegralBound.
(*
Section IntegralOfSum.
Context (f g : Q -> CR)
`{!IsLocallyUniformlyContinuous f f_mu, !IsLocallyUniformlyContinuous g g_mu}
`{Integral f, !Integrable f, Integral g, !Integrable g}.
Global Instance integrate_sum : Integral (f + g) := λ a w, integrate f a w + integrate g a w.
Global Instance integrate_negate : Integral (- f) := λ a w, - integrate f a w.
Lemma integral_sum_additive (a : Q) (b c : QnonNeg) :
∫ (f + g) a b + ∫ (f + g) (a + ` b) c = ∫ (f + g) a (b + c)%Qnn.
Proof.
unfold integrate, integrate_sum.
rewrite <- !integral_additive; trivial.
change (
∫ f a b + ∫ g a b + (∫ f (a + ` b) c + ∫ g (a + ` b) c) =
(∫ f a b + ∫ f (a + ` b) c) + (∫ g a b + ∫ g (a + ` b) c)). ring.
Qed.
Lemma integral_negate_additive (a : Q) (b c : QnonNeg) :
∫ (- f) a b + ∫ (- f) (a + ` b) c = ∫ (- f) a (b + c)%Qnn.
Proof.
unfold integrate, integrate_negate.
rewrite <- rings.negate_plus_distr. apply CRopp_wd_Proper. (* Where is it defined? *)
now apply integral_additive.
Qed.
(* When the last argument of ball is ('(width * mid)), typechecking diverges *)
Lemma integral_sum_integrable (from : Q) (width : Qpos) (mid : Q) (r : Qpos) :
(∀ x : Q, from ≤ x ≤ from + width → ball r (f x + g x) ('mid))
→ ball (width * r) (∫ (f + g) from width) ('((width : Q) * mid)).
Proof.
intros A. apply ball_gball; simpl. apply gball_closed. intros e e_pos.
setoid_replace (width * r + e)%Q with (e + width * r)%Q by apply Qplus_comm.
destruct (Riemann_sums_approximate_integral'' f from width ((1#2) * mkQpos e_pos)%Qpos) as [Nf F].
destruct (Riemann_sums_approximate_integral'' g from width ((1#2) * mkQpos e_pos)%Qpos) as [Ng G].
set (n := Pos.max Nf Ng).
assert (le_Nf_n : (Nf <= n)%positive) by apply Pos.le_max_l.
assert (le_Ng_n : (Ng <= n)%positive) by apply Pos.le_max_r.
specialize (F n le_Nf_n). specialize (G n le_Ng_n).
apply gball_triangle with (b := riemann_sum (f + g) from width n).
+ rewrite riemann_sum_plus. setoid_replace e with ((1#2) * e + (1#2) * e)%Q by ring.
apply CRgball_plus; apply gball_sym; trivial.
+ (* apply riemann_sum_bounds. diverges *)
rewrite <- CRmult_Qmult. apply riemann_sum_bounds; [solve_propholds |].
intros. apply ball_gball. apply A; trivial.
Qed.
(*Lemma integral_negate_integrable (from : Q) (width : Qpos) (mid : Q) (r : Qpos) :
(∀ x : Q, from ≤ x ≤ from + width → ball r ((- f) x) ('mid))
→ ball (width * r) (∫ (- f) from width) ('((width : Q) * mid)).
Proof.
intros A. unfold integrate, integrate_negate.
SearchAbout gball CRopp.
SearchAbout (gball _ (CRopp _) (CRopp _)).*)
Global Instance : Integrable (f + g).
constructor.
+ apply integral_sum_additive.
+ apply integral_sum_integrable.
+ intros a1 a2 A1 w1 w2 A2. unfold integrate, integrate_sum. rewrite A1, A2; reflexivity.
Qed.
End IntegralOfSum.
*)
Add Field Q : (dec_fields.stdlib_field_theory Q).
(* In theory.rings, we have
[rings.plus_assoc : ... Associative plus]
and
[rings.plus_comm : ... Commutative plus].
One difference is that [Commutative] is defined directly while
[Associative] is defined through [HeteroAssociative]. For this or some
other reason, rewriting [rings.plus_comm] works while rewriting
[rings.plus_assoc] does not. Interestingly, all arguments before x y z in
[rings.plus_assoc] are implicit, and when we make [R] explicit, rewriting
works. However, in this case [rewrite] leaves a goal [SemiRing R], which is
not solved by [trivial], [auto] or [easy], but only by [apply _]. If
[rings.plus_assoc] is formulated as [x + (y + z) = (x + y) + z] instead of
[Associative plus], then rewriting works; however, then it cannot be an
instance (of [Associative]). Make this change in theory.rings? *)
Lemma plus_assoc `{SemiRing R} : forall (x y z : R), x + (y + z) = (x + y) + z.
Proof. exact simple_associativity. Qed.
Section RingFacts.
Context `{Ring R}.
Lemma plus_left_cancel (z x y : R) : z + x = z + y <-> x = y.
Proof.
split.
(* [apply (left_cancellation (+)).] leaves the goal [LeftCancellation plus z],
which is solved by [apply _]. Why is it left? *)
+ apply (left_cancellation (+) z).
+ intro A; now rewrite A.
Qed.
Lemma plus_right_cancel (z x y : R) : x + z = y + z <-> x = y.
Proof. rewrite (rings.plus_comm x z), (rings.plus_comm y z); apply plus_left_cancel. Qed.
Lemma plus_eq_minus (x y z : R) : x + y = z <-> x = z - y.
Proof.
split; intro A.
+ apply (right_cancellation (+) y).
now rewrite <- plus_assoc, rings.plus_negate_l, rings.plus_0_r.
+ apply (right_cancellation (+) (-y)).
now rewrite <- plus_assoc, rings.plus_negate_r, rings.plus_0_r.
Qed.
Lemma minus_eq_plus (x y z : R) : x - y = z <-> x = z + y.
Proof. now rewrite plus_eq_minus, rings.negate_involutive. Qed.
Lemma negate_inj (x y : R) : -x = -y <-> x = y.
Proof. now rewrite rings.flip_negate, rings.negate_involutive. Qed.
End RingFacts.
Import interfaces.orders orders.minmax theory.rings.
Lemma join_comm `{JoinSemiLatticeOrder L} : Commutative join.
Proof.
intros x y. apply antisymmetry with (R := (≤)); [apply _ | |];
(apply join_lub; [apply join_ub_r | apply join_ub_l]).
(* why is [apply _] needed? *)
Qed.
Lemma meet_comm `{MeetSemiLatticeOrder L} : Commutative meet.
Proof.
intros x y. apply antisymmetry with (R := (≤)); [apply _ | |];
(apply meet_glb; [apply meet_lb_r | apply meet_lb_l]).
Qed.
Definition Range (T : Type) := prod T T.
#[global]
Instance contains_Q : Contains Q (Range Q) := λ x s, (fst s ⊓ snd s ≤ x ≤ fst s ⊔ snd s).
Lemma Qrange_comm (a b x : Q) : x ∈ (a, b) <-> x ∈ (b, a).
Proof.
unfold contains, contains_Q; simpl.
rewrite join_comm, meet_comm; reflexivity.
Qed.
Lemma range_le (a b : Q) : a ≤ b -> forall x, a ≤ x ≤ b <-> x ∈ (a, b).
Proof.
intros A x; unfold contains, contains_Q; simpl.
mc_setoid_replace (meet a b) with a by now apply lattices.meet_l.
mc_setoid_replace (join a b) with b by now apply lattices.join_r. reflexivity.
Qed.
Lemma CRabs_negate (x : CR) : abs (-x) = abs x.
Proof.
change (abs (-x)) with (CRabs (-x)).
rewrite CRabs_opp; reflexivity.
Qed.
Lemma mspc_ball_Qle (r a x : Q)
: @mspc_ball Q (msp_mspc_ball Q_as_MetricSpace) r a x <-> a - r ≤ x ≤ a + r.
Proof. rewrite mspc_ball_Qabs; apply Qabs_diff_Qle. Qed.
Lemma mspc_ball_convex (x1 x2 r a x : Q) :
@mspc_ball Q (msp_mspc_ball Q_as_MetricSpace) r a x1
-> @mspc_ball Q (msp_mspc_ball Q_as_MetricSpace) r a x2
-> x ∈ (x1, x2)
-> @mspc_ball Q (msp_mspc_ball Q_as_MetricSpace) r a x.
Proof.
intros A1 A2 A3.
rewrite mspc_ball_Qle in A1, A2. apply mspc_ball_Qle.
destruct A1 as [A1' A1'']; destruct A2 as [A2' A2'']; destruct A3 as [A3' A3'']. split.
+ now transitivity (meet x1 x2); [apply meet_glb |].
+ now transitivity (join x1 x2); [| apply join_lub].
Qed.
Section IntegralTotal.
Context (f : Q -> CR) `{Integrable f}.
Program Definition int (from to : Q) :=
if (decide (from ≤ to))
then integrate f from (to - from)
else -integrate f to (from - to).
Next Obligation.
change (0 ≤ to - from). (* without [change], the following [apply] does not work *)
now apply rings.flip_nonneg_minus.
Qed.
Next Obligation.
change (0 ≤ from - to).
(* [apply rings.flip_nonneg_minus, orders.le_flip] does not work *)
apply rings.flip_nonneg_minus; now apply orders.le_flip.
Qed.
Lemma integral_additive' (a b : Q) (u v w : QnonNeg) :
a + `u = b -> `u + `v = `w -> ∫ f a u + ∫ f b v = ∫ f a w.
Proof.
intros A1 A2.
assert (QnonNeg.eq (u+v)%Qnn w) as H0 by apply A2.
assert (Qeq (a+`u) b) as H1 by apply A1.
transitivity ( ∫ f a u + ∫ f (a+`u) v).
apply ucFun2_wd. reflexivity.
rewrite <- A1. reflexivity. rewrite <- H0.
apply integral_additive.
Qed.
Lemma int_add (a b c : Q) : int a b + int b c = int a c.
Proof.
unfold int.
destruct (decide (a ≤ b)) as [AB | AB];
destruct (decide (b ≤ c)) as [BC | BC];
destruct (decide (a ≤ c)) as [AC | AC].
+ apply integral_additive'; simpl; ring.
+ assert (A : a ≤ c) by (now transitivity b); elim (AC A).
+ apply minus_eq_plus. symmetry.
pose proof (integral_additive' a c ((c - a) ↾ int_obligation_1 a c AC)
((b - c) ↾ int_obligation_2 b c BC)
((b - a) ↾ int_obligation_1 a b AB) ).
apply H0. clear H0.
simpl. ring. simpl. ring.
+ apply minus_eq_plus.
rewrite (rings.plus_comm (-integrate _ _ _)), <- plus_eq_minus, (rings.plus_comm (integrate _ _ _)).
pose proof (integral_additive' c a ((a - c) ↾ int_obligation_2 a c AC)
((b - a) ↾ int_obligation_1 a b AB)
((b - c) ↾ int_obligation_2 b c BC) ).
apply H0. clear H0.
simpl. ring. simpl. ring.
+ rewrite (rings.plus_comm (-integrate _ _ _)).
apply minus_eq_plus. rewrite (rings.plus_comm (integrate _ _ _)).
symmetry.
pose proof (integral_additive' b a ((a - b) ↾ int_obligation_2 a b AB)
((c - a) ↾ int_obligation_1 a c AC)
((c - b) ↾ int_obligation_1 b c BC) ).
apply H0. clear H0.
simpl. ring. simpl. ring.
+ rewrite (rings.plus_comm (-integrate _ _ _)).
apply minus_eq_plus. rewrite (rings.plus_comm (-integrate _ _ _)), <- plus_eq_minus.
pose proof (integral_additive' b c ((c - b) ↾ int_obligation_1 b c BC)
((a - c) ↾ int_obligation_2 a c AC)
((a - b) ↾ int_obligation_2 a b AB) ).
apply H0. clear H0.
simpl. ring. simpl. ring.
+ assert (b ≤ a) by (now apply orders.le_flip); assert (B : b ≤ c) by (now transitivity a); elim (BC B).
+ rewrite <- rings.negate_plus_distr. apply negate_inj.
rewrite (rings.plus_comm (integrate _ _ _)).
pose proof (integral_additive' c b ((b - c) ↾ int_obligation_2 b c BC)
((a - b) ↾ int_obligation_2 a b AB)
((a - c) ↾ int_obligation_2 a c AC) ).
apply H0. clear H0.
simpl. ring. simpl. ring.
Qed.
Lemma int_diff (a b c : Q) : int a b - int a c = int c b.
Proof.
apply minus_eq_plus. symmetry.
rewrite (rings.plus_comm (int c b) (int a c)).
pose proof (int_add a c b).
apply H0.
Qed.
Lemma int_zero_width (a : Q) : int a a = 0.
Proof.
apply (plus_right_cancel (int a a)).
rewrite rings.plus_0_l.
pose proof (int_add a a a). exact H0.
Qed.
Lemma int_opposite (a b : Q) : int a b = - int b a.
Proof.
apply (CRplus_eq_r (int b a)). rewrite CRplus_opp.
pose proof (int_add b a b). rewrite H0.
pose proof (int_zero_width b).
exact H1.
Qed.
Lemma int_abs_bound (a b M : Q) :
(forall x : Q, x ∈ (a, b) -> abs (f x) ≤ 'M)
-> abs (int a b) ≤ '(abs (b - a) * M).
Proof.
intros A. unfold int.
assert (0 <= (' M))%CR as Mpos.
{ apply (@CRle_trans _ (abs (f a))).
apply CRabs_nonneg. apply (A a).
split. apply meet_lb_l.
apply join_ub_l. }
destruct (decide (a ≤ b)) as [AB | AB].
- assert (∀ x : Q, a ≤ x ≤ a + ` ((b - a) ↾ int_obligation_1 a b AB)
→ CRabs (f x) ≤ ' M).
{ intros. apply A. split; simpl.
apply (Qle_trans _ a). apply meet_lb_l.
apply H0.
simpl in H0.
apply (Qle_trans _ b).
destruct H0.
ring_simplify in H1.
exact H1. apply join_ub_r. }
apply (CRle_trans (integral_abs_bound
f a ((b - a) ↾ int_obligation_1 a b AB) M H0)).
simpl.
rewrite Qmult_comm, <- (Qmult_comm M).
rewrite <- CRmult_Qmult, <- CRmult_Qmult.
apply CRmult_le_compat_l. exact Mpos.
apply CRle_Qle.
apply Qle_Qabs.
- unfold abs, abs_sig, CR_abs, proj1_sig. rewrite CRabs_opp.
assert (∀ x : Q,
b ≤ x ≤ b + ` ((a - b) ↾ int_obligation_2 a b AB) → CRabs (f x) ≤ ' M).
{ intros. apply A. split; simpl.
apply (Qle_trans _ b). apply meet_lb_r.
apply H0.
simpl in H0.
apply (Qle_trans _ a).
destruct H0.
ring_simplify in H1.
exact H1. apply join_ub_l. }
apply (CRle_trans (integral_abs_bound
f b ((a - b) ↾ int_obligation_2 a b AB) M H0)).
unfold proj1_sig, stdlib_rationals.Abs_instance_0.
rewrite Qmult_comm, <- (Qmult_comm M).
rewrite <- CRmult_Qmult, <- CRmult_Qmult.
apply CRmult_le_compat_l. exact Mpos.
apply CRle_Qle.
rewrite (Qabs_Qminus b a).
apply Qle_Qabs.
Qed.
End IntegralTotal.
(*Lemma int_plus (f g : Q -> CR) `{Integrable f, Integrable g}
`{!IsLocallyUniformlyContinuous f f_mu, !IsLocallyUniformlyContinuous f f_mu} (a b : Q) :
int f a b + int g a b = int (f + g) a b.
Proof.
unfold int. destruct (decide (a ≤ b)); [reflexivity |].
symmetry; unfold integrate at 1, integrate_sum.
apply rings.negate_plus_distr. (* does not work without unfold *)
Qed.*)
Lemma integrate_plus (f g : Q -> CR)
`{@IsUniformlyContinuous
Q (msp_mspc_ball Q_as_MetricSpace)
CR (msp_mspc_ball CR)
f f_mu,
@IsUniformlyContinuous
Q (msp_mspc_ball Q_as_MetricSpace)
CR (msp_mspc_ball CR)
g g_mu}
(a : Q) (w : QnonNeg) :
@integrate (f + g) (@Integral_instance_0
(f+g) _ (@uc_ulc _ _ _ _ _ _
(@sum_uc
Q (msp_mspc_ball Q_as_MetricSpace)
(msp_mspc_ball_ext Q_as_MetricSpace)
f g _ _ _ _))) a w
= ∫ f a w + ∫ g a w.
Proof.
apply ball_closed. intros e e_pos.
mc_setoid_replace (0 + e) with e by ring.
assert (he_pos : 0 < e / 2) by solve_propholds.
assert (qe_pos : 0 < e / 4) by solve_propholds.
destruct (integral_approximation f a w (exist _ _ qe_pos)) as [Nf F].
destruct (integral_approximation g a w (exist _ _ qe_pos)) as [Ng G].
destruct (@integral_approximation
(f + g)
(@Integral_instance_0
(f+g) _ (@uc_ulc _ _ _ _ _ _
(@sum_uc
Q (msp_mspc_ball Q_as_MetricSpace)
(msp_mspc_ball_ext Q_as_MetricSpace)
f g _ _ _ _)))
_ _ (@uc_ulc _ _ _ _ _ _
(@sum_uc
Q (msp_mspc_ball Q_as_MetricSpace)
(msp_mspc_ball_ext Q_as_MetricSpace)
f g _ _ _ _))
a w (exist _ _ he_pos)) as [Ns S].
(* [Le positive] is not yet defined *)
set (n := Pos.max (Pos.max Nf Ng) Ns).
assert (Nf <= n)%positive by (transitivity (Pos.max Nf Ng); apply Pos.le_max_l).
assert (Ng <= n)%positive by (transitivity (Pos.max Nf Ng); [apply Pos.le_max_r | apply Pos.le_max_l]).
assert (Ns <= n)%positive by apply Pos.le_max_r.
setoid_replace e with (e/2+e/2)%Q.
apply ball_triangle with (b:= riemann_sum (f + g) a (proj1_sig w) n).
- apply ball_sym, S; assumption.
- rewrite riemann_sum_plus.
mc_setoid_replace (e / 2) with (e / 4 + e / 4) by (field; split; discriminate).
now apply mspc_ball_CRplus; [apply F | apply G].
- unfold Qdiv. rewrite <- Qmult_plus_distr_r.
setoid_replace (/ 2 + / 2)%Q with 1%Q by reflexivity.
rewrite Qmult_1_r. reflexivity.
Qed.
Lemma integrate_negate (f : Q -> CR)
`{!IsUniformlyContinuous f f_mu} (a : Q) (w : QnonNeg) : ∫ (- f) a w = - ∫ f a w.
Proof.
apply ball_closed. intros e e_pos.
mc_setoid_replace (0 + e) with e by ring.
assert (he_pos : 0 < e / 2) by solve_propholds.
destruct (integral_approximation (- f) a w (exist _ _ he_pos)) as [N1 F1].
destruct (integral_approximation f a w (exist _ _ he_pos)) as [N2 F2].
set (n := Pos.max N1 N2).
assert (N1 <= n)%positive by apply Pos.le_max_l.
assert (N2 <= n)%positive by apply Pos.le_max_r.
setoid_replace e with (e/2+e/2)%Q.
apply ball_triangle with (b:=riemann_sum (- f) a (proj1_sig w) n).
- apply ball_sym, F1, H.
- rewrite riemann_sum_negate. now apply mspc_ball_CRnegate, F2.
- unfold Qdiv. rewrite <- Qmult_plus_distr_r.
setoid_replace (/ 2 + / 2)%Q with 1%Q by reflexivity.
rewrite Qmult_1_r. reflexivity.
Qed.
Lemma int_plus (f g : Q -> CR)
`{@IsUniformlyContinuous
Q (msp_mspc_ball Q_as_MetricSpace)
CR (msp_mspc_ball CR)
f f_mu,
@IsUniformlyContinuous
Q (msp_mspc_ball Q_as_MetricSpace)
CR (msp_mspc_ball CR)
g g_mu}
(a b : Q) :
@int (f + g)
(@Integral_instance_0
(f+g) _ (@uc_ulc _ _ _ _ _ _
(@sum_uc
Q (msp_mspc_ball Q_as_MetricSpace)
(msp_mspc_ball_ext Q_as_MetricSpace)
f g _ _ _ _)))
a b
= int f a b + int g a b.
Proof.
unfold int; destruct (decide (a ≤ b)).
rewrite integrate_plus. reflexivity.
pose proof (integrate_plus f g b ((a - b) ↾ int_obligation_2 a b n)).
rewrite H1. clear H1.
apply rings.negate_plus_distr.
Qed.
Lemma int_negate (f : Q -> CR) `{!IsUniformlyContinuous f f_mu} (a b : Q) :
int (- f) a b = - int f a b.
Proof.
unfold int; destruct (decide (a ≤ b)).
rewrite integrate_negate. reflexivity.
pose proof (integrate_negate f b ((a - b) ↾ int_obligation_2 a b n)).
rewrite H. reflexivity.
Qed.
Lemma int_minus (f g : Q -> CR)
`{@IsUniformlyContinuous
Q (msp_mspc_ball Q_as_MetricSpace)
CR (msp_mspc_ball CR)
f f_mu,
@IsUniformlyContinuous
Q (msp_mspc_ball Q_as_MetricSpace)
CR (msp_mspc_ball CR)
g g_mu}
(a b : Q) :
@int (f - g)
(@Integral_instance_0
(f-g) _ (@uc_ulc _ _ _ _ _ _
(@sum_uc
Q (msp_mspc_ball Q_as_MetricSpace)
(msp_mspc_ball_ext Q_as_MetricSpace)
f (-g) _ _ _ _)))
a b
= int f a b - int g a b.
Proof.
rewrite int_plus.
pose proof (int_negate g a b).
transitivity (int f a b + - int g a b).
apply ucFun2_wd. reflexivity. exact H1.
reflexivity.
Qed.
Lemma abs_int_minus (f g : Q -> CR)
`{@IsUniformlyContinuous
Q (msp_mspc_ball Q_as_MetricSpace)
CR (msp_mspc_ball CR)
f f_mu,
@IsUniformlyContinuous
Q (msp_mspc_ball Q_as_MetricSpace)
CR (msp_mspc_ball CR)
g g_mu}
(a b : Q) :
abs (@int (f - g)
(@Integral_instance_0
(f-g) _ (@uc_ulc _ _ _ _ _ _
(@sum_uc
Q (msp_mspc_ball Q_as_MetricSpace)
(msp_mspc_ball_ext Q_as_MetricSpace)
f (-g) _ _ _ _)))
a b)
== abs (int f a b - int g a b).
Proof.
apply CRabs_wd, int_minus.
Qed.
Import interfaces.orders orders.semirings.
Definition Qupper_bound (x : CR)
:= approximate x (Qpos2QposInf (1#1)) + 1.
(* To be proved by lifting from Q.
Lemma CRabs_triang (x y z : CR) : x = y + z -> abs x ≤ abs y + abs z.
*)
(* The section IntegralLipschitz is not used in the ODE solver through
Picard iterations. Instead of assuming the function that is being
integrated to be Lipschitz, the development assumes that it is uniformly
continuous and bounded. Then integral is Lispchitz, but it is only proved
that it is uniformly continuous. *)
Section IntegralLipschitz.
Notation ball := mspc_ball.
Context (f : Q -> CR) (x0 : Q)
`{!@IsLocallyLipschitz
Q (msp_mspc_ball Q_as_MetricSpace)
CR (msp_mspc_ball CR)
f L}
`{Integral f, !Integrable f}.
Let F (x : Q) := int f x0 x.
Section IntegralLipschitzBall.
Variables (a r x1 x2 : Q).
Hypotheses (I1 : @ball Q (msp_mspc_ball Q_as_MetricSpace) r a x1)
(I2 : @ball Q (msp_mspc_ball Q_as_MetricSpace) r a x2)
(r_nonneg : 0 ≤ r).
Let La := L a r.
Lemma int_lip (e M : Q) :
(∀ x, @ball Q (msp_mspc_ball Q_as_MetricSpace) r a x -> abs (f x) ≤ 'M)
-> @ball Q (msp_mspc_ball Q_as_MetricSpace) e x1 x2
-> @ball CR (msp_mspc_ball CR) (M * e) (F x1) (F x2).
Proof.
intros A1 A2. apply CRball.gball_CRabs. subst F; cbv beta.
change (int f x0 x1 - int f x0 x2)%CR with (int f x0 x1 - int f x0 x2).
pose proof (int_diff f x0 x1 x2).
rewrite H1.
change (abs (int f x2 x1) ≤ '(M * e)).
transitivity ('(M * abs (x1 - x2))).
+ rewrite mult_comm. apply int_abs_bound; trivial. intros x A3; apply A1, (mspc_ball_convex x2 x1); easy.
+ apply CRle_Qle. assert (0 ≤ M).
- apply CRle_Qle.
transitivity (abs (f a)); [apply CRabs_nonneg | apply A1, @mspc_refl].
exact (msp_mspc_ball_ext Q_as_MetricSpace).
easy.
- change (M * abs (x1 - x2) ≤ M * e). apply (orders.order_preserving (M *.)).
apply gball_Qabs, A2.
Qed.
End IntegralLipschitzBall.
Lemma lipschitz_bounded (a r M x : Q) :
abs (f a) ≤ 'M
-> @ball Q (msp_mspc_ball Q_as_MetricSpace) r a x
-> abs (f x) ≤ '(M + L a r * r).
Proof.
intros A1 A2.
assert (f x = f x - 0) as H1.
{ rewrite rings.minus_0_r. reflexivity. }
pose proof (CRabs_wd _ _ H1).
rewrite H2. clear H2 H1.
apply mspc_ball_CRabs, mspc_symm.
apply (mspc_triangle _ _ _ (f a)).
- apply mspc_ball_CRabs.
assert (0 - f a = - f a) as H1.
{ rewrite rings.plus_0_l. reflexivity. }
pose proof (CRabs_wd _ _ H1).
rewrite H2. clear H2 H1.
pose proof (CRabs_negate (f a)).
now rewrite H1.
- apply (@llip _ _ _ _
(msp_mspc_ball_ext Q_as_MetricSpace) f _ H).
2: exact A2. 2: exact A2.
apply mspc_refl.
apply (@radius_nonneg _ _ (msp_mspc_ball_ext Q_as_MetricSpace) a x).
exact A2.
Qed.
Global Instance integral_lipschitz :
@IsLocallyLipschitz
Q (msp_mspc_ball Q_as_MetricSpace)
CR (msp_mspc_ball CR)
F (λ a r, Qupper_bound (abs (f a)) + L a r * r).
Proof.
intros a r r_nonneg. constructor.
+ apply nonneg_plus_compat.
- apply CRle_Qle. transitivity (abs (f a)); [apply CRabs_nonneg | apply upper_CRapproximation].
- apply nonneg_mult_compat. 2: exact r_nonneg.
apply (@lip_nonneg
_ (@sig_mspc_ball Q (msp_mspc_ball Q_as_MetricSpace) (ball r a))
CR _ (@restrict Q (msp_mspc_ball Q_as_MetricSpace) CR
f a r)).
apply llip_prf. exact H. exact r_nonneg.
(* Not good to provide [(restrict f a r)]. [IsLipschitz (restrict f a r) (L a r)] is generated *)
+ intros x1 x2 d A.
destruct x1 as [x1 A1]; destruct x2 as [x2 A2].
change (ball ((Qupper_bound (abs (f a)) + L a r * r) * d) (F x1) (F x2)).
apply (int_lip a r); trivial.
intros x B. now apply lipschitz_bounded; [apply upper_CRapproximation |].
Qed.
End IntegralLipschitz.
Import minmax (*Coq.Program.*)Basics.
(*Global Instance Qball_decidable (r : Qinf) (a x : Q) : Decision (mspc_ball r a x).
destruct r as [r |]; [| now left].
apply (decision_proper (Qabs (a - x) <= r)%Q); [symmetry; apply gball_Qabs | apply _].
Defined.*)
Section AbsFacts.
Context `{Ring R} `{!FullPseudoSemiRingOrder Rle Rlt} `{!Abs R}.
(* Should this be made a Class? It seems particular and complicated *)
Definition abs_cases_statement (P : R -> Prop) :=
Proper (equiv ==> iff) P -> (forall x, Stable (P x)) ->
forall x : R, (0 ≤ x -> P x) /\ (x ≤ 0 -> P (- x)) -> P (abs x).
Context `(abs_cases : forall P : R -> Prop, abs_cases_statement P)
`{le_stable : forall x y : R, Stable (x ≤ y)}.
Lemma abs_nonneg' (x : R) : 0 ≤ abs x.
Proof.
apply abs_cases.
+ intros y1 y2 E; now rewrite E.
+ apply _.
+ split; [trivial |]. intros ?; now apply rings.flip_nonpos_negate.
Qed.
End AbsFacts.
Lemma Qabs_cases : forall P : Q -> Prop, abs_cases_statement P.
Proof.
intros P Pp Ps x [? ?].
destruct (decide (0 ≤ x)) as [A | A];
[rewrite abs.abs_nonneg | apply le_flip in A; rewrite abs.abs_nonpos]; auto.
(* [easy] instead of [auto] does not work *)
Qed.
Lemma Qabs_nonneg (x : Q) : 0 ≤ abs x.
Proof. apply abs_nonneg'; [apply Qabs_cases | apply _]. Qed.
(*
Lemma integrate_proper
(f g: Q → CR)
`{!LocallyUniformlyContinuous_mu g}
`{!LocallyUniformlyContinuous g}
{fint: Integral f}
{gint: Integral g}
`{!@Integrable f fint}
`{!@Integrable g gint}:
canonical_names.equiv f g →
∀ (a: Q) (w: QnonNeg),
@integrate f fint a w == @integrate g gint a w.
(* This requires continuity for g only because [unique] does. *)
Proof with try assumption.
intros.
apply (unique g)...
apply (Integrable_proper_l f)...
Qed.
*)
|