1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
|
(* ASSUMPTIONS:
- the 1-st command line argument (working directory):
- designates an existing readable directory
- which contains *.time and *.perf files produced by bench.sh script
- the 2-nd command line argument (number of iterations):
- is a positive integer
- the 3-rd command line argument (minimal user time):
- is a positive floating point number
- the 4-th command line argument determines the name of the column according to which the resulting table will be sorted.
Valid values are:
- package_name
- user_time_pdiff
- the rest of the command line-arguments
- are names of benchamarked Coq OPAM packages for which bench.sh script generated *.time and *.perf files
*)
open Printf
;;
let _ = Printexc.record_backtrace true
;;
type ('a,'b) pkg_timings = {
user_time : 'a;
num_instr : 'b;
num_cycles : 'b;
num_mem : 'b;
num_faults : 'b;
}
;;
let reduce_pkg_timings (m_f : 'a list -> 'c) (m_a : 'b list -> 'd) (t : ('a,'b) pkg_timings list) : ('c,'d) pkg_timings =
{ user_time = m_f @@ List.map (fun x -> x.user_time) t
; num_instr = m_a @@ List.map (fun x -> x.num_instr) t
; num_cycles = m_a @@ List.map (fun x -> x.num_cycles) t
; num_mem = m_a @@ List.map (fun x -> x.num_mem) t
; num_faults = m_a @@ List.map (fun x -> x.num_faults) t
}
;;
(******************************************************************************)
(* BEGIN Copied from batteries, to remove *)
(******************************************************************************)
let run_and_read cmd =
(* This code is before the open of BatInnerIO
to avoid using batteries' wrapped IOs *)
let string_of_file fn =
let buff_size = 1024 in
let buff = Buffer.create buff_size in
let ic = open_in fn in
let line_buff = Bytes.create buff_size in
begin
let was_read = ref (input ic line_buff 0 buff_size) in
while !was_read <> 0 do
Buffer.add_subbytes buff line_buff 0 !was_read;
was_read := input ic line_buff 0 buff_size;
done;
close_in ic;
end;
Buffer.contents buff
in
let tmp_fn = Filename.temp_file "" "" in
let cmd_to_run = cmd ^ " > " ^ tmp_fn in
let status = Unix.system cmd_to_run in
let output = string_of_file tmp_fn in
Unix.unlink tmp_fn;
(status, output)
;;
let ( %> ) f g x = g (f x)
let run = run_and_read %> snd
module Float = struct
let nan = nan
end
module List = struct
include List
let rec init_tailrec_aux acc i n f =
if i >= n then acc
else init_tailrec_aux (f i :: acc) (i+1) n f
let rec init_aux i n f =
if i >= n then []
else
let r = f i in
r :: init_aux (i+1) n f
let rev_init_threshold =
match Sys.backend_type with
| Sys.Native | Sys.Bytecode -> 10_000
(* We don't known the size of the stack, better be safe and assume it's small. *)
| Sys.Other _ -> 50
let init len f =
if len < 0 then invalid_arg "List.init" else
if len > rev_init_threshold then rev (init_tailrec_aux [] 0 len f)
else init_aux 0 len f
let rec drop n = function
| _ :: l when n > 0 -> drop (n-1) l
| l -> l
let reduce f = function
| [] ->
invalid_arg "List.reduce: Empty List"
| h :: t ->
fold_left f h t
let min l = reduce min l
let max l = reduce max l
end
;;
module String = struct
include String
let rchop ?(n = 1) s =
if n < 0 then
invalid_arg "String.rchop: number of characters to chop is negative"
else
let slen = length s in
if slen <= n then "" else sub s 0 (slen - n)
end
;;
(******************************************************************************)
(* END Copied from batteries, to remove *)
(******************************************************************************)
let add_timings a b =
{ user_time = a.user_time +. b.user_time;
num_instr = a.num_instr + b.num_instr;
num_cycles = a.num_cycles + b.num_cycles;
num_mem = a.num_mem + b.num_mem;
num_faults = a.num_faults + b.num_faults;
}
let mk_pkg_timings work_dir pkg_name suffix iteration =
let command_prefix = "cat " ^ work_dir ^ "/" ^ pkg_name ^ suffix ^ string_of_int iteration in
let ncoms = command_prefix ^ ".ncoms" |> run |> String.rchop ~n:1 |> int_of_string in
let timings = List.init ncoms (fun ncom ->
let command_prefix = command_prefix ^ "." ^ string_of_int (ncom+1) in
let time_command_output = command_prefix ^ ".time" |> run |> String.rchop ~n:1 |> String.split_on_char ' ' in
let nth x i = List.nth i x in
{ user_time = time_command_output |> nth 0 |> float_of_string
(* Perf can indeed be not supported in some systems, so we must fail gracefully *)
; num_instr =
(try command_prefix ^ ".perf | grep instructions:u | awk '{print $1}' | sed 's/,//g'" |>
run |> String.rchop ~n:1 |> int_of_string
with Failure _ -> 0)
; num_cycles =
(try command_prefix ^ ".perf | grep cycles:u | awk '{print $1}' | sed 's/,//g'" |>
run |> String.rchop ~n:1 |> int_of_string
with Failure _ -> 0)
; num_mem = time_command_output |> nth 1 |> int_of_string
; num_faults = time_command_output |> nth 2 |> int_of_string
})
in
match timings with
| [] -> assert false
| timing :: rest -> List.fold_left add_timings timing rest
;;
(* process command line paramters *)
assert (Array.length Sys.argv > 5);
let work_dir = Sys.argv.(1) in
let num_of_iterations = int_of_string Sys.argv.(2) in
let new_coq_version = Sys.argv.(3) in
let old_coq_version = Sys.argv.(4) in
let minimal_user_time = float_of_string Sys.argv.(5) in
let sorting_column = Sys.argv.(6) in
let coq_opam_packages = Sys.argv |> Array.to_list |> List.drop 7 in
(* ASSUMPTIONS:
"working_dir" contains all the files produced by the following command:
two_points_on_the_same_branch.sh $working_directory $coq_repository $coq_branch[:$new:$old] $num_of_iterations coq_opam_package_1 coq_opam_package_2 ... coq_opam_package_N
-sf
*)
(* Run a given bash command;
wait until it termines;
check if its exit status is 0;
return its whole stdout as a string. *)
let proportional_difference_of_integers new_value old_value =
if old_value = 0
then Float.nan
else float_of_int (new_value - old_value) /. float_of_int old_value *. 100.0
in
(* parse the *.time and *.perf files *)
coq_opam_packages
|> List.map
(fun package_name ->
package_name,(* compilation_results_for_NEW : (float * int * int * int) list *)
List.init num_of_iterations succ |> List.map (mk_pkg_timings work_dir package_name ".NEW."),
List.init num_of_iterations succ |> List.map (mk_pkg_timings work_dir package_name ".OLD."))
(* from the list of measured values, select just the minimal ones *)
|> List.map
(fun ((package_name : string),
(new_measurements : (float, int) pkg_timings list),
(old_measurements : (float, int) pkg_timings list)) ->
let f_min : float list -> float = List.min in
let i_min : int list -> int = List.min in
package_name,
reduce_pkg_timings f_min i_min new_measurements,
reduce_pkg_timings f_min i_min old_measurements
)
(* compute the "proportional differences in % of the NEW measurement and the OLD measurement" of all measured values *)
|> List.map
(fun (package_name, new_t, old_t) ->
package_name, new_t, old_t,
{ user_time = (new_t.user_time -. old_t.user_time) /. old_t.user_time *. 100.0
; num_instr = proportional_difference_of_integers new_t.num_instr old_t.num_instr
; num_cycles = proportional_difference_of_integers new_t.num_cycles old_t.num_cycles
; num_mem = proportional_difference_of_integers new_t.num_mem old_t.num_mem
; num_faults = proportional_difference_of_integers new_t.num_faults old_t.num_faults
})
(* sort the table with results *)
|> List.sort
(match sorting_column with
| "user_time_pdiff" ->
fun (_,_,_,perf1) (_,_,_,perf2) ->
compare perf1.user_time perf2.user_time
| "package_name" ->
fun (n1,_,_,_) (n2,_,_,_) -> compare n1 n2
| _ ->
assert false
)
(* Keep only measurements that took at least "minimal_user_time" (in seconds). *)
|> List.filter
(fun (_, new_t, old_t, _) ->
minimal_user_time <= new_t.user_time && minimal_user_time <= old_t.user_time)
(* Below we take the measurements and format them to stdout. *)
|> List.map begin fun (package_name, new_t, old_t, perc) ->
let precision = 2 in
let prf f = Printf.sprintf "%.*f" precision f in
let pri n = Printf.sprintf "%d" n in
[
[ package_name ];
[ prf new_t.user_time; prf old_t.user_time; prf perc.user_time ];
[ pri new_t.num_cycles; pri old_t.num_cycles; prf perc.num_cycles ];
[ pri new_t.num_instr; pri old_t.num_instr; prf perc.num_instr ];
[ pri new_t.num_mem; pri old_t.num_mem; prf perc.num_mem ];
[ pri new_t.num_faults; pri old_t.num_faults; prf perc.num_faults ];
]
end
|> fun measurements ->
let headers = [
"";
"user time [s]";
"CPU cycles";
"CPU instructions";
"max resident mem [KB]";
"mem faults";
] in
let descr = ["NEW"; "OLD"; "PDIFF"] in
let top = [ [ "package_name" ]; descr; descr; descr; descr; descr ] in
printf "%s%!" (Table.print headers top measurements ())
;
(* ejgallego: disable this as it is very verbose and brings up little info in the log. *)
if false then begin
printf "
PDIFF = proportional difference between measurements done for the NEW and the OLD Coq version
= (NEW_measurement - OLD_measurement) / OLD_measurement * 100%%
NEW = %s
OLD = %s
Columns:
1. user time [s]
Total number of CPU-seconds that the process used directly (in user mode), in seconds.
(In other words, \"%%U\" quantity provided by the \"/usr/bin/time\" command.)
2. CPU cycles
Total number of CPU-cycles that the process used directly (in user mode).
(In other words, \"cycles:u\" quantity provided by the \"/usr/bin/perf\" command.)
3. CPU instructions
Total number of CPU-instructions that the process used directly (in user mode).
(In other words, \"instructions:u\" quantity provided by the \"/usr/bin/perf\" command.)
4. max resident mem [KB]
Maximum resident set size of the process during its lifetime, in Kilobytes.
(In other words, \"%%M\" quantity provided by the \"/usr/bin/time\" command.)
5. mem faults
Number of major, or I/O-requiring, page faults that occurred while the process was running.
These are faults where the page has actually migrated out of primary memory.
(In other words, \"%%F\" quantity provided by the \"/usr/bin/time\" command.)
" new_coq_version old_coq_version;
end
|