1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
|
.. _micromega:
Micromega: solvers for arithmetic goals over ordered rings
==================================================================
:Authors: Frédéric Besson and Evgeny Makarov
Short description of the tactics
--------------------------------
The Psatz module (``Require Import Psatz``) gives access to several
tactics for solving arithmetic goals over :math:`\mathbb{Q}`,
:math:`\mathbb{R}`, and :math:`\mathbb{Z}` but also :g:`nat` and
:g:`N`. It is also possible to get only the tactics for integers by
``Require Import Lia``, only for rationals by ``Require Import Lqa``
or only for reals by ``Require Import Lra``.
+ :tacn:`lia` is a decision procedure for linear integer arithmetic;
+ :tacn:`nia` is an incomplete proof procedure for integer non-linear
arithmetic;
+ :tacn:`lra` is a decision procedure for linear (real or rational) arithmetic;
+ :tacn:`nra` is an incomplete proof procedure for non-linear (real or
rational) arithmetic;
+ :tacn:`psatz` ``D n``
is an incomplete proof procedure for non-linear arithmetic.
``D`` is :math:`\mathbb{Z}` or :math:`\mathbb{Q}` or :math:`\mathbb{R}` and
``n`` is an optional integer limiting the proof search depth.
It is based on John Harrison’s HOL Light
driver to the external prover CSDP [#csdp]_.
Note that the CSDP driver
generates a *proof cache* which makes it possible to rerun scripts
even without CSDP.
.. opt:: Dump Arith
This :term:`option` (unset by default) may be set to a file path where
debug info will be written.
.. cmd:: Show Lia Profile
This command prints some statistics about the amount of pivoting
operations needed by :tacn:`lia` and may be useful to detect
inefficiencies.
.. flag:: Lia Cache
This :term:`flag` (set by default) instructs :tacn:`lia` to cache its results in the file `.lia.cache`
.. flag:: Nia Cache
This :term:`flag` (set by default) instructs :tacn:`nia` to cache its results in the file `.nia.cache`
.. flag:: Nra Cache
This :term:`flag` (set by default) instructs :tacn:`nra` to cache its results in the file `.nra.cache`
The tactics solve propositional formulas parameterized by atomic
arithmetic expressions interpreted over a domain :math:`D \in \{\mathbb{Z},\mathbb{Q},\mathbb{R}\}`.
The syntax for formulas is:
.. note the following is not an insertprodn
.. prodn::
F ::= {| @A | P | True | False | @F /\ @F | @F \/ @F | @F <-> @F | @F -> @F | ~ @F | @F = @F }
A ::= {| @p = @p | @p > @p | @p < @p | @p >= @p | @p <= @p }
p ::= {| c | x | −@p | @p − @p | @p + @p | @p * @p | @p ^ n }
where
- :token:`F` is interpreted over either `Prop` or `bool`
- :n:`P` is an arbitrary proposition
- :n:`c` is a numeric constant of :math:`D`
- :n:`x` :math:`\in D` is a numeric variable
- :n:`−`, :n:`+` and :n:`*` are respectively subtraction, addition and product
- :n:`p ^ n` is exponentiation by a natural integer constant :math:`n`
When :math:`F` is interpreted over `bool`, the boolean operators are
`&&`, `||`, `Bool.eqb`, `Bool.implb`, `Bool.negb` and the comparisons
in :math:`A` are also interpreted over the booleans (e.g., for
:math:`\mathbb{Z}`, we have `Z.eqb`, `Z.gtb`, `Z.ltb`, `Z.geb`,
`Z.leb`).
For :math:`\mathbb{Q}`, the equality of rationals ``==`` is used rather than
Leibniz equality ``=``.
For :math:`\mathbb{Z}` (resp. :math:`\mathbb{Q}`), :n:`c` ranges over integer constants (resp. rational
constants). For :math:`\mathbb{R}`, the tactic recognizes as real constants the
following expressions:
::
c ::= R0 | R1 | Rmult c c | Rplus c c | Rminus c c | IZR z | Q2R q | Rdiv c c | Rinv c
where `z` is a constant in :math:`\mathbb{Z}` and `q` is a constant in :math:`\mathbb{Q}`.
This includes :n:`@number` written using the decimal notation, *i.e.*, ``c%R``.
*Positivstellensatz* refutations
--------------------------------
The name `psatz` is an abbreviation for *positivstellensatz* – literally
"positivity theorem" – which generalizes Hilbert’s *nullstellensatz*. It
relies on the notion of Cone. Given a (finite) set of polynomials :math:`S`,
:math:`\mathit{Cone}(S)` is inductively defined as the smallest set of polynomials
closed under the following rules:
.. math::
\begin{array}{l}
\dfrac{p \in S}{p \in \mathit{Cone}(S)} \quad
\dfrac{}{p^2 \in \mathit{Cone}(S)} \quad
\dfrac{p_1 \in \mathit{Cone}(S) \quad p_2 \in \mathit{Cone}(S) \quad
\Join \in \{+,*\}} {p_1 \Join p_2 \in \mathit{Cone}(S)}\\
\end{array}
The following theorem provides a proof principle for checking that a
set of polynomial inequalities does not have solutions [#fnpsatz]_.
.. _psatz_thm:
.. thm:: Psatz
Let :math:`S` be a set of polynomials.
If :math:`-1` belongs to :math:`\mathit{Cone}(S)`, then the conjunction
:math:`\bigwedge_{p \in S} p\ge 0` is unsatisfiable.
*Proof:* Let's assume that :math:`\bigwedge_{p \in S} p\ge 0`
is satisfiable, meaning there exists :math:`x` such that
for all :math:`p \in S` , we have :math:`p(x) \ge 0`. Since the cone building
rules preserve non negativity, any polynomial in :math:`\mathit{Cone}(S)`
is non negative in :math:`x`. Thus :math:`-1 \in \mathit{Cone}(S)` is non
negative, which is absurd. :math:`\square`
A proof based on this theorem is called a *positivstellensatz*
refutation. The tactics work as follows. Formulas are normalized into
conjunctive normal form :math:`\bigwedge_i C_i` where :math:`C_i` has the
general form :math:`(\bigwedge_{j\in S_i} p_j \Join 0) \to \mathit{False}` and
:math:`\Join \in \{>,\ge,=\}` for :math:`D\in \{\mathbb{Q},\mathbb{R}\}` and
:math:`\Join \in \{\ge, =\}` for :math:`\mathbb{Z}`.
For each conjunct :math:`C_i`, the tactic calls an oracle which searches for
:math:`-1` within the cone. Upon success, the oracle returns a
:gdef:`cone expression` that is normalized by the :tacn:`ring` tactic
(see :ref:`theringandfieldtacticfamilies`) and checked to be :math:`-1`.
`lra`: a decision procedure for linear real and rational arithmetic
-------------------------------------------------------------------
.. tacn:: lra
This tactic is searching for *linear* refutations. As a result, this tactic explores a subset of the *Cone*
defined as
.. math::
\mathit{LinCone}(S) =\left\{ \left. \sum_{p \in S} \alpha_p \times p~\right|~\alpha_p \mbox{ are positive constants} \right\}
The deductive power of :tacn:`lra` overlaps with the one of :tacn:`field`
tactic *e.g.*, :math:`x = 10 * x / 10` is solved by :tacn:`lra`.
.. tacn:: xlra_Q @ltac_expr
xlra_R @ltac_expr
For internal use only (it may change without notice).
.. tacn:: wlra_Q @ident @one_term
For advanced users interested in deriving tactics for specific needs.
See the :ref:`example below <lra_example>` and comments in
`plugin/micromega/coq_micromega.mli`.
`lia`: a tactic for linear integer arithmetic
---------------------------------------------
.. tacn:: lia
This tactic solves linear goals over :g:`Z` by searching for *linear* refutations and cutting planes.
:tacn:`lia` provides support for :g:`Z`, :g:`nat`, :g:`positive` and :g:`N` by pre-processing via the :tacn:`zify` tactic.
High level view of `lia`
~~~~~~~~~~~~~~~~~~~~~~~~
Over :math:`\mathbb{R}`, *positivstellensatz* refutations are a complete proof
principle [#mayfail]_. However, this is not the case over :math:`\mathbb{Z}`. Actually,
*positivstellensatz* refutations are not even sufficient to decide
linear *integer* arithmetic. The canonical example is :math:`2 * x = 1 \to \mathtt{False}`
which is a theorem of :math:`\mathbb{Z}` but not a theorem of :math:`{\mathbb{R}}`. To remedy this
weakness, the :tacn:`lia` tactic is using recursively a combination of:
+ linear *positivstellensatz* refutations;
+ cutting plane proofs;
+ case split.
Cutting plane proofs
~~~~~~~~~~~~~~~~~~~~~~
are a way to take into account the discreteness of :math:`\mathbb{Z}` by rounding
(rational) constants to integers.
.. _ceil_thm:
.. thm:: Bound on the ceiling function
Let :math:`p` be an integer and :math:`c` a rational constant. Then
:math:`p \ge c \rightarrow p \ge \lceil{c}\rceil`.
.. example:: Cutting plane
For instance, from :math:`2 x = 1` we can deduce
+ :math:`x \ge 1/2` whose cut plane is :math:`x \ge \lceil{1/2}\rceil = 1`;
+ :math:`x \le 1/2` whose cut plane is :math:`x \le \lfloor{1/2}\rfloor = 0`.
By combining these two facts (in normal form) :math:`x − 1 \ge 0` and
:math:`-x \ge 0`, we conclude by exhibiting a *positivstellensatz* refutation:
:math:`−1 \equiv x−1 + −x \in \mathit{Cone}({x−1,x})`.
Cutting plane proofs and linear *positivstellensatz* refutations are a
complete proof principle for integer linear arithmetic.
Case split
~~~~~~~~~~~
enumerates over the possible values of an expression.
.. _casesplit_thm:
.. thm:: Case split
Let :math:`p` be an integer and :math:`c_1` and :math:`c_2`
integer constants. Then:
.. math::
c_1 \le p \le c_2 \Rightarrow \bigvee_{x \in [c_1,c_2]} p = x
Our current oracle tries to find an expression :math:`e` with a small range
:math:`[c_1,c_2]`. We generate :math:`c_2 − c_1` subgoals whose contexts are enriched
with an equation :math:`e = i` for :math:`i \in [c_1,c_2]` and recursively search for
a proof.
.. tacn:: xlia @ltac_expr
For internal use only (it may change without notice).
.. tacn:: wlia @ident @one_term
For advanced users interested in deriving tactics for specific needs.
See the :ref:`example below <lra_example>` and comments in
`plugin/micromega/coq_micromega.mli`.
`nra`: a proof procedure for non-linear arithmetic
--------------------------------------------------
.. tacn:: nra
This tactic is an *experimental* proof procedure for non-linear
arithmetic. The tactic performs a limited amount of non-linear
reasoning before running the linear prover of :tacn:`lra`. This pre-processing
does the following:
+ If the context contains an arithmetic expression of the form
:math:`e[x^2]` where :math:`x` is a monomial, the context is enriched with
:math:`x^2 \ge 0`;
+ For all pairs of hypotheses :math:`e_1 \ge 0`, :math:`e_2 \ge 0`, the context is
enriched with :math:`e_1 \times e_2 \ge 0`.
After this pre-processing, the linear prover of :tacn:`lra` searches for a
proof by abstracting monomials by variables.
.. tacn:: xnra_Q @ltac_expr
xnra_R @ltac_expr
For internal use only (it may change without notice).
.. tacn:: wnra_Q @ident @one_term
For advanced users interested in deriving tactics for specific needs.
See the :ref:`example below <lra_example>` and comments in
`plugin/micromega/coq_micromega.mli`.
`nia`: a proof procedure for non-linear integer arithmetic
----------------------------------------------------------
.. tacn:: nia
This tactic is a proof procedure for non-linear integer arithmetic.
It performs a pre-processing similar to :tacn:`nra`. The obtained goal is
solved using the linear integer prover :tacn:`lia`.
.. tacn:: xnia @ltac_expr
For internal use only (it may change without notice).
.. tacn:: wnia @ident @one_term
For advanced users interested in deriving tactics for specific needs.
See the :ref:`example below <lra_example>` and comments in
`plugin/micromega/coq_micromega.mli`.
`psatz`: a proof procedure for non-linear arithmetic
----------------------------------------------------
.. tacn:: psatz @one_term {? @nat_or_var }
This tactic explores the *Cone* by increasing degrees – hence the
depth parameter :token:`nat_or_var`. In theory, such a proof search is complete – if the
goal is provable the search eventually stops. Unfortunately, the
external oracle is using numeric (approximate) optimization techniques
that might miss a refutation.
To illustrate the working of the tactic, consider we wish to prove the
following Coq goal:
.. needs csdp
.. coqdoc::
Require Import ZArith Psatz.
Open Scope Z_scope.
Goal forall x, -x^2 >= 0 -> x - 1 >= 0 -> False.
intro x.
psatz Z 2.
Qed.
As shown, such a goal is solved by ``intro x. psatz Z 2``. The oracle returns the
:term:`cone expression` :math:`2 \times p_2 + p_2^2 + p_1` with :math:`p_1 := -x^2`
and :math:`p_2 := x - 1`. By construction, this expression
belongs to :math:`\mathit{Cone}({p_1, p_2})`. Moreover, by running :tacn:`ring` we
obtain :math:`-1`. Thus, by Theorem :ref:`Psatz <psatz_thm>`, the goal is valid.
.. tacn:: xsos_Q @ltac_expr
xsos_R @ltac_expr
xsos_Z @ltac_expr
xpsatz_Q @nat_or_var @ltac_expr
xpsatz_R @nat_or_var @ltac_expr
xpsatz_Z @nat_or_var @ltac_expr
For internal use only (it may change without notice).
.. tacn:: wsos_Q @ident @one_term
wsos_Z @ident @one_term
wpsatz_Q @nat_or_var @ident @one_term
wpsatz_Z @nat_or_var @ident @one_term
For advanced users interested in deriving tactics for specific needs.
See the :ref:`example below <lra_example>` and comments in
`plugin/micromega/coq_micromega.mli`.
`zify`: pre-processing of arithmetic goals
------------------------------------------
.. tacn:: zify
This tactic is internally called by :tacn:`lia` to support additional types, e.g., :g:`nat`, :g:`positive` and :g:`N`.
Additional support is provided by the following modules:
+ For boolean operators (e.g., :g:`Nat.leb`), require the module :g:`ZifyBool`.
+ For comparison operators (e.g., :g:`Z.compare`), require the module :g:`ZifyComparison`.
+ For native unsigned 63 bit integers, require the module :g:`ZifyUint63`.
+ For native signed 63 bit integers, require the module :g:`ZifySint63`.
+ For operators :g:`Nat.div`, :g:`Nat.mod`, and :g:`Nat.pow`, require the module :g:`ZifyNat`.
+ For operators :g:`N.div`, :g:`N.mod`, and :g:`N.pow`, require the module :g:`ZifyN`.
:tacn:`zify` can also be extended by rebinding the tactics `Zify.zify_pre_hook` and `Zify.zify_post_hook` that are
respectively run in the first and the last steps of :tacn:`zify`.
+ To support :g:`Z.div` and :g:`Z.modulo`: ``Ltac Zify.zify_post_hook ::= Z.div_mod_to_equations``.
+ To support :g:`Z.quot` and :g:`Z.rem`: ``Ltac Zify.zify_post_hook ::= Z.quot_rem_to_equations``.
+ To support :g:`Z.div`, :g:`Z.modulo`, :g:`Z.quot` and :g:`Z.rem`: either ``Ltac Zify.zify_post_hook ::= Z.to_euclidean_division_equations`` or ``Ltac Zify.zify_convert_to_euclidean_division_equations_flag ::= constr:(true)``.
The :tacn:`zify` tactic can be extended with new types and operators by declaring and registering new typeclass instances using the following commands.
The typeclass declarations can be found in the module ``ZifyClasses`` and the default instances can be found in the module ``ZifyInst``.
.. cmd:: Add Zify @add_zify @qualid
.. insertprodn add_zify add_zify
.. prodn::
add_zify ::= {| InjTyp | BinOp | UnOp | CstOp | BinRel | UnOpSpec | BinOpSpec }
| {| PropOp | PropBinOp | PropUOp | Saturate }
Registers an instance of the specified typeclass.
The typeclass type (e.g. :g:`BinOp Z.mul` or :g:`BinRel (@eq Z)`) has the additional constraint that
the non-implicit argument (here, :g:`Z.mul` or :g:`(@eq Z)`)
is either a :n:`@reference` (here, :g:`Z.mul`) or the application of a :n:`@reference` (here, :g:`@eq`) to a sequence of :n:`@one_term`.
.. cmd:: Show Zify @show_zify
.. insertprodn show_zify show_zify
.. prodn::
show_zify ::= {| InjTyp | BinOp | UnOp | CstOp | BinRel | UnOpSpec | BinOpSpec | Spec }
Prints instances for the specified typeclass. For instance, :cmd:`Show Zify` ``InjTyp``
prints the list of types that supported by :tacn:`zify` i.e.,
:g:`Z`, :g:`nat`, :g:`positive` and :g:`N`.
.. tacn:: zify_elim_let
zify_iter_let @ltac_expr
zify_iter_specs
zify_op
zify_saturate
For internal use only (it may change without notice).
.. _lra_example:
.. example:: Lra
The :tacn:`lra` tactic automatically proves the following goal.
.. coqtop:: in
Require Import QArith Lqa. #[local] Open Scope Q_scope.
Lemma example_lra x y : x + 2 * y <= 4 -> 2 * x + y <= 4 -> x + y < 3.
Proof.
lra.
Qed.
Although understanding what's going on under the hood is not required
to use the tactic, here are the details for curious users or advanced
users interested in deriving their own tactics for arithmetic types
other than ``Q`` or ``R`` from the standard library.
Mathematically speaking, one needs to prove that
:math:`p_2 \ge 0 \land p_1 \ge 0 \land p_0 \ge 0` is unsatisfiable
with :math:`p_2 := 4 - x - 2y` and :math:`p_1 := 4 - 2x - y`
and :math:`p_0 := x + y - 3`.
This is done thanks to the :term:`cone expression`
:math:`p_2 + p_1 + 3 \times p_0 \equiv -1`.
.. coqtop:: all
From Coq.micromega Require Import RingMicromega QMicromega EnvRing Tauto.
Print example_lra.
Here, ``__ff`` is a reified representation of the goal and ``__varmap``
is a variable map giving the interpretation of each variable (here that
``PEX 1`` in ``__ff`` stands for ``__x1`` and ``PEX 2`` for ``__x2``).
Finally, ``__wit`` is the :term:`cone expression` also called *witness*.
This proof could also be obtained by the following tactics where
:n:`wlra_Q wit ff` calls the oracle on the goal ``ff`` and puts the
resulting :term:`cone expression` in ``wit``.
``QTautoChecker_sound`` is a theorem stating that, when the function call
``QTautoChecker ff wit`` returns ``true``, then the goal represented by
``ff`` is valid.
.. coqtop:: in
Lemma example_lra' x y : x + 2 * y <= 4 -> 2 * x + y <= 4 -> x + y < 3.
Proof.
pose (ff := IMPL
(A isProp
{| Flhs := PEadd (PEX 1) (PEmul (PEc 2) (PEX 2));
Fop := OpLe; Frhs := PEc 4 |} tt) None
(IMPL
(A isProp
{| Flhs := PEadd (PEmul (PEc 2) (PEX 1)) (PEX 2);
Fop := OpLe; Frhs := PEc 4 |}
tt) None
(A isProp
{| Flhs := PEadd (PEX 1) (PEX 2);
Fop := OpLt; Frhs := PEc 3 |} tt))
: BFormula (Formula Q) isProp).
.. coqtop:: all
pose (varmap := VarMap.Branch (VarMap.Elt y) x VarMap.Empty).
let ff' := eval unfold ff in ff in wlra_Q wit ff'.
change (eval_bf (Qeval_formula (@VarMap.find Q 0 varmap)) ff).
apply (QTautoChecker_sound ff wit).
.. coqtop:: in
vm_compute.
reflexivity.
Qed.
.. [#csdp] Sources and binaries can be found at `<https://github.com/coin-or/csdp>`_
.. [#fnpsatz] Variants deal with equalities and strict inequalities.
.. [#mayfail] In practice, the oracle might fail to produce such a refutation.
.. comment in original TeX:
.. %% \paragraph{The {\tt sos} tactic} -- where {\tt sos} stands for \emph{sum of squares} -- tries to prove that a
.. %% single polynomial $p$ is positive by expressing it as a sum of squares \emph{i.e.,} $\sum_{i\in S} p_i^2$.
.. %% This amounts to searching for $p$ in the cone without generators \emph{i.e.}, $Cone(\{\})$.
|