File: micromega.rst

package info (click to toggle)
coq-doc 8.16.1-1
  • links: PTS, VCS
  • area: non-free
  • in suites: bookworm
  • size: 42,788 kB
  • sloc: ml: 219,673; sh: 4,035; python: 3,372; ansic: 2,529; makefile: 728; lisp: 279; javascript: 87; xml: 24; sed: 2
file content (491 lines) | stat: -rw-r--r-- 19,091 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
.. _micromega:

Micromega: solvers for arithmetic goals over ordered rings
==================================================================

:Authors: Frédéric Besson and Evgeny Makarov

Short description of the tactics
--------------------------------

The Psatz module (``Require Import Psatz``) gives access to several
tactics for solving arithmetic goals over :math:`\mathbb{Q}`,
:math:`\mathbb{R}`, and :math:`\mathbb{Z}` but also :g:`nat` and
:g:`N`.  It is also possible to get only the tactics for integers by
``Require Import Lia``, only for rationals by ``Require Import Lqa``
or only for reals by ``Require Import Lra``.

+ :tacn:`lia` is a decision procedure for linear integer arithmetic;
+ :tacn:`nia` is an incomplete proof procedure for integer non-linear
  arithmetic;
+ :tacn:`lra` is a decision procedure for linear (real or rational) arithmetic;
+ :tacn:`nra` is an incomplete proof procedure for non-linear (real or
  rational) arithmetic;
+ :tacn:`psatz` ``D n``
  is an incomplete proof procedure for non-linear arithmetic.
  ``D`` is :math:`\mathbb{Z}` or :math:`\mathbb{Q}` or :math:`\mathbb{R}` and
  ``n`` is an optional integer limiting the proof search depth.
  It is based on John Harrison’s HOL Light
  driver to the external prover CSDP [#csdp]_.
  Note that the CSDP driver
  generates a *proof cache* which makes it possible to rerun scripts
  even without CSDP.

.. opt:: Dump Arith

   This :term:`option` (unset by default) may be set to a file path where
   debug info will be written.

.. cmd:: Show Lia Profile

   This command prints some statistics about the amount of pivoting
   operations needed by :tacn:`lia` and may be useful to detect
   inefficiencies.

.. flag:: Lia Cache

   This :term:`flag` (set by default) instructs :tacn:`lia` to cache its results in the file `.lia.cache`

.. flag:: Nia Cache

   This :term:`flag` (set by default) instructs :tacn:`nia` to cache its results in the file `.nia.cache`

.. flag:: Nra Cache

   This :term:`flag` (set by default) instructs :tacn:`nra` to cache its results in the file `.nra.cache`


The tactics solve propositional formulas parameterized by atomic
arithmetic expressions interpreted over a domain :math:`D \in \{\mathbb{Z},\mathbb{Q},\mathbb{R}\}`.
The syntax for formulas is:

   .. note the following is not an insertprodn

   .. prodn::
      F ::= {| @A | P | True | False | @F /\ @F | @F \/ @F | @F <-> @F | @F -> @F | ~ @F | @F = @F }
      A ::= {| @p = @p | @p > @p | @p < @p | @p >= @p | @p <= @p }
      p ::= {| c | x | −@p | @p − @p | @p + @p | @p * @p | @p ^ n }

where

  - :token:`F` is interpreted over either `Prop` or `bool`
  - :n:`P` is an arbitrary proposition
  - :n:`c` is a numeric constant of :math:`D`
  - :n:`x` :math:`\in D` is a numeric variable
  - :n:`−`, :n:`+` and :n:`*` are respectively subtraction, addition and product
  - :n:`p ^ n` is exponentiation by a natural integer constant :math:`n`

When :math:`F` is interpreted over `bool`, the boolean operators are
`&&`, `||`, `Bool.eqb`, `Bool.implb`, `Bool.negb` and the comparisons
in :math:`A` are also interpreted over the booleans (e.g., for
:math:`\mathbb{Z}`, we have `Z.eqb`, `Z.gtb`, `Z.ltb`, `Z.geb`,
`Z.leb`).

For :math:`\mathbb{Q}`, the equality of rationals ``==`` is used rather than
Leibniz equality ``=``.

For :math:`\mathbb{Z}` (resp. :math:`\mathbb{Q}`), :n:`c` ranges over integer constants (resp. rational
constants). For :math:`\mathbb{R}`, the tactic recognizes as real constants the
following expressions:

::

   c ::= R0 | R1 | Rmult c c | Rplus c c | Rminus c c | IZR z | Q2R q | Rdiv c c | Rinv c

where `z` is a constant in :math:`\mathbb{Z}` and `q` is a constant in :math:`\mathbb{Q}`.
This includes :n:`@number` written using the decimal notation, *i.e.*, ``c%R``.


*Positivstellensatz* refutations
--------------------------------

The name `psatz` is an abbreviation for *positivstellensatz* – literally
"positivity theorem" – which generalizes Hilbert’s *nullstellensatz*. It
relies on the notion of Cone. Given a (finite) set of polynomials :math:`S`,
:math:`\mathit{Cone}(S)` is inductively defined as the smallest set of polynomials
closed under the following rules:

.. math::

   \begin{array}{l}
     \dfrac{p \in S}{p \in \mathit{Cone}(S)} \quad
     \dfrac{}{p^2 \in \mathit{Cone}(S)} \quad
     \dfrac{p_1 \in \mathit{Cone}(S) \quad p_2 \in \mathit{Cone}(S) \quad
     \Join \in \{+,*\}} {p_1 \Join p_2 \in \mathit{Cone}(S)}\\
   \end{array}

The following theorem provides a proof principle for checking that a
set of polynomial inequalities does not have solutions [#fnpsatz]_.

.. _psatz_thm:

.. thm:: Psatz

   Let :math:`S` be a set of polynomials.
   If :math:`-1` belongs to :math:`\mathit{Cone}(S)`, then the conjunction
   :math:`\bigwedge_{p \in S} p\ge 0` is unsatisfiable.

   *Proof:* Let's assume that :math:`\bigwedge_{p \in S} p\ge 0`
   is satisfiable, meaning there exists :math:`x` such that
   for all :math:`p \in S` , we have :math:`p(x) \ge 0`. Since the cone building
   rules preserve non negativity, any polynomial in :math:`\mathit{Cone}(S)`
   is non negative in :math:`x`. Thus :math:`-1 \in \mathit{Cone}(S)` is non
   negative, which is absurd. :math:`\square`

A proof based on this theorem is called a *positivstellensatz*
refutation. The tactics work as follows. Formulas are normalized into
conjunctive normal form :math:`\bigwedge_i C_i` where :math:`C_i` has the
general form :math:`(\bigwedge_{j\in S_i} p_j \Join 0) \to \mathit{False}` and
:math:`\Join \in \{>,\ge,=\}` for :math:`D\in \{\mathbb{Q},\mathbb{R}\}` and
:math:`\Join \in \{\ge, =\}` for :math:`\mathbb{Z}`.

For each conjunct :math:`C_i`, the tactic calls an oracle which searches for
:math:`-1` within the cone. Upon success, the oracle returns a
:gdef:`cone expression` that is normalized by the :tacn:`ring` tactic
(see :ref:`theringandfieldtacticfamilies`) and checked to be :math:`-1`.

`lra`: a decision procedure for linear real and rational arithmetic
-------------------------------------------------------------------

.. tacn:: lra

   This tactic is searching for *linear* refutations. As a result, this tactic explores a subset of the *Cone*
   defined as

   .. math::

      \mathit{LinCone}(S) =\left\{ \left. \sum_{p \in S} \alpha_p \times p~\right|~\alpha_p \mbox{ are positive constants} \right\}

   The deductive power of :tacn:`lra` overlaps with the one of :tacn:`field`
   tactic *e.g.*, :math:`x = 10 * x / 10` is solved by :tacn:`lra`.

.. tacn:: xlra_Q @ltac_expr
          xlra_R @ltac_expr

   For internal use only (it may change without notice).

.. tacn:: wlra_Q @ident @one_term

   For advanced users interested in deriving tactics for specific needs.
   See the :ref:`example below <lra_example>` and comments in
   `plugin/micromega/coq_micromega.mli`.

`lia`: a tactic for linear integer arithmetic
---------------------------------------------

.. tacn:: lia

   This tactic solves linear goals over :g:`Z` by searching for *linear* refutations and cutting planes.
   :tacn:`lia` provides support for :g:`Z`, :g:`nat`, :g:`positive` and :g:`N` by pre-processing via the :tacn:`zify` tactic.

High level view of `lia`
~~~~~~~~~~~~~~~~~~~~~~~~

Over :math:`\mathbb{R}`, *positivstellensatz* refutations are a complete proof
principle [#mayfail]_. However, this is not the case over :math:`\mathbb{Z}`. Actually,
*positivstellensatz* refutations are not even sufficient to decide
linear *integer* arithmetic. The canonical example is :math:`2 * x = 1 \to \mathtt{False}`
which is a theorem of :math:`\mathbb{Z}` but not a theorem of :math:`{\mathbb{R}}`. To remedy this
weakness, the :tacn:`lia` tactic is using recursively a combination of:

+ linear *positivstellensatz* refutations;
+ cutting plane proofs;
+ case split.

Cutting plane proofs
~~~~~~~~~~~~~~~~~~~~~~

are a way to take into account the discreteness of :math:`\mathbb{Z}` by rounding
(rational) constants to integers.

.. _ceil_thm:

.. thm:: Bound on the ceiling function

   Let :math:`p` be an integer and :math:`c` a rational constant. Then
   :math:`p \ge c \rightarrow p \ge \lceil{c}\rceil`.

.. example:: Cutting plane

   For instance, from :math:`2 x = 1` we can deduce

   + :math:`x \ge 1/2` whose cut plane is :math:`x \ge \lceil{1/2}\rceil = 1`;
   + :math:`x \le 1/2` whose cut plane is :math:`x \le \lfloor{1/2}\rfloor = 0`.

   By combining these two facts (in normal form) :math:`x − 1 \ge 0` and
   :math:`-x \ge 0`, we conclude by exhibiting a *positivstellensatz* refutation:
   :math:`−1 \equiv x−1 + −x \in \mathit{Cone}({x−1,x})`.

Cutting plane proofs and linear *positivstellensatz* refutations are a
complete proof principle for integer linear arithmetic.

Case split
~~~~~~~~~~~

enumerates over the possible values of an expression.

.. _casesplit_thm:

.. thm:: Case split

   Let :math:`p` be an integer and :math:`c_1` and :math:`c_2`
   integer constants. Then:

   .. math::

      c_1 \le p \le c_2 \Rightarrow \bigvee_{x \in [c_1,c_2]} p = x

Our current oracle tries to find an expression :math:`e` with a small range
:math:`[c_1,c_2]`. We generate :math:`c_2 − c_1` subgoals whose contexts are enriched
with an equation :math:`e = i` for :math:`i \in [c_1,c_2]` and recursively search for
a proof.

.. tacn:: xlia @ltac_expr

   For internal use only (it may change without notice).

.. tacn:: wlia @ident @one_term

   For advanced users interested in deriving tactics for specific needs.
   See the :ref:`example below <lra_example>` and comments in
   `plugin/micromega/coq_micromega.mli`.

`nra`: a proof procedure for non-linear arithmetic
--------------------------------------------------

.. tacn:: nra

   This tactic is an *experimental* proof procedure for non-linear
   arithmetic. The tactic performs a limited amount of non-linear
   reasoning before running the linear prover of :tacn:`lra`. This pre-processing
   does the following:


+ If the context contains an arithmetic expression of the form
  :math:`e[x^2]` where :math:`x` is a monomial, the context is enriched with
  :math:`x^2 \ge 0`;
+ For all pairs of hypotheses :math:`e_1 \ge 0`, :math:`e_2 \ge 0`, the context is
  enriched with :math:`e_1 \times e_2 \ge 0`.

After this pre-processing, the linear prover of :tacn:`lra` searches for a
proof by abstracting monomials by variables.

.. tacn:: xnra_Q @ltac_expr
          xnra_R @ltac_expr

   For internal use only (it may change without notice).

.. tacn:: wnra_Q @ident @one_term

   For advanced users interested in deriving tactics for specific needs.
   See the :ref:`example below <lra_example>` and comments in
   `plugin/micromega/coq_micromega.mli`.

`nia`: a proof procedure for non-linear integer arithmetic
----------------------------------------------------------

.. tacn:: nia

   This tactic is a proof procedure for non-linear integer arithmetic.
   It performs a pre-processing similar to :tacn:`nra`. The obtained goal is
   solved using the linear integer prover :tacn:`lia`.

.. tacn:: xnia @ltac_expr

   For internal use only (it may change without notice).

.. tacn:: wnia @ident @one_term

   For advanced users interested in deriving tactics for specific needs.
   See the :ref:`example below <lra_example>` and comments in
   `plugin/micromega/coq_micromega.mli`.

`psatz`: a proof procedure for non-linear arithmetic
----------------------------------------------------

.. tacn:: psatz @one_term {? @nat_or_var }

   This tactic explores the *Cone* by increasing degrees – hence the
   depth parameter :token:`nat_or_var`. In theory, such a proof search is complete – if the
   goal is provable the search eventually stops. Unfortunately, the
   external oracle is using numeric (approximate) optimization techniques
   that might miss a refutation.

   To illustrate the working of the tactic, consider we wish to prove the
   following Coq goal:

.. needs csdp
.. coqdoc::

   Require Import ZArith Psatz.
   Open Scope Z_scope.
   Goal forall x, -x^2 >= 0 -> x - 1 >= 0 -> False.
   intro x.
   psatz Z 2.
   Qed.

As shown, such a goal is solved by ``intro x. psatz Z 2``. The oracle returns the
:term:`cone expression` :math:`2 \times p_2 + p_2^2 + p_1` with :math:`p_1 := -x^2`
and :math:`p_2 := x - 1`. By construction, this expression
belongs to :math:`\mathit{Cone}({p_1, p_2})`. Moreover, by running :tacn:`ring` we
obtain :math:`-1`. Thus, by Theorem :ref:`Psatz <psatz_thm>`, the goal is valid.

.. tacn:: xsos_Q @ltac_expr
          xsos_R @ltac_expr
          xsos_Z @ltac_expr
          xpsatz_Q @nat_or_var @ltac_expr
          xpsatz_R @nat_or_var @ltac_expr
          xpsatz_Z @nat_or_var @ltac_expr

   For internal use only (it may change without notice).

.. tacn:: wsos_Q @ident @one_term
          wsos_Z @ident @one_term
          wpsatz_Q @nat_or_var @ident @one_term
          wpsatz_Z @nat_or_var @ident @one_term

   For advanced users interested in deriving tactics for specific needs.
   See the :ref:`example below <lra_example>` and comments in
   `plugin/micromega/coq_micromega.mli`.

`zify`: pre-processing of arithmetic goals
------------------------------------------

.. tacn:: zify

   This tactic is internally called by :tacn:`lia` to support additional types, e.g., :g:`nat`, :g:`positive` and :g:`N`.
   Additional support is provided by the following modules:

   + For boolean operators (e.g., :g:`Nat.leb`), require the module :g:`ZifyBool`.
   + For comparison operators (e.g., :g:`Z.compare`), require the module :g:`ZifyComparison`.
   + For native unsigned 63 bit integers, require the module :g:`ZifyUint63`.
   + For native signed 63 bit integers, require the module :g:`ZifySint63`.
   + For operators :g:`Nat.div`, :g:`Nat.mod`, and :g:`Nat.pow`, require the module :g:`ZifyNat`.
   + For operators :g:`N.div`, :g:`N.mod`, and :g:`N.pow`, require the module :g:`ZifyN`.

   :tacn:`zify` can also be extended by rebinding the tactics `Zify.zify_pre_hook` and `Zify.zify_post_hook` that are
   respectively run in the first and the last steps of :tacn:`zify`.

   + To support :g:`Z.div` and :g:`Z.modulo`: ``Ltac Zify.zify_post_hook ::= Z.div_mod_to_equations``.
   + To support :g:`Z.quot` and :g:`Z.rem`: ``Ltac Zify.zify_post_hook ::= Z.quot_rem_to_equations``.
   + To support :g:`Z.div`, :g:`Z.modulo`, :g:`Z.quot` and :g:`Z.rem`: either ``Ltac Zify.zify_post_hook ::= Z.to_euclidean_division_equations`` or ``Ltac Zify.zify_convert_to_euclidean_division_equations_flag ::= constr:(true)``.

   The :tacn:`zify` tactic can be extended with new types and operators by declaring and registering new typeclass instances using the following commands.
   The typeclass declarations can be found in the module ``ZifyClasses`` and the default instances can be found in the module ``ZifyInst``.

.. cmd:: Add Zify @add_zify @qualid

   .. insertprodn add_zify add_zify

   .. prodn::
      add_zify ::= {| InjTyp | BinOp | UnOp | CstOp | BinRel | UnOpSpec | BinOpSpec }
      | {| PropOp | PropBinOp | PropUOp | Saturate }

   Registers an instance of the specified typeclass.
   The typeclass type (e.g. :g:`BinOp Z.mul` or :g:`BinRel (@eq Z)`) has the additional constraint that
   the non-implicit argument (here, :g:`Z.mul` or :g:`(@eq Z)`)
   is either a :n:`@reference` (here, :g:`Z.mul`) or the application of a :n:`@reference` (here, :g:`@eq`) to a sequence of :n:`@one_term`.

.. cmd:: Show Zify @show_zify

   .. insertprodn show_zify show_zify

   .. prodn::
      show_zify ::= {| InjTyp | BinOp | UnOp | CstOp | BinRel | UnOpSpec | BinOpSpec | Spec }

   Prints instances for the specified typeclass.  For instance, :cmd:`Show Zify` ``InjTyp``
   prints the list of types that supported by :tacn:`zify` i.e.,
   :g:`Z`, :g:`nat`, :g:`positive` and :g:`N`.

.. tacn:: zify_elim_let
          zify_iter_let @ltac_expr
          zify_iter_specs
          zify_op
          zify_saturate

   For internal use only (it may change without notice).

.. _lra_example:

.. example:: Lra

  The :tacn:`lra` tactic automatically proves the following goal.

  .. coqtop:: in

    Require Import QArith Lqa. #[local] Open Scope Q_scope.

    Lemma example_lra x y : x + 2 * y <= 4 -> 2 * x + y <= 4 -> x + y < 3.
    Proof.
    lra.
    Qed.

  Although understanding what's going on under the hood is not required
  to use the tactic, here are the details for curious users or advanced
  users interested in deriving their own tactics for arithmetic types
  other than ``Q`` or ``R`` from the standard library.

  Mathematically speaking, one needs to prove that
  :math:`p_2 \ge 0 \land p_1 \ge 0 \land p_0 \ge 0` is unsatisfiable
  with :math:`p_2 := 4 - x - 2y` and :math:`p_1 := 4 - 2x - y`
  and :math:`p_0 := x + y - 3`.
  This is done thanks to the :term:`cone expression`
  :math:`p_2 + p_1 + 3 \times p_0 \equiv -1`.

  .. coqtop:: all

    From Coq.micromega Require Import RingMicromega QMicromega EnvRing Tauto.

    Print example_lra.

  Here, ``__ff`` is a reified representation of the goal and ``__varmap``
  is a variable map giving the interpretation of each variable (here that
  ``PEX 1`` in ``__ff`` stands for ``__x1`` and ``PEX 2`` for ``__x2``).
  Finally, ``__wit`` is the :term:`cone expression` also called *witness*.

  This proof could also be obtained by the following tactics where
  :n:`wlra_Q wit ff` calls the oracle on the goal ``ff`` and puts the
  resulting :term:`cone expression` in ``wit``.
  ``QTautoChecker_sound`` is a theorem stating that, when the function call
  ``QTautoChecker ff wit`` returns ``true``, then the goal represented by
  ``ff`` is valid.

  .. coqtop:: in

    Lemma example_lra' x y : x + 2 * y <= 4 -> 2 * x + y <= 4 -> x + y < 3.
    Proof.
    pose (ff := IMPL
      (A isProp
         {| Flhs := PEadd (PEX 1) (PEmul (PEc 2) (PEX 2));
            Fop := OpLe; Frhs := PEc 4 |} tt) None
      (IMPL
         (A isProp
            {| Flhs := PEadd (PEmul (PEc 2) (PEX 1)) (PEX 2);
               Fop := OpLe; Frhs := PEc 4 |}
            tt) None
         (A isProp
            {| Flhs := PEadd (PEX 1) (PEX 2);
               Fop := OpLt; Frhs := PEc 3 |} tt))
      : BFormula (Formula Q) isProp).

  .. coqtop:: all

    pose (varmap := VarMap.Branch (VarMap.Elt y) x VarMap.Empty).
    let ff' := eval unfold ff in ff in wlra_Q wit ff'.
    change (eval_bf (Qeval_formula (@VarMap.find Q 0 varmap)) ff).
    apply (QTautoChecker_sound ff wit).

  .. coqtop:: in

    vm_compute.
    reflexivity.
    Qed.

.. [#csdp] Sources and binaries can be found at `<https://github.com/coin-or/csdp>`_
.. [#fnpsatz] Variants deal with equalities and strict inequalities.
.. [#mayfail] In practice, the oracle might fail to produce such a refutation.

.. comment in original TeX:
.. %% \paragraph{The {\tt sos} tactic} -- where {\tt sos} stands for \emph{sum of squares} -- tries to prove that a
.. %% single polynomial $p$ is positive by expressing it as a sum of squares \emph{i.e.,} $\sum_{i\in S} p_i^2$.
.. %% This amounts to searching for $p$ in the cone without generators \emph{i.e.}, $Cone(\{\})$.