1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
|
.. _thecoqlibrary:
The Coq library
=================
.. index::
single: Theories
The Coq library has two parts:
* The :gdef:`prelude`: definitions and theorems for
the most commonly used elementary logical notions and
data types. Coq normally loads these files automatically when it starts.
* The :gdef:`standard library`: general-purpose libraries with
definitions and theorems for sets, lists, sorting,
arithmetic, etc. To use these files, users must load them explicitly
with the ``Require`` command (see :ref:`compiled-files`)
There are also many libraries provided by Coq users' community.
These libraries and developments are available
for download at https://coq.inria.fr/ (see :ref:`userscontributions`).
This chapter briefly reviews the Coq libraries whose contents can
also be browsed at https://coq.inria.fr/stdlib/.
The prelude
-----------
This section lists the basic notions and results which are directly
available in the standard Coq system. Most of these constructions
are defined in the ``Prelude`` module in directory ``theories/Init``
in the Coq root directory; this includes the modules
``Notations``,
``Logic``,
``Datatypes``,
``Specif``,
``Peano``,
``Wf`` and
``Tactics``.
Module ``Logic_Type`` also makes it in the initial state.
.. _init-notations:
Notations
~~~~~~~~~
This module defines the parsing and pretty-printing of many symbols
(infixes, prefixes, etc.). However, it does not assign a meaning to
these notations. The purpose of this is to define and fix once for all
the precedence and associativity of very common notations. The main
notations fixed in the initial state are :
================ ============ ===============
Notation Precedence Associativity
================ ============ ===============
``_ -> _`` 99 right
``_ <-> _`` 95 no
``_ \/ _`` 85 right
``_ /\ _`` 80 right
``~ _`` 75 right
``_ = _`` 70 no
``_ = _ = _`` 70 no
``_ = _ :> _`` 70 no
``_ <> _`` 70 no
``_ <> _ :> _`` 70 no
``_ < _`` 70 no
``_ > _`` 70 no
``_ <= _`` 70 no
``_ >= _`` 70 no
``_ < _ < _`` 70 no
``_ < _ <= _`` 70 no
``_ <= _ < _`` 70 no
``_ <= _ <= _`` 70 no
``_ + _`` 50 left
``_ || _`` 50 left
``_ - _`` 50 left
``_ * _`` 40 left
``_ _`` 40 left
``_ / _`` 40 left
``- _`` 35 right
``/ _`` 35 right
``_ ^ _`` 30 right
================ ============ ===============
.. _coq-library-logic:
Logic
~~~~~
`Logic.v` in the basic library of Coq has the definitions of standard
(intuitionistic) logical connectives defined as inductive
constructions. They are equipped with an appealing syntax enriching the
subclass :token:`form` of the syntactic class :token:`term`. The constructs
for :production:`form` are:
============================================== =======
True True
False False
:n:`~ @form` not
:n:`@form /\ @form` and
:n:`@form \/ @form` or
:n:`@form -> @form` primitive implication
:n:`@form <-> @form` iff
:n:`forall @ident : @type, @form` primitive for all
:n:`exists @ident {? @specif}, @form` ex
:n:`exists2 @ident {? @specif}, @form & @form` ex2
:n:`@term = @term` eq
:n:`@term = @term :> @specif` eq
============================================== =======
.. note::
Implication is not defined but primitive (it is a non-dependent
product of a proposition over another proposition). There is also a
primitive universal quantification (it is a dependent product over a
proposition). The primitive universal quantification allows both
first-order and higher-order quantification.
Propositional Connectives
+++++++++++++++++++++++++
.. index::
single: Connectives
single: True (term)
single: I (term)
single: False (term)
single: not (term)
single: and (term)
single: conj (term)
single: proj1 (term)
single: proj2 (term)
single: or (term)
single: or_introl (term)
single: or_intror (term)
single: iff (term)
single: IF_then_else (term)
First, we find propositional calculus connectives.
At times, it's helpful to know exactly what these notations represent.
.. coqdoc::
Inductive True : Prop := I.
Inductive False : Prop := .
Definition not (A: Prop) := A -> False.
Inductive and (A B:Prop) : Prop := conj (_:A) (_:B).
Section Projections.
Variables A B : Prop.
Theorem proj1 : A /\ B -> A.
Theorem proj2 : A /\ B -> B.
End Projections.
Inductive or (A B:Prop) : Prop :=
| or_introl (_:A)
| or_intror (_:B).
Definition iff (P Q:Prop) := (P -> Q) /\ (Q -> P).
Definition IF_then_else (P Q R:Prop) := P /\ Q \/ ~ P /\ R.
Quantifiers
+++++++++++
.. index::
single: Quantifiers
single: all (term)
single: ex (term)
single: exists (term)
single: ex_intro (term)
single: ex2 (term)
single: exists2 (term)
single: ex_intro2 (term)
Then we find first-order quantifiers:
.. coqtop:: in
Definition all (A:Set) (P:A -> Prop) := forall x:A, P x.
Inductive ex (A: Set) (P:A -> Prop) : Prop :=
ex_intro (x:A) (_:P x).
Inductive ex2 (A:Set) (P Q:A -> Prop) : Prop :=
ex_intro2 (x:A) (_:P x) (_:Q x).
The following abbreviations are allowed:
====================== =======================================
``exists x:A, P`` ``ex A (fun x:A => P)``
``exists x, P`` ``ex _ (fun x => P)``
``exists2 x:A, P & Q`` ``ex2 A (fun x:A => P) (fun x:A => Q)``
``exists2 x, P & Q`` ``ex2 _ (fun x => P) (fun x => Q)``
====================== =======================================
The type annotation ``:A`` can be omitted when ``A`` can be
synthesized by the system.
.. _coq-equality:
Equality
++++++++
.. index::
single: Equality
single: eq (term)
single: eq_refl (term)
Then, we find equality, defined as an inductive relation. That is,
given a type ``A`` and an ``x`` of type ``A``, the
predicate :g:`(eq A x)` is the smallest one which contains ``x``.
This definition, due to Christine Paulin-Mohring, is equivalent to
define ``eq`` as the smallest reflexive relation, and it is also
equivalent to Leibniz' equality.
.. coqtop:: in
Inductive eq (A:Type) (x:A) : A -> Prop :=
eq_refl : eq A x x.
Lemmas
++++++
Finally, a few easy lemmas are provided.
.. index::
single: absurd (term)
single: eq_sym (term)
single: eq_trans (term)
single: f_equal (term)
single: sym_not_eq (term)
single: eq_ind_r (term)
single: eq_rec_r (term)
single: eq_rect (term)
single: eq_rect_r (term)
.. coqdoc::
Theorem absurd : forall A C:Prop, A -> ~ A -> C.
Section equality.
Variables A B : Type.
Variable f : A -> B.
Variables x y z : A.
Theorem eq_sym : x = y -> y = x.
Theorem eq_trans : x = y -> y = z -> x = z.
Theorem f_equal : x = y -> f x = f y.
Theorem not_eq_sym : x <> y -> y <> x.
End equality.
Definition eq_ind_r :
forall (A:Type) (x:A) (P:A->Prop), P x -> forall y:A, y = x -> P y.
Definition eq_rec_r :
forall (A:Type) (x:A) (P:A->Set), P x -> forall y:A, y = x -> P y.
Definition eq_rect_r :
forall (A:Type) (x:A) (P:A->Type), P x -> forall y:A, y = x -> P y.
Hint Immediate eq_sym not_eq_sym : core.
.. index::
single: f_equal2 ... f_equal5 (term)
The theorem ``f_equal`` is extended to functions with two to five
arguments. The theorem are names ``f_equal2``, ``f_equal3``,
``f_equal4`` and ``f_equal5``.
For instance ``f_equal3`` is defined the following way.
.. coqtop:: in abort
Theorem f_equal3 :
forall (A1 A2 A3 B:Type) (f:A1 -> A2 -> A3 -> B)
(x1 y1:A1) (x2 y2:A2) (x3 y3:A3),
x1 = y1 -> x2 = y2 -> x3 = y3 -> f x1 x2 x3 = f y1 y2 y3.
.. _datatypes:
Datatypes
~~~~~~~~~
.. index::
single: Datatypes
In the basic library, we find in ``Datatypes.v`` the definition
of the basic data-types of programming,
defined as inductive constructions over the sort ``Set``. Some of
them come with a special syntax shown below (this syntax table is common with
the next section :ref:`specification`). The constructs for :production:`specif` are:
============================================= =======
:n:`@specif * @specif` prod
:n:`@specif + @specif` sum
:n:`@specif + { @specif }` sumor
:n:`{ @specif } + { @specif }` sumbool
:n:`{ @ident : @specif | @form }` sig
:n:`{ @ident : @specif | @form & @form }` sig2
:n:`{ @ident : @specif & @specif }` sigT
:n:`{ @ident : @specif & @specif & @specif }` sigT2
============================================= =======
The notation for pairs (elements of type prod) is: :n:`(@term, @term)`
Programming
+++++++++++
.. index::
single: Programming
single: unit (term)
single: tt (term)
single: bool (term)
single: true (term)
single: false (term)
single: nat (term)
single: O (term)
single: S (term)
single: option (term)
single: Some (term)
single: None (term)
single: identity (term)
single: refl_identity (term)
.. coqtop:: in
Inductive unit : Set := tt.
Inductive bool : Set := true | false.
Inductive nat : Set := O | S (n:nat).
Inductive option (A:Set) : Set := Some (_:A) | None.
Inductive identity (A:Type) (a:A) : A -> Type :=
refl_identity : identity A a a.
Note that zero is the letter ``O``, and *not* the numeral ``0``.
The predicate ``identity`` is logically
equivalent to equality but it lives in sort ``Type``.
It is mainly maintained for compatibility.
We then define the disjoint sum of ``A+B`` of two sets ``A`` and
``B``, and their product ``A*B``.
.. index::
single: sum (term)
single: A+B (term)
single: + (term)
single: inl (term)
single: inr (term)
single: prod (term)
single: A*B (term)
single: * (term)
single: pair (term)
single: fst (term)
single: snd (term)
.. coqtop:: in
Inductive sum (A B:Set) : Set := inl (_:A) | inr (_:B).
Inductive prod (A B:Set) : Set := pair (_:A) (_:B).
Section projections.
Variables A B : Set.
Definition fst (H: prod A B) := match H with
| pair _ _ x y => x
end.
Definition snd (H: prod A B) := match H with
| pair _ _ x y => y
end.
End projections.
Some operations on ``bool`` are also provided: ``andb`` (with
infix notation ``&&``), ``orb`` (with
infix notation ``||``), ``xorb``, ``implb`` and ``negb``.
.. _specification:
Specification
~~~~~~~~~~~~~
The following notions defined in module ``Specif.v`` allow to build new data-types and specifications.
They are available with the syntax shown in the previous section :ref:`datatypes`.
For instance, given :g:`A:Type` and :g:`P:A->Prop`, the construct
:g:`{x:A | P x}` (in abstract syntax :g:`(sig A P)`) is a
``Type``. We may build elements of this set as :g:`(exist x p)`
whenever we have a witness :g:`x:A` with its justification
:g:`p:P x`.
From such a :g:`(exist x p)` we may in turn extract its witness
:g:`x:A` (using an elimination construct such as ``match``) but
*not* its justification, which stays hidden, like in an abstract
data-type. In technical terms, one says that ``sig`` is a *weak
(dependent) sum*. A variant ``sig2`` with two predicates is also
provided.
.. index::
single: {x:A | P x} (term)
single: sig (term)
single: exist (term)
single: sig2 (term)
single: exist2 (term)
.. coqtop:: in
Inductive sig (A:Set) (P:A -> Prop) : Set := exist (x:A) (_:P x).
Inductive sig2 (A:Set) (P Q:A -> Prop) : Set :=
exist2 (x:A) (_:P x) (_:Q x).
A *strong (dependent) sum* :g:`{x:A & P x}` may be also defined,
when the predicate ``P`` is now defined as a
constructor of types in ``Type``.
.. index::
single: {x:A & P x} (term)
single: sigT (term)
single: existT (term)
single: sigT2 (term)
single: existT2 (term)
single: projT1 (term)
single: projT2 (term)
.. coqtop:: in
Inductive sigT (A:Type) (P:A -> Type) : Type := existT (x:A) (_:P x).
Section Projections2.
Variable A : Type.
Variable P : A -> Type.
Definition projT1 (H:sigT A P) := let (x, h) := H in x.
Definition projT2 (H:sigT A P) :=
match H return P (projT1 H) with
existT _ _ x h => h
end.
End Projections2.
Inductive sigT2 (A: Type) (P Q:A -> Type) : Type :=
existT2 (x:A) (_:P x) (_:Q x).
A related non-dependent construct is the constructive sum
:g:`{A}+{B}` of two propositions ``A`` and ``B``.
.. index::
single: sumbool (term)
single: left (term)
single: right (term)
single: {A}+{B} (term)
.. coqtop:: in
Inductive sumbool (A B:Prop) : Set := left (_:A) | right (_:B).
This ``sumbool`` construct may be used as a kind of indexed boolean
data-type. An intermediate between ``sumbool`` and ``sum`` is
the mixed ``sumor`` which combines :g:`A:Set` and :g:`B:Prop`
in the construction :g:`A+{B}` in ``Set``.
.. index::
single: sumor (term)
single: inleft (term)
single: inright (term)
single: A+{B} (term)
.. coqtop:: in
Inductive sumor (A:Set) (B:Prop) : Set :=
| inleft (_:A)
| inright (_:B).
We may define variants of the axiom of choice, like in Martin-Löf's
Intuitionistic Type Theory.
.. index::
single: Choice (term)
single: Choice2 (term)
single: bool_choice (term)
.. coqdoc::
Lemma Choice :
forall (S S':Set) (R:S -> S' -> Prop),
(forall x:S, {y : S' | R x y}) ->
{f : S -> S' | forall z:S, R z (f z)}.
Lemma Choice2 :
forall (S S':Set) (R:S -> S' -> Set),
(forall x:S, {y : S' & R x y}) ->
{f : S -> S' & forall z:S, R z (f z)}.
Lemma bool_choice :
forall (S:Set) (R1 R2:S -> Prop),
(forall x:S, {R1 x} + {R2 x}) ->
{f : S -> bool |
forall x:S, f x = true /\ R1 x \/ f x = false /\ R2 x}.
The next construct builds a sum between a data-type :g:`A:Type` and
an exceptional value encoding errors:
.. index::
single: Exc (term)
single: value (term)
single: error (term)
.. coqtop:: in
Definition Exc := option.
Definition value := Some.
Definition error := None.
This module ends with theorems, relating the sorts ``Set`` or
``Type`` and ``Prop`` in a way which is consistent with the
realizability interpretation.
.. index::
single: False_rect (term)
single: False_rec (term)
single: eq_rect (term)
single: absurd_set (term)
single: and_rect (term)
.. coqdoc::
Definition except := False_rec.
Theorem absurd_set : forall (A:Prop) (C:Set), A -> ~ A -> C.
Theorem and_rect2 :
forall (A B:Prop) (P:Type), (A -> B -> P) -> A /\ B -> P.
Basic Arithmetic
~~~~~~~~~~~~~~~~
The basic library includes a few elementary properties of natural
numbers, together with the definitions of predecessor, addition and
multiplication, in module ``Peano.v``. It also
provides a scope ``nat_scope`` gathering standard notations for
common operations (``+``, ``*``) and a decimal notation for
numbers, allowing for instance to write ``3`` for :g:`S (S (S O)))`. This also works on
the left hand side of a ``match`` expression (see for example
section :tacn:`refine`). This scope is opened by default.
.. example::
The following example is not part of the standard library, but it
shows the usage of the notations:
.. coqtop:: in reset
Fixpoint even (n:nat) : bool :=
match n with
| 0 => true
| 1 => false
| S (S n) => even n
end.
.. index::
single: eq_S (term)
single: pred (term)
single: pred_Sn (term)
single: eq_add_S (term)
single: not_eq_S (term)
single: IsSucc (term)
single: O_S (term)
single: n_Sn (term)
single: plus (term)
single: plus_n_O (term)
single: plus_n_Sm (term)
single: mult (term)
single: mult_n_O (term)
single: mult_n_Sm (term)
Now comes the content of module ``Peano``:
.. coqdoc::
Theorem eq_S : forall x y:nat, x = y -> S x = S y.
Definition pred (n:nat) : nat :=
match n with
| 0 => 0
| S u => u
end.
Theorem pred_Sn : forall m:nat, m = pred (S m).
Theorem eq_add_S : forall n m:nat, S n = S m -> n = m.
Hint Immediate eq_add_S : core.
Theorem not_eq_S : forall n m:nat, n <> m -> S n <> S m.
Definition IsSucc (n:nat) : Prop :=
match n with
| 0 => False
| S p => True
end.
Theorem O_S : forall n:nat, 0 <> S n.
Theorem n_Sn : forall n:nat, n <> S n.
Fixpoint plus (n m:nat) {struct n} : nat :=
match n with
| 0 => m
| S p => S (p + m)
end
where "n + m" := (plus n m) : nat_scope.
Lemma plus_n_O : forall n:nat, n = n + 0.
Lemma plus_n_Sm : forall n m:nat, S (n + m) = n + S m.
Fixpoint mult (n m:nat) {struct n} : nat :=
match n with
| 0 => 0
| S p => m + p * m
end
where "n * m" := (mult n m) : nat_scope.
Lemma mult_n_O : forall n:nat, 0 = n * 0.
Lemma mult_n_Sm : forall n m:nat, n * m + n = n * (S m).
Finally, it gives the definition of the usual orderings ``le``,
``lt``, ``ge`` and ``gt``.
.. index::
single: le (term)
single: le_n (term)
single: le_S (term)
single: lt (term)
single: ge (term)
single: gt (term)
.. This emits a notation already used warning but it won't be shown to
the user.
.. coqtop:: in warn
Inductive le (n:nat) : nat -> Prop :=
| le_n : le n n
| le_S : forall m:nat, n <= m -> n <= (S m)
where "n <= m" := (le n m) : nat_scope.
Definition lt (n m:nat) := S n <= m.
Definition ge (n m:nat) := m <= n.
Definition gt (n m:nat) := m < n.
Properties of these relations are not initially known, but may be
required by the user from modules ``Le`` and ``Lt``. Finally,
``Peano`` gives some lemmas allowing pattern matching, and a double
induction principle.
.. index::
single: nat_case (term)
single: nat_double_ind (term)
.. coqdoc::
Theorem nat_case :
forall (n:nat) (P:nat -> Prop),
P 0 -> (forall m:nat, P (S m)) -> P n.
Theorem nat_double_ind :
forall R:nat -> nat -> Prop,
(forall n:nat, R 0 n) ->
(forall n:nat, R (S n) 0) ->
(forall n m:nat, R n m -> R (S n) (S m)) -> forall n m:nat, R n m.
Well-founded recursion
~~~~~~~~~~~~~~~~~~~~~~
The basic library contains the basics of well-founded recursion and
well-founded induction, in module ``Wf.v``.
.. index::
single: Well foundedness
single: Recursion
single: Well founded induction
single: Acc (term)
single: Acc_inv (term)
single: Acc_rect (term)
single: well_founded (term)
.. coqdoc::
Section Well_founded.
Variable A : Type.
Variable R : A -> A -> Prop.
Inductive Acc (x:A) : Prop :=
Acc_intro : (forall y:A, R y x -> Acc y) -> Acc x.
Lemma Acc_inv x : Acc x -> forall y:A, R y x -> Acc y.
Definition well_founded := forall a:A, Acc a.
Hypothesis Rwf : well_founded.
Theorem well_founded_induction :
forall P:A -> Set,
(forall x:A, (forall y:A, R y x -> P y) -> P x) -> forall a:A, P a.
Theorem well_founded_ind :
forall P:A -> Prop,
(forall x:A, (forall y:A, R y x -> P y) -> P x) -> forall a:A, P a.
The automatically generated scheme ``Acc_rect``
can be used to define functions by fixpoints using
well-founded relations to justify termination. Assuming
extensionality of the functional used for the recursive call, the
fixpoint equation can be proved.
.. index::
single: Fix_F (term)
single: Fix_eq (term)
single: Fix_F_inv (term)
single: Fix_F_eq (term)
.. coqdoc::
Section FixPoint.
Variable P : A -> Type.
Variable F : forall x:A, (forall y:A, R y x -> P y) -> P x.
Fixpoint Fix_F (x:A) (r:Acc x) {struct r} : P x :=
F x (fun (y:A) (p:R y x) => Fix_F y (Acc_inv x r y p)).
Definition Fix (x:A) := Fix_F x (Rwf x).
Hypothesis F_ext :
forall (x:A) (f g:forall y:A, R y x -> P y),
(forall (y:A) (p:R y x), f y p = g y p) -> F x f = F x g.
Lemma Fix_F_eq :
forall (x:A) (r:Acc x),
F x (fun (y:A) (p:R y x) => Fix_F y (Acc_inv x r y p)) = Fix_F x r.
Lemma Fix_F_inv : forall (x:A) (r s:Acc x), Fix_F x r = Fix_F x s.
Lemma Fix_eq : forall x:A, Fix x = F x (fun (y:A) (p:R y x) => Fix y).
End FixPoint.
End Well_founded.
Accessing the Type level
~~~~~~~~~~~~~~~~~~~~~~~~
The standard library includes ``Type`` level definitions of counterparts of some
logic concepts and basic lemmas about them.
The module ``Datatypes`` defines ``identity``, which is the ``Type`` level counterpart
of equality:
.. index::
single: identity (term)
.. coqtop:: in
Inductive identity (A:Type) (a:A) : A -> Type :=
identity_refl : identity A a a.
Some properties of ``identity`` are proved in the module ``Logic_Type``, which also
provides the definition of ``Type`` level negation:
.. index::
single: notT (term)
.. coqtop:: in
Definition notT (A:Type) := A -> False.
Tactics
~~~~~~~
A few tactics defined at the user level are provided in the initial
state, in module ``Tactics.v``. They are listed at
https://coq.inria.fr/stdlib/, in paragraph ``Init``, link ``Tactics``.
The standard library
--------------------
Survey
~~~~~~
The rest of the standard library is structured into the following
subdirectories:
* **Logic** : Classical logic and dependent equality
* **Arith** : Basic Peano arithmetic
* **PArith** : Basic positive integer arithmetic
* **NArith** : Basic binary natural number arithmetic
* **ZArith** : Basic relative integer arithmetic
* **Numbers** : Various approaches to natural, integer and cyclic numbers (currently axiomatically and on top of 2^31 binary words)
* **Bool** : Booleans (basic functions and results)
* **Lists** : Monomorphic and polymorphic lists (basic functions and results), Streams (infinite sequences defined with coinductive types)
* **Sets** : Sets (classical, constructive, finite, infinite, power set, etc.)
* **FSets** : Specification and implementations of finite sets and finite maps (by lists and by AVL trees)
* **Reals** : Axiomatization of real numbers (classical, basic functions, integer part, fractional part, limit, derivative, Cauchy series, power series and results,...)
* **Floats** : Machine implementation of floating-point arithmetic (for the binary64 format)
* **Relations** : Relations (definitions and basic results)
* **Sorting** : Sorted list (basic definitions and heapsort correctness)
* **Strings** : 8-bits characters and strings
* **Wellfounded** : Well-founded relations (basic results)
These directories belong to the initial load path of the system, and
the modules they provide are compiled at installation time. So they
are directly accessible with the command ``Require`` (see
Section :ref:`compiled-files`).
The different modules of the Coq standard library are documented
online at https://coq.inria.fr/stdlib/.
Peano’s arithmetic (nat)
~~~~~~~~~~~~~~~~~~~~~~~~
.. index::
single: Peano's arithmetic
single: nat_scope
While in the initial state, many operations and predicates of Peano's
arithmetic are defined, further operations and results belong to other
modules. For instance, the decidability of the basic predicates are
defined here. This is provided by requiring the module ``Arith``.
The following table describes the notations available in scope
``nat_scope`` :
=============== ===================
Notation Interpretation
=============== ===================
``_ < _`` ``lt``
``_ <= _`` ``le``
``_ > _`` ``gt``
``_ >= _`` ``ge``
``x < y < z`` ``x < y /\ y < z``
``x < y <= z`` ``x < y /\ y <= z``
``x <= y < z`` ``x <= y /\ y < z``
``x <= y <= z`` ``x <= y /\ y <= z``
``_ + _`` ``plus``
``_ - _`` ``minus``
``_ * _`` ``mult``
=============== ===================
Notations for integer arithmetic
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. index::
single: Arithmetical notations
single: + (term)
single: * (term)
single: - (term)
singel: / (term)
single: <= (term)
single: >= (term)
single: < (term)
single: > (term)
single: ?= (term)
single: mod (term)
The following table describes the syntax of expressions
for integer arithmetic. It is provided by requiring and opening the module ``ZArith`` and opening scope ``Z_scope``.
It specifies how notations are interpreted and, when not
already reserved, the precedence and associativity.
=============== ==================== ========== =============
Notation Interpretation Precedence Associativity
=============== ==================== ========== =============
``_ < _`` ``Z.lt``
``_ <= _`` ``Z.le``
``_ > _`` ``Z.gt``
``_ >= _`` ``Z.ge``
``x < y < z`` ``x < y /\ y < z``
``x < y <= z`` ``x < y /\ y <= z``
``x <= y < z`` ``x <= y /\ y < z``
``x <= y <= z`` ``x <= y /\ y <= z``
``_ ?= _`` ``Z.compare`` 70 no
``_ + _`` ``Z.add``
``_ - _`` ``Z.sub``
``_ * _`` ``Z.mul``
``_ / _`` ``Z.div``
``_ mod _`` ``Z.modulo`` 40 no
``- _`` ``Z.opp``
``_ ^ _`` ``Z.pow``
=============== ==================== ========== =============
.. example::
.. coqtop:: all reset
Require Import ZArith.
Check (2 + 3)%Z.
Open Scope Z_scope.
Check 2 + 3.
Real numbers library
~~~~~~~~~~~~~~~~~~~~
Notations for real numbers
++++++++++++++++++++++++++
This is provided by requiring and opening the module ``Reals`` and
opening scope ``R_scope``. This set of notations is very similar to
the notation for integer arithmetic. The inverse function was added.
=============== ===================
Notation Interpretation
=============== ===================
``_ < _`` ``Rlt``
``_ <= _`` ``Rle``
``_ > _`` ``Rgt``
``_ >= _`` ``Rge``
``x < y < z`` ``x < y /\ y < z``
``x < y <= z`` ``x < y /\ y <= z``
``x <= y < z`` ``x <= y /\ y < z``
``x <= y <= z`` ``x <= y /\ y <= z``
``_ + _`` ``Rplus``
``_ - _`` ``Rminus``
``_ * _`` ``Rmult``
``_ / _`` ``Rdiv``
``- _`` ``Ropp``
``/ _`` ``Rinv``
``_ ^ _`` ``pow``
=============== ===================
.. example::
.. coqtop:: all reset
Require Import Reals.
Check (2 + 3)%R.
Open Scope R_scope.
Check 2 + 3.
Some tactics for real numbers
+++++++++++++++++++++++++++++
In addition to the powerful ``ring``, ``field`` and ``lra``
tactics (see Chapter :ref:`tactics`), there are also:
.. tacn:: discrR
Proves that two real integer constants are different.
.. example::
.. coqtop:: all reset
Require Import DiscrR.
Open Scope R_scope.
Goal 5 <> 0.
discrR.
.. tacn:: split_Rabs
Allows unfolding the ``Rabs`` constant and splits corresponding conjunctions.
.. example::
.. coqtop:: all reset
Require Import Reals.
Open Scope R_scope.
Goal forall x:R, x <= Rabs x.
intro; split_Rabs.
.. tacn:: split_Rmult
Splits a condition that a product is non-null into subgoals
corresponding to the condition on each operand of the product.
.. example::
.. coqtop:: all reset
Require Import Reals.
Open Scope R_scope.
Goal forall x y z:R, x * y * z <> 0.
intros; split_Rmult.
These tactics has been written with the tactic language |Ltac|
described in Chapter :ref:`ltac`.
List library
~~~~~~~~~~~~
.. index::
single: Notations for lists
single: length (term)
single: head (term)
single: tail (term)
single: app (term)
single: rev (term)
single: nth (term)
single: map (term)
single: flat_map (term)
single: fold_left (term)
single: fold_right (term)
Some elementary operations on polymorphic lists are defined here.
They can be accessed by requiring module ``List``.
It defines the following notions:
* ``length``
* ``head`` : first element (with default)
* ``tail`` : all but first element
* ``app`` : concatenation
* ``rev`` : reverse
* ``nth`` : accessing n-th element (with default)
* ``map`` : applying a function
* ``flat_map`` : applying a function returning lists
* ``fold_left`` : iterator (from head to tail)
* ``fold_right`` : iterator (from tail to head)
The following table shows notations available when opening scope ``list_scope``.
========== ============== ========== =============
Notation Interpretation Precedence Associativity
========== ============== ========== =============
``_ ++ _`` ``app`` 60 right
``_ :: _`` ``cons`` 60 right
========== ============== ========== =============
.. _floats_library:
Floats library
~~~~~~~~~~~~~~
The library of primitive floating-point arithmetic can be loaded by
requiring module ``Floats``:
.. coqtop:: in
Require Import Floats.
It exports the module ``PrimFloat`` that provides a primitive type
named ``float``, defined in the kernel (see section :ref:`primitive-floats`),
as well as two variant types ``float_comparison`` and ``float_class``:
.. coqtop:: all
Print float.
Print float_comparison.
Print float_class.
It then defines the primitive operators below, using the processor
floating-point operators for binary64 in rounding-to-nearest even:
* ``abs``
* ``opp``
* ``sub``
* ``add``
* ``mul``
* ``div``
* ``sqrt``
* ``compare`` : compare two floats and return a ``float_comparison``
* ``classify`` : analyze a float and return a ``float_class``
* ``of_int63`` : round a primitive integer and convert it into a float
* ``normfr_mantissa`` : take a float in ``[0.5; 1.0)`` and return its mantissa
* ``frshiftexp`` : convert a float to fractional part in ``[0.5; 1.0)`` and integer part
* ``ldshiftexp`` : multiply a float by an integral power of ``2``
* ``next_up`` : return the next float towards positive infinity
* ``next_down`` : return the next float towards negative infinity
For special floating-point values, the following constants are also
defined:
* ``zero``
* ``neg_zero``
* ``one``
* ``two``
* ``infinity``
* ``neg_infinity``
* ``nan`` : Not a Number (assumed to be unique: the "payload" of NaNs is ignored)
The following table shows the notations available when opening scope
``float_scope``.
=========== ==============
Notation Interpretation
=========== ==============
``- _`` ``opp``
``_ - _`` ``sub``
``_ + _`` ``add``
``_ * _`` ``mul``
``_ / _`` ``div``
``_ =? _`` ``eqb``
``_ <? _`` ``ltb``
``_ <=? _`` ``leb``
``_ ?= _`` ``compare``
=========== ==============
Floating-point constants are parsed and pretty-printed as (17-digit)
decimal constants. This ensures that the composition
:math:`\text{parse} \circ \text{print}` amounts to the identity.
.. warn:: The constant @number is not a binary64 floating-point value. A closest value @number will be used and unambiguously printed @number. [inexact-float,parsing]
Not all decimal constants are floating-point values. This warning
is generated when parsing such a constant (for instance ``0.1``).
.. flag:: Printing Float
Turn this :term:`flag` off (it is on by default) to deactivate decimal
printing of floating-point constants. They will then be printed
with an hexadecimal representation.
.. example::
.. coqtop:: all
Open Scope float_scope.
Eval compute in 1 + 0.5.
Eval compute in 1 / 0.
Eval compute in 1 / -0.
Eval compute in 0 / 0.
Eval compute in 0 ?= -0.
Eval compute in nan ?= nan.
Eval compute in next_down (-1).
The primitive operators are specified with respect to their Gallina
counterpart, using the variant type ``spec_float``, and the injection
``Prim2SF``:
.. coqtop:: all
Print spec_float.
Check Prim2SF.
Check mul_spec.
For more details on the available definitions and lemmas, see the
online documentation of the ``Floats`` library.
.. _userscontributions:
Users’ contributions
--------------------
Numerous users' contributions have been collected and are available at
URL https://coq.inria.fr/opam/www/. On this web page, you have a list
of all contributions with informations (author, institution, quick
description, etc.) and the possibility to download them one by one.
You will also find informations on how to submit a new
contribution.
|