File: implicit-coercions.rst

package info (click to toggle)
coq-doc 8.16.1-1
  • links: PTS, VCS
  • area: non-free
  • in suites: bookworm
  • size: 42,788 kB
  • sloc: ml: 219,673; sh: 4,035; python: 3,372; ansic: 2,529; makefile: 728; lisp: 279; javascript: 87; xml: 24; sed: 2
file content (511 lines) | stat: -rw-r--r-- 17,487 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
.. _coercions:

Implicit Coercions
====================

:Author: Amokrane Saïbi

General Presentation
---------------------

This section describes the inheritance mechanism of Coq. In Coq with
inheritance, we are not interested in adding any expressive power to
our theory, but only convenience. Given a term, possibly not typable,
we are interested in the problem of determining if it can be well
typed modulo insertion of appropriate coercions. We allow to write:

 * :g:`f a` where :g:`f:(forall x:A,B)` and :g:`a:A'` when ``A'`` can
   be seen in some sense as a subtype of ``A``.
 * :g:`x:A` when ``A`` is not a type, but can be seen in
   a certain sense as a type: set, group, category etc.
 * :g:`f a` when ``f`` is not a function, but can be seen in a certain sense
   as a function: bijection, functor, any structure morphism etc.


Classes
-------

A class with :math:`n` parameters is any defined name with a type
:n:`forall (@ident__1 : @type__1)..(@ident__n:@type__n), @sort`.  Thus a class with
parameters is considered as a single class and not as a family of
classes.  An object of a class is any term of type :n:`@class @term__1 .. @term__n`.
In addition to these user-defined classes, we have two built-in classes:


  * ``Sortclass``, the class of sorts; its objects are the terms whose type is a
    sort (e.g. :g:`Prop` or :g:`Type`).
  * ``Funclass``, the class of functions; its objects are all the terms with a functional
    type, i.e. of form :g:`forall x:A,B`.

Formally, the syntax of classes is defined as:

   .. insertprodn class class

   .. prodn::
      class ::= Funclass
      | Sortclass
      | @reference



Coercions
---------

A name ``f`` can be declared as a coercion between a source user-defined class
``C`` with :math:`n` parameters and a target class ``D`` if one of these
conditions holds:

 * ``D`` is a user-defined class, then the type of ``f`` must have the form
   :g:`forall (x₁:A₁)..(xₖ:Aₖ)(y:C v₁..vₙ), D u₁..uₘ` where :math:`m`
   is the number of parameters of ``D``.
 * ``D`` is ``Funclass``, then the type of ``f`` must have the form
   :g:`forall (x₁:A₁)..(xₖ:Aₖ)(y:C v₁..vₙ)(x:A), B`.
 * ``D`` is ``Sortclass``, then the type of ``f`` must have the form
   :g:`forall (x₁:A₁)..(xₖ:Aₖ)(y:C v₁..vₙ), s` with ``s`` a sort.

We then write :g:`f : C >-> D`.

.. _ambiguous-paths:

When you declare a new coercion (e.g. with :cmd:`Coercion`), new coercion
paths with the same classes as existing ones are ignored. Coq will generate
a warning when the two paths may be non convertible. When the :g:`x₁..xₖ` are exactly
the :g:`v₁..vₙ` (in the same order), the coercion is said to satisfy
the :gdef:`uniform inheritance condition`. When possible, we recommend
using coercions that satisfy this condition. This guarantees that
no spurious warning will be generated.

.. note:: The built-in class ``Sortclass`` can be used as a source class, but
          the built-in class ``Funclass`` cannot.

To coerce an object :g:`t:C t₁..tₙ` of ``C`` towards ``D``, we have to
apply the coercion ``f`` to it; the obtained term :g:`f _.._ t` is
then an object of ``D``.

Reversible Coercions
--------------------

When a term cannot be coerced (directly) to its expected type, Coq tries to
use a :gdef:`reversible coercion` (see the :attr:`reversible` attribute). Intuitively,
Coq synthesizes a new term of the right type that can be coerced
to the original one. The new term is obtained by reversing the coercion, that
is guessing its input given the output.

More precisely, in order to coerce a term :g:`a : A` to type :g:`B`, Coq
finds a reversible coercion :g:`f : B >-> A`, then synthesizes some :g:`?x : B`
such that :g:`f ?x = a` (typically through :ref:`canonicalstructures` or
:ref:`typeclasses`) and finally replaces :g:`a` with the value of :g:`?x`.

If Coq doesn't find a reversible coercion :g:`f : B >-> A`, then it
looks for a coercion class :g:`C` equipped with an incoming reversible coercion
:g:`g : B >-> C` and a coercion :g:`h : A >-> C` (not necessarily reversible),
then synthesizes some :g:`?x : B` such that :g:`g ?x = h a`, and finally
replaces :g:`a` with the value of :g:`?x`.
If there's another class :g:`D` with a coercion from :g:`C` to :g:`D` and
incoming coercions from :g:`A` and :g:`B`, Coq tries :g:`C` before :g:`D`.
This ordering is well defined only if the coercion graph happens to be a semi
lattice.  The intuition behind this ordering is that since coercions forget
information, :g:`D` has less information that :g:`C`, and hence
inferring :g:`?x : B` from :g:`h a : D` would be harder.

See the :ref:`example below <example-reversible-coercion>`.

Identity Coercions
-------------------

To make coercions work for both a named class and for
``Sortclass`` or ``Funclass``, use the :cmd:`Identity Coercion` command.
There is an example :ref:`here <example-identity-coercion>`.

Inheritance Graph
------------------

Coercions form an inheritance graph with classes as nodes.  We call
*coercion path* an ordered list of coercions between two nodes of
the graph.  A class ``C`` is said to be a subclass of ``D`` if there is a
coercion path in the graph from ``C`` to ``D``; we also say that ``C``
inherits from ``D``. Our mechanism supports multiple inheritance since a
class may inherit from several classes, contrary to simple inheritance
where a class inherits from at most one class.  However there must be
at most one path between two classes. If this is not the case, only
the *oldest* one is valid and the others are ignored. So the order
of declaration of coercions is important.

We extend notations for coercions to coercion paths. For instance
:g:`[f₁;..;fₖ] : C >-> D` is the coercion path composed
by the coercions ``f₁..fₖ``.  The application of a coercion path to a
term consists of the successive application of its coercions.


Declaring Coercions
-------------------------

.. cmd:: Coercion @reference {? : @class >-> @class }
         Coercion @ident_decl @def_body

  The first form declares the construction denoted by :token:`reference` as a coercion between
  the two given classes.  The second form defines :token:`ident_decl`
  just like :cmd:`Definition` :n:`@ident_decl @def_body`
  and then declares :token:`ident_decl` as a coercion between it source and its target.
  Both forms support the :attr:`local` attribute, which makes the coercion local to the current section.

  :n:`{? : @class >-> @class }`
    The source and target classes of the coercion.
    If unspecified, :n:`@reference` must already be a coercion, which
    enables modifying the :attr:`reversible` attribute of :n:`@reference`.
    See the :ref:`example <example-reversible-coercion-attribute>` below.

  .. attr:: reversible{? = {| yes | no } }
     :name: reversible

     This :term:`attribute` allows the coercion to be used as a
     :term:`reversible coercion`. By default coercions are not reversible except for
     :cmd:`Record` fields specified using :g:`:>`.

  .. attr:: nonuniform

     Silence the non uniform inheritance warning.

  .. exn:: @qualid not declared.
     :undocumented:

  .. exn:: @qualid is already a coercion.
     :undocumented:

  .. exn:: Funclass cannot be a source class.
     :undocumented:

  .. exn:: @qualid is not a function.
     :undocumented:

  .. exn:: Cannot find the source class of @qualid.
     :undocumented:

  .. exn:: Cannot recognize @class as a source class of @qualid.
     :undocumented:

  .. exn:: Found target class ... instead of ...
     :undocumented:

  .. warn:: @qualid does not respect the uniform inheritance condition.

     The :ref:`test for ambiguous coercion paths <ambiguous-paths>`
     may yield false positives involving the coercion :token:`qualid`.
     Use the :attr:`nonuniform` attribute to silence this warning.

  .. warn:: New coercion path ... is ambiguous with existing ...

     The check for :ref:`ambiguous paths <ambiguous-paths>` failed.
     The paths for which this check fails are displayed by a warning
     in the form :g:`[f₁;..;fₙ] : C >-> D`.

     The convertibility checking procedure for coercion paths is complete for
     paths consisting of coercions satisfying the :term:`uniform inheritance condition`,
     but some coercion paths could be reported as ambiguous even if they are
     convertible with existing ones when they have coercions that don't satisfy
     this condition.

  .. warn:: ... is not definitionally an identity function.

     If a coercion path has the same source and target class, that is said to be
     circular. When a new circular coercion path is not convertible with the
     identity function, it will be reported as ambiguous.

Some objects can be declared as coercions when they are defined.
This applies to :ref:`assumptions<gallina-assumptions>` and
constructors of :ref:`inductive types and record fields<gallina-inductive-definitions>`.
Use :n:`:>` instead of :n:`:` before the
:n:`@type` of the assumption to do so.  See :n:`@of_type`.


.. cmd:: Identity Coercion @ident : @class >-> @class

   If ``C`` is the source `class` and ``D`` the destination, we check
   that ``C`` is a :term:`constant` with a :term:`body` of the form
   :g:`fun (x₁:T₁)..(xₙ:Tₙ) => D t₁..tₘ` where `m` is the
   number of parameters of ``D``.  Then we define an identity
   function with type :g:`forall (x₁:T₁)..(xₙ:Tₙ)(y:C x₁..xₙ),D t₁..tₘ`,
   and we declare it as an identity coercion between ``C`` and ``D``.
   See below for an :ref:`example <example-identity-coercion>`.

   This command supports the :attr:`local` attribute, which makes the coercion local to the current section.

   .. exn:: @class must be a transparent constant.
      :undocumented:

   .. cmd:: SubClass @ident_decl @def_body

      If :n:`@type` is a class :n:`@ident'` applied to some arguments then
      :n:`@ident` is defined and an identity coercion of name
      :n:`Id_@ident_@ident'` is
      declared. Otherwise said, this is an abbreviation for

      :n:`Definition @ident := @type.`
      :n:`Identity Coercion Id_@ident_@ident' : @ident >-> @ident'`.

      This command supports the :attr:`local` attribute, which makes the coercion local to the current section.


Displaying Available Coercions
-------------------------------

.. cmd:: Print Classes

   Print the list of declared classes in the current context.

.. cmd:: Print Coercions

   Print the list of declared coercions in the current context.

.. cmd:: Print Graph

   Print the list of valid coercion paths in the current context.

.. cmd:: Print Coercion Paths @class @class

   Print the list of valid coercion paths between the two given classes.

Activating the Printing of Coercions
-------------------------------------

.. flag:: Printing Coercions

   When on, this :term:`flag` forces all the coercions to be printed.
   By default, coercions are not printed.

.. table:: Printing Coercion @qualid

   This :term:`table` specifies a set of qualids for which coercions are always displayed.  Use the
   :cmd:`Add` and :cmd:`Remove` commands to update the set of qualids.

.. _coercions-classes-as-records:

Classes as Records
------------------

.. index:: :> (coercion)

*Structures with Inheritance* may be defined using the :cmd:`Record` command.

Use `>` before the record name to declare the constructor name as
a coercion from the class of the last field type to the record name.
See :token:`record_definition`.

Use `:>` in the field type to declare the field as a coercion from the
record name to the class of the field type. For these coercions, the
:attr:`reversible` attribute defaults to :g:`yes`. See :token:`of_type`.

Coercions and Sections
----------------------

The inheritance mechanism is compatible with the section
mechanism. The global classes and coercions defined inside a section
are redefined after its closing, using their new value and new
type. The classes and coercions which are local to the section are
simply forgotten.
Coercions with a local source class or a local target class
are also forgotten.

Coercions and Modules
---------------------

The coercions present in a module are activated only when the module is
explicitly imported.

Examples
--------

There are three situations:

.. example:: Coercion at function application

  :g:`f a` is ill-typed where :g:`f:forall x:A,B` and :g:`a:A'`. If there is a
  coercion path between ``A'`` and ``A``, then :g:`f a` is transformed into
  :g:`f a'` where ``a'`` is the result of the application of this
  coercion path to ``a``.

  We first give an example of coercion between atomic inductive types

  .. coqtop:: all

    Definition bool_in_nat (b:bool) := if b then 0 else 1.
    Coercion bool_in_nat : bool >-> nat.
    Check (0 = true).
    Set Printing Coercions.
    Check (0 = true).
    Unset Printing Coercions.

  .. warning::

    Note that ``Check (true = O)`` would fail. This is "normal" behavior of
    coercions. To validate ``true=O``, the coercion is searched from
    ``nat`` to ``bool``. There is none.

  We give an example of coercion between classes with parameters.

  .. coqtop:: all

    Parameters (C : nat -> Set) (D : nat -> bool -> Set) (E : bool -> Set).
    Parameter f : forall n:nat, C n -> D (S n) true.
    Coercion f : C >-> D.
    Parameter g : forall (n:nat) (b:bool), D n b -> E b.
    Coercion g : D >-> E.
    Parameter c : C 0.
    Parameter T : E true -> nat.
    Check (T c).
    Set Printing Coercions.
    Check (T c).
    Unset Printing Coercions.

  In the case of functional arguments, we use the monotonic rule of
  sub-typing. To coerce :g:`t : forall x : A, B` towards
  :g:`forall x : A', B'`, we have to coerce ``A'`` towards ``A`` and ``B``
  towards ``B'``. An example is given below:

  .. coqtop:: all

    Parameters (A B : Set) (h : A -> B).
    Coercion h : A >-> B.
    Parameter U : (A -> E true) -> nat.
    Parameter t : B -> C 0.
    Check (U t).
    Set Printing Coercions.
    Check (U t).
    Unset Printing Coercions.

  Remark the changes in the result following the modification of the
  previous example.

  .. coqtop:: all

    Parameter U' : (C 0 -> B) -> nat.
    Parameter t' : E true -> A.
    Check (U' t').
    Set Printing Coercions.
    Check (U' t').
    Unset Printing Coercions.

.. example:: Coercion to a type

  An assumption ``x:A`` when ``A`` is not a type, is ill-typed.  It is
  replaced by ``x:A'`` where ``A'`` is the result of the application to
  ``A`` of the coercion path between the class of ``A`` and
  ``Sortclass`` if it exists.  This case occurs in the abstraction
  :g:`fun x:A => t`, universal quantification :g:`forall x:A,B`, global
  variables and parameters of (co)inductive definitions and
  functions. In :g:`forall x:A,B`, such a coercion path may also be applied
  to ``B`` if necessary.

  .. coqtop:: all

    Parameter Graph : Type.
    Parameter Node : Graph -> Type.
    Coercion Node : Graph >-> Sortclass.
    Parameter G : Graph.
    Parameter Arrows : G -> G -> Type.
    Check Arrows.
    Parameter fg : G -> G.
    Check fg.
    Set Printing Coercions.
    Check fg.
    Unset Printing Coercions.

.. example:: Coercion to a function

  ``f a`` is ill-typed because ``f:A`` is not a function. The term
  ``f`` is replaced by the term obtained by applying to ``f`` the
  coercion path between ``A`` and ``Funclass`` if it exists.

  .. coqtop:: all

    Parameter bij : Set -> Set -> Set.
    Parameter ap : forall A B:Set, bij A B -> A -> B.
    Coercion ap : bij >-> Funclass.
    Parameter b : bij nat nat.
    Check (b 0).
    Set Printing Coercions.
    Check (b 0).
    Unset Printing Coercions.

.. _example-reversible-coercion:

.. example:: Reversible coercions

  Notice the :n:`:>` on `ssort` making it a :term:`reversible coercion`.

  .. coqtop:: in

    Structure S := {
      ssort :> Type;
      sstuff : ssort;
    }.
    Definition test (s : S) := sstuff s.
    Canonical Structure S_nat := {| ssort := nat; sstuff := 0; |}.

  .. coqtop:: all

    Check test (nat : Type).

.. _example-reversible-coercion-attribute:

.. example:: Reversible coercions using the :attr:`reversible` attribute

  Notice there is no `:>` on `ssort'` and the added :cmd:`Coercion` compared
  to the previous example.

  .. coqtop:: in

    Structure S' := {
      ssort' : Type;
      sstuff' : ssort';
    }.
    Coercion ssort' : S' >-> Sortclass.
    Definition test' (s : S') := sstuff' s.
    Canonical Structure S_nat' := {| ssort' := nat; sstuff' := 0; |}.

  Since there's no `:>` on the definition of `ssort'`, the :attr:`reversible` attribute is not set:

  .. coqtop:: all

    Fail Check test' (nat : Type).

  The attribute can be set after declaring the coercion:

  .. coqtop:: all

    #[reversible] Coercion ssort'.
    Check test' (nat : Type).

.. _example-identity-coercion:

.. example:: Identity coercions.

  .. coqtop:: in

    Definition fct := nat -> nat.
    Parameter incr_fct : Set.
    Parameter fct_of_incr_fct : incr_fct -> fct.

  .. coqtop:: all

    Fail Coercion fct_of_incr_fct : incr_fct >-> Funclass.

  .. coqtop:: in

    Coercion fct_of_incr_fct : incr_fct >-> fct.
    Parameter f' : incr_fct.

  .. coqtop:: all

    Check f' : fct.
    Fail Check f' 0.
    Identity Coercion Id_fct_Funclass : fct >-> Funclass.
    Check f' 0.

.. example:: Inheritance Graph

  Let us see the resulting graph after all these examples.

  .. coqtop:: all

    Print Graph.