1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
|
\chapter{Detailed examples of tactics}
\label{Tactics-examples}
This chapter presents detailed examples of certain tactics, to
illustrate their behavior.
\section{\tt refine}
\tacindex{refine}
\label{refine-example}
This tactic applies to any goal. It behaves like {\tt exact} with a
big difference : the user can leave some holes (denoted by \texttt{\_} or
{\tt (\_:}{\it type}{\tt )}) in the term.
{\tt refine} will generate as many
subgoals as they are holes in the term. The type of holes must be
either synthesized by the system or declared by an
explicit cast like \verb|(\_:nat->Prop)|. This low-level
tactic can be useful to advanced users.
%\firstexample
\Example
\begin{coq_example*}
Inductive Option : Set :=
| Fail : Option
| Ok : bool -> Option.
\end{coq_example}
\begin{coq_example}
Definition get : forall x:Option, x <> Fail -> bool.
refine
(fun x:Option =>
match x return x <> Fail -> bool with
| Fail => _
| Ok b => fun _ => b
end).
intros; absurd (Fail = Fail); trivial.
\end{coq_example}
\begin{coq_example*}
Defined.
\end{coq_example*}
% \example{Using Refine to build a poor-man's ``Cases'' tactic}
% \texttt{Refine} is actually the only way for the user to do
% a proof with the same structure as a {\tt Cases} definition. Actually,
% the tactics \texttt{case} (see \ref{case}) and \texttt{Elim} (see
% \ref{elim}) only allow one step of elementary induction.
% \begin{coq_example*}
% Require Bool.
% Require Arith.
% \end{coq_example*}
% %\begin{coq_eval}
% %Abort.
% %\end{coq_eval}
% \begin{coq_example}
% Definition one_two_or_five := [x:nat]
% Cases x of
% (1) => true
% | (2) => true
% | (5) => true
% | _ => false
% end.
% Goal (x:nat)(Is_true (one_two_or_five x)) -> x=(1)\/x=(2)\/x=(5).
% \end{coq_example}
% A traditional script would be the following:
% \begin{coq_example*}
% Destruct x.
% Tauto.
% Destruct n.
% Auto.
% Destruct n0.
% Auto.
% Destruct n1.
% Tauto.
% Destruct n2.
% Tauto.
% Destruct n3.
% Auto.
% Intros; Inversion H.
% \end{coq_example*}
% With the tactic \texttt{Refine}, it becomes quite shorter:
% \begin{coq_example*}
% Restart.
% \end{coq_example*}
% \begin{coq_example}
% Refine [x:nat]
% <[y:nat](Is_true (one_two_or_five y))->(y=(1)\/y=(2)\/y=(5))>
% Cases x of
% (1) => [H]?
% | (2) => [H]?
% | (5) => [H]?
% | n => [H](False_ind ? H)
% end; Auto.
% \end{coq_example}
% \begin{coq_eval}
% Abort.
% \end{coq_eval}
\section{\tt eapply}
\tacindex{eapply}
\label{eapply-example}
\Example
Assume we have a relation on {\tt nat} which is transitive:
\begin{coq_example*}
Variable R : nat -> nat -> Prop.
Hypothesis Rtrans : forall x y z:nat, R x y -> R y z -> R x z.
Variables n m p : nat.
Hypothesis Rnm : R n m.
Hypothesis Rmp : R m p.
\end{coq_example*}
Consider the goal {\tt (R n p)} provable using the transitivity of
{\tt R}:
\begin{coq_example*}
Goal R n p.
\end{coq_example*}
The direct application of {\tt Rtrans} with {\tt apply} fails because
no value for {\tt y} in {\tt Rtrans} is found by {\tt apply}:
\begin{coq_eval}
Set Printing Depth 50.
(********** The following is not correct and should produce **********)
(**** Error: generated subgoal (R n ?17) has metavariables in it *****)
\end{coq_eval}
\begin{coq_example}
apply Rtrans.
\end{coq_example}
A solution is to rather apply {\tt (Rtrans n m p)}.
\begin{coq_example}
apply (Rtrans n m p).
\end{coq_example}
\begin{coq_eval}
Undo.
\end{coq_eval}
More elegantly, {\tt apply Rtrans with (y:=m)} allows to only mention
the unknown {\tt m}:
\begin{coq_example}
apply Rtrans with (y := m).
\end{coq_example}
\begin{coq_eval}
Undo.
\end{coq_eval}
Another solution is to mention the proof of {\tt (R x y)} in {\tt
Rtrans}...
\begin{coq_example}
apply Rtrans with (1 := Rnm).
\end{coq_example}
\begin{coq_eval}
Undo.
\end{coq_eval}
... or the proof of {\tt (R y z)}:
\begin{coq_example}
apply Rtrans with (2 := Rmp).
\end{coq_example}
\begin{coq_eval}
Undo.
\end{coq_eval}
On the opposite, one can use {\tt eapply} which postpone the problem
of finding {\tt m}. Then one can apply the hypotheses {\tt Rnm} and {\tt
Rmp}. This instantiates the existential variable and completes the proof.
\begin{coq_example}
eapply Rtrans.
apply Rnm.
apply Rmp.
\end{coq_example}
\begin{coq_eval}
Reset R.
\end{coq_eval}
\section{{\tt Scheme}}
\comindex{Scheme}
\label{Scheme-examples}
\firstexample
\example{Induction scheme for \texttt{tree} and \texttt{forest}}
The definition of principle of mutual induction for {\tt tree} and
{\tt forest} over the sort {\tt Set} is defined by the command:
\begin{coq_eval}
Reset Initial.
Variables A B :
Set.
\end{coq_eval}
\begin{coq_example*}
Inductive tree : Set :=
node : A -> forest -> tree
with forest : Set :=
| leaf : B -> forest
| cons : tree -> forest -> forest.
Scheme tree_forest_rec := Induction for tree Sort Set
with forest_tree_rec := Induction for forest Sort Set.
\end{coq_example*}
You may now look at the type of {\tt tree\_forest\_rec}:
\begin{coq_example}
Check tree_forest_rec.
\end{coq_example}
This principle involves two different predicates for {\tt trees} and
{\tt forests}; it also has three premises each one corresponding to a
constructor of one of the inductive definitions.
The principle {\tt tree\_forest\_rec} shares exactly the same
premises, only the conclusion now refers to the property of forests.
\begin{coq_example}
Check forest_tree_rec.
\end{coq_example}
\example{Predicates {\tt odd} and {\tt even} on naturals}
Let {\tt odd} and {\tt even} be inductively defined as:
\begin{coq_eval}
Reset Initial.
Open Scope nat_scope.
\end{coq_eval}
\begin{coq_example*}
Inductive odd : nat -> Prop :=
oddS : forall n:nat, even n -> odd (S n)
with even : nat -> Prop :=
| evenO : even 0
| evenS : forall n:nat, odd n -> even (S n).
\end{coq_example*}
The following command generates a powerful elimination
principle:
\begin{coq_example}
Scheme odd_even := Minimality for odd Sort Prop
with even_odd := Minimality for even Sort Prop.
\end{coq_example}
The type of {\tt odd\_even} for instance will be:
\begin{coq_example}
Check odd_even.
\end{coq_example}
The type of {\tt even\_odd} shares the same premises but the
conclusion is {\tt (n:nat)(even n)->(Q n)}.
\section{{\tt Functional Scheme} and {\tt functional induction}}
\comindex{Functional Scheme}\tacindex{functional induction}
\label{FunScheme-examples}
\firstexample
\example{Induction scheme for \texttt{div2}}
We define the function \texttt{div2} as follows:
\begin{coq_eval}
Reset Initial.
\end{coq_eval}
\begin{coq_example*}
Require Import Arith.
Fixpoint div2 (n:nat) : nat :=
match n with
| O => 0
| S O => 0
| S (S n') => S (div2 n')
end.
\end{coq_example*}
The definition of a principle of induction corresponding to the
recursive structure of \texttt{div2} is defined by the command:
\begin{coq_example}
Functional Scheme div2_ind := Induction for div2 Sort Prop.
\end{coq_example}
You may now look at the type of {\tt div2\_ind}:
\begin{coq_example}
Check div2_ind.
\end{coq_example}
We can now prove the following lemma using this principle:
\begin{coq_example*}
Lemma div2_le' : forall n:nat, div2 n <= n.
intro n.
pattern n , (div2 n).
\end{coq_example*}
\begin{coq_example}
apply div2_ind; intros.
\end{coq_example}
\begin{coq_example*}
auto with arith.
auto with arith.
simpl; auto with arith.
Qed.
\end{coq_example*}
We can use directly the \texttt{functional induction}
(\ref{FunInduction}) tactic instead of the pattern/apply trick:
\begin{coq_example*}
Reset div2_le'.
Lemma div2_le : forall n:nat, div2 n <= n.
intro n.
\end{coq_example*}
\begin{coq_example}
functional induction (div2 n).
\end{coq_example}
\begin{coq_example*}
auto with arith.
auto with arith.
auto with arith.
Qed.
\end{coq_example*}
\Rem There is a difference between obtaining an induction scheme for a
function by using \texttt{Function} (section~\ref{Function}) and by
using \texttt{Functional Scheme} after a normal definition using
\texttt{Fixpoint} or \texttt{Definition}. See \ref{Function} for
details.
\example{Induction scheme for \texttt{tree\_size}}
\begin{coq_eval}
Reset Initial.
\end{coq_eval}
We define trees by the following mutual inductive type:
\begin{coq_example*}
Variable A : Set.
Inductive tree : Set :=
node : A -> forest -> tree
with forest : Set :=
| empty : forest
| cons : tree -> forest -> forest.
\end{coq_example*}
We define the function \texttt{tree\_size} that computes the size
of a tree or a forest. Note that we use \texttt{Function} which
generally produces better principles.
\begin{coq_example*}
Function tree_size (t:tree) : nat :=
match t with
| node A f => S (forest_size f)
end
with forest_size (f:forest) : nat :=
match f with
| empty => 0
| cons t f' => (tree_size t + forest_size f')
end.
\end{coq_example*}
Remark: \texttt{Function} generates itself non mutual induction
principles {\tt tree\_size\_ind} and {\tt forest\_size\_ind}:
\begin{coq_example}
Check tree_size_ind.
\end{coq_example}
The definition of mutual induction principles following the recursive
structure of \texttt{tree\_size} and \texttt{forest\_size} is defined
by the command:
\begin{coq_example*}
Functional Scheme tree_size_ind2 := Induction for tree_size Sort Prop
with forest_size_ind2 := Induction for forest_size Sort Prop.
\end{coq_example*}
You may now look at the type of {\tt tree\_size\_ind2}:
\begin{coq_example}
Check tree_size_ind2.
\end{coq_example}
\section{{\tt inversion}}
\tacindex{inversion}
\label{inversion-examples}
\subsection*{Generalities about inversion}
When working with (co)inductive predicates, we are very often faced to
some of these situations:
\begin{itemize}
\item we have an inconsistent instance of an inductive predicate in the
local context of hypotheses. Thus, the current goal can be trivially
proved by absurdity.
\item we have a hypothesis that is an instance of an inductive
predicate, and the instance has some variables whose constraints we
would like to derive.
\end{itemize}
The inversion tactics are very useful to simplify the work in these
cases. Inversion tools can be classified in three groups:
\begin{enumerate}
\item tactics for inverting an instance without stocking the inversion
lemma in the context; this includes the tactics
(\texttt{dependent}) \texttt{inversion} and
(\texttt{dependent}) \texttt{inversion\_clear}.
\item commands for generating and stocking in the context the inversion
lemma corresponding to an instance; this includes \texttt{Derive}
(\texttt{Dependent}) \texttt{Inversion} and \texttt{Derive}
(\texttt{Dependent}) \texttt{Inversion\_clear}.
\item tactics for inverting an instance using an already defined
inversion lemma; this includes the tactic \texttt{inversion \ldots using}.
\end{enumerate}
As inversion proofs may be large in size, we recommend the user to
stock the lemmas whenever the same instance needs to be inverted
several times.
\firstexample
\example{Non-dependent inversion}
Let's consider the relation \texttt{Le} over natural numbers and the
following variables:
\begin{coq_eval}
Reset Initial.
\end{coq_eval}
\begin{coq_example*}
Inductive Le : nat -> nat -> Set :=
| LeO : forall n:nat, Le 0 n
| LeS : forall n m:nat, Le n m -> Le (S n) (S m).
Variable P : nat -> nat -> Prop.
Variable Q : forall n m:nat, Le n m -> Prop.
\end{coq_example*}
For example, consider the goal:
\begin{coq_eval}
Lemma ex : forall n m:nat, Le (S n) m -> P n m.
intros.
\end{coq_eval}
\begin{coq_example}
Show.
\end{coq_example}
To prove the goal we may need to reason by cases on \texttt{H} and to
derive that \texttt{m} is necessarily of
the form $(S~m_0)$ for certain $m_0$ and that $(Le~n~m_0)$.
Deriving these conditions corresponds to prove that the
only possible constructor of \texttt{(Le (S n) m)} is
\texttt{LeS} and that we can invert the
\texttt{->} in the type of \texttt{LeS}.
This inversion is possible because \texttt{Le} is the smallest set closed by
the constructors \texttt{LeO} and \texttt{LeS}.
\begin{coq_example}
inversion_clear H.
\end{coq_example}
Note that \texttt{m} has been substituted in the goal for \texttt{(S m0)}
and that the hypothesis \texttt{(Le n m0)} has been added to the
context.
Sometimes it is
interesting to have the equality \texttt{m=(S m0)} in the
context to use it after. In that case we can use \texttt{inversion} that
does not clear the equalities:
\begin{coq_example*}
Undo.
\end{coq_example*}
\begin{coq_example}
inversion H.
\end{coq_example}
\begin{coq_eval}
Undo.
\end{coq_eval}
\example{Dependent Inversion}
Let us consider the following goal:
\begin{coq_eval}
Lemma ex_dep : forall (n m:nat) (H:Le (S n) m), Q (S n) m H.
intros.
\end{coq_eval}
\begin{coq_example}
Show.
\end{coq_example}
As \texttt{H} occurs in the goal, we may want to reason by cases on its
structure and so, we would like inversion tactics to
substitute \texttt{H} by the corresponding term in constructor form.
Neither \texttt{Inversion} nor {\tt Inversion\_clear} make such a
substitution.
To have such a behavior we use the dependent inversion tactics:
\begin{coq_example}
dependent inversion_clear H.
\end{coq_example}
Note that \texttt{H} has been substituted by \texttt{(LeS n m0 l)} and
\texttt{m} by \texttt{(S m0)}.
\example{using already defined inversion lemmas}
\begin{coq_eval}
Abort.
\end{coq_eval}
For example, to generate the inversion lemma for the instance
\texttt{(Le (S n) m)} and the sort \texttt{Prop} we do:
\begin{coq_example*}
Derive Inversion_clear leminv with (forall n m:nat, Le (S n) m) Sort
Prop.
\end{coq_example*}
\begin{coq_example}
Check leminv.
\end{coq_example}
Then we can use the proven inversion lemma:
\begin{coq_example}
Show.
\end{coq_example}
\begin{coq_example}
inversion H using leminv.
\end{coq_example}
\begin{coq_eval}
Reset Initial.
\end{coq_eval}
\section{\tt autorewrite}
\label{autorewrite-example}
Here are two examples of {\tt autorewrite} use. The first one ({\em Ackermann
function}) shows actually a quite basic use where there is no conditional
rewriting. The second one ({\em Mac Carthy function}) involves conditional
rewritings and shows how to deal with them using the optional tactic of the
{\tt Hint~Rewrite} command.
\firstexample
\example{Ackermann function}
%Here is a basic use of {\tt AutoRewrite} with the Ackermann function:
\begin{coq_example*}
Require Import Arith.
Variable Ack :
nat -> nat -> nat.
Axiom Ack0 :
forall m:nat, Ack 0 m = S m.
Axiom Ack1 : forall n:nat, Ack (S n) 0 = Ack n 1.
Axiom Ack2 : forall n m:nat, Ack (S n) (S m) = Ack n (Ack (S n) m).
\end{coq_example*}
\begin{coq_example}
Hint Rewrite Ack0 Ack1 Ack2 : base0.
Lemma ResAck0 :
Ack 3 2 = 29.
autorewrite with base0 using try reflexivity.
\end{coq_example}
\begin{coq_eval}
Reset Initial.
\end{coq_eval}
\example{Mac Carthy function}
%The Mac Carthy function shows a more complex case:
\begin{coq_example*}
Require Import Omega.
Variable g :
nat -> nat -> nat.
Axiom g0 :
forall m:nat, g 0 m = m.
Axiom
g1 :
forall n m:nat,
(n > 0) -> (m > 100) -> g n m = g (pred n) (m - 10).
Axiom
g2 :
forall n m:nat,
(n > 0) -> (m <= 100) -> g n m = g (S n) (m + 11).
\end{coq_example*}
\begin{coq_example}
Hint Rewrite g0 g1 g2 using omega : base1.
Lemma Resg0 :
g 1 110 = 100.
autorewrite with base1 using reflexivity || simpl.
\end{coq_example}
\begin{coq_eval}
Abort.
\end{coq_eval}
\begin{coq_example}
Lemma Resg1 : g 1 95 = 91.
autorewrite with base1 using reflexivity || simpl.
\end{coq_example}
\begin{coq_eval}
Reset Initial.
\end{coq_eval}
\section{\tt quote}
\tacindex{quote}
\label{quote-examples}
The tactic \texttt{quote} allows to use Barendregt's so-called
2-level approach without writing any ML code. Suppose you have a
language \texttt{L} of
'abstract terms' and a type \texttt{A} of 'concrete terms'
and a function \texttt{f : L -> A}. If \texttt{L} is a simple
inductive datatype and \texttt{f} a simple fixpoint, \texttt{quote f}
will replace the head of current goal by a convertible term of the form
\texttt{(f t)}. \texttt{L} must have a constructor of type: \texttt{A
-> L}.
Here is an example:
\begin{coq_example}
Require Import Quote.
Parameters A B C : Prop.
Inductive formula : Type :=
| f_and : formula -> formula -> formula (* binary constructor *)
| f_or : formula -> formula -> formula
| f_not : formula -> formula (* unary constructor *)
| f_true : formula (* 0-ary constructor *)
| f_const : Prop -> formula (* contructor for constants *).
Fixpoint interp_f (f:
formula) : Prop :=
match f with
| f_and f1 f2 => interp_f f1 /\ interp_f f2
| f_or f1 f2 => interp_f f1 \/ interp_f f2
| f_not f1 => ~ interp_f f1
| f_true => True
| f_const c => c
end.
Goal A /\ (A \/ True) /\ ~ B /\ (A <-> A).
quote interp_f.
\end{coq_example}
The algorithm to perform this inversion is: try to match the
term with right-hand sides expression of \texttt{f}. If there is a
match, apply the corresponding left-hand side and call yourself
recursively on sub-terms. If there is no match, we are at a leaf:
return the corresponding constructor (here \texttt{f\_const}) applied
to the term.
\begin{ErrMsgs}
\item \errindex{quote: not a simple fixpoint} \\
Happens when \texttt{quote} is not able to perform inversion properly.
\end{ErrMsgs}
\subsection{Introducing variables map}
The normal use of \texttt{quote} is to make proofs by reflection: one
defines a function \texttt{simplify : formula -> formula} and proves a
theorem \texttt{simplify\_ok: (f:formula)(interp\_f (simplify f)) ->
(interp\_f f)}. Then, one can simplify formulas by doing:
\begin{verbatim}
quote interp_f.
apply simplify_ok.
compute.
\end{verbatim}
But there is a problem with leafs: in the example above one cannot
write a function that implements, for example, the logical simplifications
$A \land A \ra A$ or $A \land \lnot A \ra \texttt{False}$. This is
because the \Prop{} is impredicative.
It is better to use that type of formulas:
\begin{coq_eval}
Reset formula.
\end{coq_eval}
\begin{coq_example}
Inductive formula : Set :=
| f_and : formula -> formula -> formula
| f_or : formula -> formula -> formula
| f_not : formula -> formula
| f_true : formula
| f_atom : index -> formula.
\end{coq_example*}
\texttt{index} is defined in module \texttt{quote}. Equality on that
type is decidable so we are able to simplify $A \land A$ into $A$ at
the abstract level.
When there are variables, there are bindings, and \texttt{quote}
provides also a type \texttt{(varmap A)} of bindings from
\texttt{index} to any set \texttt{A}, and a function
\texttt{varmap\_find} to search in such maps. The interpretation
function has now another argument, a variables map:
\begin{coq_example}
Fixpoint interp_f (vm:
varmap Prop) (f:formula) {struct f} : Prop :=
match f with
| f_and f1 f2 => interp_f vm f1 /\ interp_f vm f2
| f_or f1 f2 => interp_f vm f1 \/ interp_f vm f2
| f_not f1 => ~ interp_f vm f1
| f_true => True
| f_atom i => varmap_find True i vm
end.
\end{coq_example}
\noindent\texttt{quote} handles this second case properly:
\begin{coq_example}
Goal A /\ (B \/ A) /\ (A \/ ~ B).
quote interp_f.
\end{coq_example}
It builds \texttt{vm} and \texttt{t} such that \texttt{(f vm t)} is
convertible with the conclusion of current goal.
\subsection{Combining variables and constants}
One can have both variables and constants in abstracts terms; that is
the case, for example, for the \texttt{ring} tactic (chapter
\ref{ring}). Then one must provide to \texttt{quote} a list of
\emph{constructors of constants}. For example, if the list is
\texttt{[O S]} then closed natural numbers will be considered as
constants and other terms as variables.
Example:
\begin{coq_eval}
Reset formula.
\end{coq_eval}
\begin{coq_example*}
Inductive formula : Type :=
| f_and : formula -> formula -> formula
| f_or : formula -> formula -> formula
| f_not : formula -> formula
| f_true : formula
| f_const : Prop -> formula (* constructor for constants *)
| f_atom : index -> formula.
Fixpoint interp_f
(vm: (* constructor for variables *)
varmap Prop) (f:formula) {struct f} : Prop :=
match f with
| f_and f1 f2 => interp_f vm f1 /\ interp_f vm f2
| f_or f1 f2 => interp_f vm f1 \/ interp_f vm f2
| f_not f1 => ~ interp_f vm f1
| f_true => True
| f_const c => c
| f_atom i => varmap_find True i vm
end.
Goal
A /\ (A \/ True) /\ ~ B /\ (C <-> C).
\end{coq_example*}
\begin{coq_example}
quote interp_f [ A B ].
Undo.
quote interp_f [ B C iff ].
\end{coq_example}
\Warning Since function inversion
is undecidable in general case, don't expect miracles from it!
% \SeeAlso file \texttt{theories/DEMOS/DemoQuote.v}
\SeeAlso comments of source file \texttt{tactics/contrib/polynom/quote.ml}
\SeeAlso the \texttt{ring} tactic (Chapter~\ref{ring})
\section{Using the tactical language}
\subsection{About the cardinality of the set of natural numbers}
A first example which shows how to use the pattern matching over the proof
contexts is the proof that natural numbers have more than two elements. The
proof of such a lemma can be done as %shown on Figure~\ref{cnatltac}.
follows:
%\begin{figure}
%\begin{centerframe}
\begin{coq_eval}
Reset Initial.
Require Import Arith.
Require Import List.
\end{coq_eval}
\begin{coq_example*}
Lemma card_nat :
~ (exists x : nat, exists y : nat, forall z:nat, x = z \/ y = z).
Proof.
red; intros (x, (y, Hy)).
elim (Hy 0); elim (Hy 1); elim (Hy 2); intros;
match goal with
| [_:(?a = ?b),_:(?a = ?c) |- _ ] =>
cut (b = c); [ discriminate | apply trans_equal with a; auto ]
end.
Qed.
\end{coq_example*}
%\end{centerframe}
%\caption{A proof on cardinality of natural numbers}
%\label{cnatltac}
%\end{figure}
We can notice that all the (very similar) cases coming from the three
eliminations (with three distinct natural numbers) are successfully solved by
a {\tt match goal} structure and, in particular, with only one pattern (use
of non-linear matching).
\subsection{Permutation on closed lists}
Another more complex example is the problem of permutation on closed lists. The
aim is to show that a closed list is a permutation of another one.
First, we define the permutation predicate as shown in table~\ref{permutpred}.
\begin{figure}
\begin{centerframe}
\begin{coq_example*}
Section Sort.
Variable A : Set.
Inductive permut : list A -> list A -> Prop :=
| permut_refl : forall l, permut l l
| permut_cons :
forall a l0 l1, permut l0 l1 -> permut (a :: l0) (a :: l1)
| permut_append : forall a l, permut (a :: l) (l ++ a :: nil)
| permut_trans :
forall l0 l1 l2, permut l0 l1 -> permut l1 l2 -> permut l0 l2.
End Sort.
\end{coq_example*}
\end{centerframe}
\caption{Definition of the permutation predicate}
\label{permutpred}
\end{figure}
A more complex example is the problem of permutation on closed lists.
The aim is to show that a closed list is a permutation of another one.
First, we define the permutation predicate as shown on
Figure~\ref{permutpred}.
\begin{figure}
\begin{centerframe}
\begin{coq_example}
Ltac Permut n :=
match goal with
| |- (permut _ ?l ?l) => apply permut_refl
| |- (permut _ (?a :: ?l1) (?a :: ?l2)) =>
let newn := eval compute in (length l1) in
(apply permut_cons; Permut newn)
| |- (permut ?A (?a :: ?l1) ?l2) =>
match eval compute in n with
| 1 => fail
| _ =>
let l1' := constr:(l1 ++ a :: nil) in
(apply (permut_trans A (a :: l1) l1' l2);
[ apply permut_append | compute; Permut (pred n) ])
end
end.
Ltac PermutProve :=
match goal with
| |- (permut _ ?l1 ?l2) =>
match eval compute in (length l1 = length l2) with
| (?n = ?n) => Permut n
end
end.
\end{coq_example}
\end{centerframe}
\caption{Permutation tactic}
\label{permutltac}
\end{figure}
Next, we can write naturally the tactic and the result can be seen on
Figure~\ref{permutltac}. We can notice that we use two toplevel
definitions {\tt PermutProve} and {\tt Permut}. The function to be
called is {\tt PermutProve} which computes the lengths of the two
lists and calls {\tt Permut} with the length if the two lists have the
same length. {\tt Permut} works as expected. If the two lists are
equal, it concludes. Otherwise, if the lists have identical first
elements, it applies {\tt Permut} on the tail of the lists. Finally,
if the lists have different first elements, it puts the first element
of one of the lists (here the second one which appears in the {\tt
permut} predicate) at the end if that is possible, i.e., if the new
first element has been at this place previously. To verify that all
rotations have been done for a list, we use the length of the list as
an argument for {\tt Permut} and this length is decremented for each
rotation down to, but not including, 1 because for a list of length
$n$, we can make exactly $n-1$ rotations to generate at most $n$
distinct lists. Here, it must be noticed that we use the natural
numbers of {\Coq} for the rotation counter. On Figure~\ref{ltac}, we
can see that it is possible to use usual natural numbers but they are
only used as arguments for primitive tactics and they cannot be
handled, in particular, we cannot make computations with them. So, a
natural choice is to use {\Coq} data structures so that {\Coq} makes
the computations (reductions) by {\tt eval compute in} and we can get
the terms back by {\tt match}.
With {\tt PermutProve}, we can now prove lemmas as
% shown on Figure~\ref{permutlem}.
follows:
%\begin{figure}
%\begin{centerframe}
\begin{coq_example*}
Lemma permut_ex1 :
permut nat (1 :: 2 :: 3 :: nil) (3 :: 2 :: 1 :: nil).
Proof. PermutProve. Qed.
Lemma permut_ex2 :
permut nat
(0 :: 1 :: 2 :: 3 :: 4 :: 5 :: 6 :: 7 :: 8 :: 9 :: nil)
(0 :: 2 :: 4 :: 6 :: 8 :: 9 :: 7 :: 5 :: 3 :: 1 :: nil).
Proof. PermutProve. Qed.
\end{coq_example*}
%\end{centerframe}
%\caption{Examples of {\tt PermutProve} use}
%\label{permutlem}
%\end{figure}
\subsection{Deciding intuitionistic propositional logic}
\begin{figure}[b]
\begin{centerframe}
\begin{coq_example}
Ltac Axioms :=
match goal with
| |- True => trivial
| _:False |- _ => elimtype False; assumption
| _:?A |- ?A => auto
end.
\end{coq_example}
\end{centerframe}
\caption{Deciding intuitionistic propositions (1)}
\label{tautoltaca}
\end{figure}
\begin{figure}
\begin{centerframe}
\begin{coq_example}
Ltac DSimplif :=
repeat
(intros;
match goal with
| id:(~ _) |- _ => red in id
| id:(_ /\ _) |- _ =>
elim id; do 2 intro; clear id
| id:(_ \/ _) |- _ =>
elim id; intro; clear id
| id:(?A /\ ?B -> ?C) |- _ =>
cut (A -> B -> C);
[ intro | intros; apply id; split; assumption ]
| id:(?A \/ ?B -> ?C) |- _ =>
cut (B -> C);
[ cut (A -> C);
[ intros; clear id
| intro; apply id; left; assumption ]
| intro; apply id; right; assumption ]
| id0:(?A -> ?B),id1:?A |- _ =>
cut B; [ intro; clear id0 | apply id0; assumption ]
| |- (_ /\ _) => split
| |- (~ _) => red
end).
Ltac TautoProp :=
DSimplif;
Axioms ||
match goal with
| id:((?A -> ?B) -> ?C) |- _ =>
cut (B -> C);
[ intro; cut (A -> B);
[ intro; cut C;
[ intro; clear id | apply id; assumption ]
| clear id ]
| intro; apply id; intro; assumption ]; TautoProp
| id:(~ ?A -> ?B) |- _ =>
cut (False -> B);
[ intro; cut (A -> False);
[ intro; cut B;
[ intro; clear id | apply id; assumption ]
| clear id ]
| intro; apply id; red; intro; assumption ]; TautoProp
| |- (_ \/ _) => (left; TautoProp) || (right; TautoProp)
end.
\end{coq_example}
\end{centerframe}
\caption{Deciding intuitionistic propositions (2)}
\label{tautoltacb}
\end{figure}
The pattern matching on goals allows a complete and so a powerful
backtracking when returning tactic values. An interesting application
is the problem of deciding intuitionistic propositional logic.
Considering the contraction-free sequent calculi {\tt LJT*} of
Roy~Dyckhoff (\cite{Dyc92}), it is quite natural to code such a tactic
using the tactic language as shown on Figures~\ref{tautoltaca}
and~\ref{tautoltacb}. The tactic {\tt Axioms} tries to conclude using
usual axioms. The tactic {\tt DSimplif} applies all the reversible
rules of Dyckhoff's system. Finally, the tactic {\tt TautoProp} (the
main tactic to be called) simplifies with {\tt DSimplif}, tries to
conclude with {\tt Axioms} and tries several paths using the
backtracking rules (one of the four Dyckhoff's rules for the left
implication to get rid of the contraction and the right or).
For example, with {\tt TautoProp}, we can prove tautologies like
those:
% on Figure~\ref{tautolem}.
%\begin{figure}[tbp]
%\begin{centerframe}
\begin{coq_example*}
Lemma tauto_ex1 : forall A B:Prop, A /\ B -> A \/ B.
Proof. TautoProp. Qed.
Lemma tauto_ex2 :
forall A B:Prop, (~ ~ B -> B) -> (A -> B) -> ~ ~ A -> B.
Proof. TautoProp. Qed.
\end{coq_example*}
%\end{centerframe}
%\caption{Proofs of tautologies with {\tt TautoProp}}
%\label{tautolem}
%\end{figure}
\subsection{Deciding type isomorphisms}
A more tricky problem is to decide equalities between types and modulo
isomorphisms. Here, we choose to use the isomorphisms of the simply typed
$\lb{}$-calculus with Cartesian product and $unit$ type (see, for example,
\cite{RC95}). The axioms of this $\lb{}$-calculus are given by
table~\ref{isosax}.
\begin{figure}
\begin{centerframe}
\begin{coq_eval}
Reset Initial.
\end{coq_eval}
\begin{coq_example*}
Open Scope type_scope.
Section Iso_axioms.
Variables A B C : Set.
Axiom Com : A * B = B * A.
Axiom Ass : A * (B * C) = A * B * C.
Axiom Cur : (A * B -> C) = (A -> B -> C).
Axiom Dis : (A -> B * C) = (A -> B) * (A -> C).
Axiom P_unit : A * unit = A.
Axiom AR_unit : (A -> unit) = unit.
Axiom AL_unit : (unit -> A) = A.
Lemma Cons : B = C -> A * B = A * C.
Proof.
intro Heq; rewrite Heq; apply refl_equal.
Qed.
End Iso_axioms.
\end{coq_example*}
\end{centerframe}
\caption{Type isomorphism axioms}
\label{isosax}
\end{figure}
A more tricky problem is to decide equalities between types and modulo
isomorphisms. Here, we choose to use the isomorphisms of the simply typed
$\lb{}$-calculus with Cartesian product and $unit$ type (see, for example,
\cite{RC95}). The axioms of this $\lb{}$-calculus are given on
Figure~\ref{isosax}.
\begin{figure}[ht]
\begin{centerframe}
\begin{coq_example}
Ltac DSimplif trm :=
match trm with
| (?A * ?B * ?C) =>
rewrite <- (Ass A B C); try MainSimplif
| (?A * ?B -> ?C) =>
rewrite (Cur A B C); try MainSimplif
| (?A -> ?B * ?C) =>
rewrite (Dis A B C); try MainSimplif
| (?A * unit) =>
rewrite (P_unit A); try MainSimplif
| (unit * ?B) =>
rewrite (Com unit B); try MainSimplif
| (?A -> unit) =>
rewrite (AR_unit A); try MainSimplif
| (unit -> ?B) =>
rewrite (AL_unit B); try MainSimplif
| (?A * ?B) =>
(DSimplif A; try MainSimplif) || (DSimplif B; try MainSimplif)
| (?A -> ?B) =>
(DSimplif A; try MainSimplif) || (DSimplif B; try MainSimplif)
end
with MainSimplif :=
match goal with
| |- (?A = ?B) => try DSimplif A; try DSimplif B
end.
Ltac Length trm :=
match trm with
| (_ * ?B) => let succ := Length B in constr:(S succ)
| _ => constr:1
end.
Ltac assoc := repeat rewrite <- Ass.
\end{coq_example}
\end{centerframe}
\caption{Type isomorphism tactic (1)}
\label{isosltac1}
\end{figure}
\begin{figure}[ht]
\begin{centerframe}
\begin{coq_example}
Ltac DoCompare n :=
match goal with
| [ |- (?A = ?A) ] => apply refl_equal
| [ |- (?A * ?B = ?A * ?C) ] =>
apply Cons; let newn := Length B in
DoCompare newn
| [ |- (?A * ?B = ?C) ] =>
match eval compute in n with
| 1 => fail
| _ =>
pattern (A * B) at 1; rewrite Com; assoc; DoCompare (pred n)
end
end.
Ltac CompareStruct :=
match goal with
| [ |- (?A = ?B) ] =>
let l1 := Length A
with l2 := Length B in
match eval compute in (l1 = l2) with
| (?n = ?n) => DoCompare n
end
end.
Ltac IsoProve := MainSimplif; CompareStruct.
\end{coq_example}
\end{centerframe}
\caption{Type isomorphism tactic (2)}
\label{isosltac2}
\end{figure}
The tactic to judge equalities modulo this axiomatization can be written as
shown on Figures~\ref{isosltac1} and~\ref{isosltac2}. The algorithm is quite
simple. Types are reduced using axioms that can be oriented (this done by {\tt
MainSimplif}). The normal forms are sequences of Cartesian
products without Cartesian product in the left component. These normal forms
are then compared modulo permutation of the components (this is done by {\tt
CompareStruct}). The main tactic to be called and realizing this algorithm is
{\tt IsoProve}.
% Figure~\ref{isoslem} gives
Here are examples of what can be solved by {\tt IsoProve}.
%\begin{figure}[ht]
%\begin{centerframe}
\begin{coq_example*}
Lemma isos_ex1 :
forall A B:Set, A * unit * B = B * (unit * A).
Proof.
intros; IsoProve.
Qed.
Lemma isos_ex2 :
forall A B C:Set,
(A * unit -> B * (C * unit)) =
(A * unit -> (C -> unit) * C) * (unit -> A -> B).
Proof.
intros; IsoProve.
Qed.
\end{coq_example*}
%\end{centerframe}
%\caption{Type equalities solved by {\tt IsoProve}}
%\label{isoslem}
%\end{figure}
%%% Local Variables:
%%% mode: latex
%%% TeX-master: "Reference-Manual"
%%% End:
|