1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
|
.. _ArgumentsCommand:
Setting properties of a function's arguments
++++++++++++++++++++++++++++++++++++++++++++
.. cmd:: Arguments @reference {* @arg_specs } {* , {* @implicits_alt } } {? : {+, @args_modifier } }
.. insertprodn argument_spec args_modifier
.. prodn::
argument_spec ::= {? ! } @name {? % @scope_key }
arg_specs ::= @argument_spec
| /
| &
| ( {+ @argument_spec } ) {? % @scope_key }
| [ {+ @argument_spec } ] {? % @scope_key }
| %{ {+ @argument_spec } %} {? % @scope_key }
implicits_alt ::= @name
| [ {+ @name } ]
| %{ {+ @name } %}
args_modifier ::= simpl nomatch
| simpl never
| default implicits
| clear implicits
| clear scopes
| clear bidirectionality hint
| rename
| assert
| extra scopes
| clear scopes and implicits
| clear implicits and scopes
Specifies properties of the arguments of a function after the function has already
been defined. It gives fine-grained
control over the elaboration process (i.e. the translation of Gallina language
extensions into the core language used by the kernel). The command's effects include:
* Making arguments implicit. Afterward, implicit arguments
must be omitted in any expression that applies :token:`reference`.
* Declaring that some arguments of a given function should
be interpreted in a given scope.
* Affecting when the :tacn:`simpl` and :tacn:`cbn` tactics unfold the function.
See :ref:`Args_effect_on_unfolding`.
* Providing bidirectionality hints. See :ref:`bidirectionality_hints`.
This command supports the :attr:`local` and :attr:`global` attributes.
Default behavior is to limit the effect to the current section but also to
extend their effect outside the current module or library file.
Applying :attr:`local` limits the effect of the command to the current module if
it's not in a section. Applying :attr:`global` within a section extends the
effect outside the current sections and current module in which the command appears.
`/`
the function will be unfolded only if it's applied to at least the
arguments appearing before the `/`. See :ref:`Args_effect_on_unfolding`.
.. exn:: The / modifier may only occur once.
:undocumented:
`&`
tells the type checking algorithm to first type check the arguments
before the `&` and then to propagate information from that typing context
to type check the remaining arguments. See :ref:`bidirectionality_hints`.
.. exn:: The & modifier may only occur once.
:undocumented:
:n:`( ... ) {? % @scope }`
:n:`(@name__1 @name__2 ...)%@scope` is shorthand for :n:`@name__1%@scope @name__2%@scope ...`
:n:`[ ... ] {? % @scope }`
declares the enclosed names as implicit, non-maximally inserted.
:n:`[@name__1 @name__2 ... ]%@scope` is equivalent to :n:`[@name__1]%@scope [@name__2]%@scope ...`
:n:`%{ ... %} {? % @scope }`
declares the enclosed names as implicit, maximally inserted.
:n:`%{@name__1 @name__2 ... %}%@scope` is equivalent to :n:`%{@name__1%}%@scope %{@name__2%}%@scope ...`
`!`
the function will be unfolded only if all the arguments marked with `!`
evaluate to constructors. See :ref:`Args_effect_on_unfolding`.
:n:`@name {? % @scope }`
a *formal parameter* of the function :n:`@reference` (i.e.
the parameter name used in the function definition). Unless `rename` is specified,
the list of :n:`@name`\s must be a prefix of the formal parameters, including all implicit
arguments. `_` can be used to skip over a formal parameter.
The construct :n:`@name {? % @scope }` declares :n:`@name` as non-implicit if `clear implicits` is specified or at least one other name is declared implicit in the same list of :n:`@name`\s.
:token:`scope` can be either a scope name or its delimiting key. See :ref:`binding_to_scope`.
.. exn:: To rename arguments the 'rename' flag must be specified.
:undocumented:
.. exn:: Flag 'rename' expected to rename @name into @name.
:undocumented:
.. exn:: Arguments of section variables such as @name may not be renamed.
:undocumented:
`clear implicits`
makes all implicit arguments into explicit arguments
.. exn:: The 'clear implicits' flag must be omitted if implicit annotations are given.
:undocumented:
`default implicits`
automatically determine the implicit arguments of the object.
See :ref:`auto_decl_implicit_args`.
.. exn:: The 'default implicits' flag is incompatible with implicit annotations.
:undocumented:
`rename`
rename implicit arguments for the object. See the example :ref:`here <renaming_implicit_arguments>`.
`assert`
assert that the object has the expected number of arguments with the
expected names. See the example here: :ref:`renaming_implicit_arguments`.
.. warn:: This command is just asserting the names of arguments of @qualid. If this is what you want, add ': assert' to silence the warning. If you want to clear implicit arguments, add ': clear implicits'. If you want to clear notation scopes, add ': clear scopes'
:undocumented:
`clear scopes`
clears argument scopes of :n:`@reference`
`extra scopes`
defines extra argument scopes, to be used in case of coercion to ``Funclass``
(see :ref:`coercions`) or with a computed type.
`simpl nomatch`
prevents performing a simplification step for :n:`@reference`
that would expose a match construct in the head position. See :ref:`Args_effect_on_unfolding`.
`simpl never`
prevents performing a simplification step for :n:`@reference`. See :ref:`Args_effect_on_unfolding`.
`clear bidirectionality hint`
removes the bidirectionality hint, the `&`
:n:`@implicits_alt`
use to specify alternative implicit argument declarations
for functions that can only be
applied to a fixed number of arguments (excluding, for instance,
functions whose type is polymorphic).
For parsing, the longest list of implicit arguments matching the function application
is used to select which implicit arguments are inserted.
For printing, the alternative with the most implicit arguments is used; the
implict arguments will be omitted if :flag:`Printing Implicit` is not set.
See the example :ref:`here<example_more_implicits>`.
.. todo the above feature seems a bit unnatural and doesn't play well with partial
application. See https://github.com/coq/coq/pull/11718#discussion_r408841762
Use :cmd:`About` to view the current implicit arguments setting for a :token:`reference`.
Or use the :cmd:`Print Implicit` command to see the implicit arguments
of an object (see :ref:`displaying-implicit-args`).
Manual declaration of implicit arguments
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. example::
.. coqtop:: reset all
Inductive list (A : Type) : Type :=
| nil : list A
| cons : A -> list A -> list A.
Check (cons nat 3 (nil nat)).
Arguments cons [A] _ _.
Arguments nil {A}.
Check (cons 3 nil).
Fixpoint map (A B : Type) (f : A -> B) (l : list A) : list B :=
match l with nil => nil | cons a t => cons (f a) (map A B f t) end.
Fixpoint length (A : Type) (l : list A) : nat :=
match l with nil => 0 | cons _ m => S (length A m) end.
Arguments map [A B] f l.
Arguments length {A} l. (* A has to be maximally inserted *)
Check (fun l:list (list nat) => map length l).
.. _example_more_implicits:
.. example:: Multiple alternatives with :n:`@implicits_alt`
.. coqtop:: all
Arguments map [A B] f l, [A] B f l, A B f l.
Check (fun l => map length l = map (list nat) nat length l).
.. _auto_decl_implicit_args:
Automatic declaration of implicit arguments
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The ":n:`default implicits`" :token:`args_modifier` clause tells Coq to automatically determine the
implicit arguments of the object.
Auto-detection is governed by flags specifying whether strict,
contextual, or reversible-pattern implicit arguments must be
considered or not (see :ref:`controlling-strict-implicit-args`, :ref:`controlling-contextual-implicit-args`,
:ref:`controlling-rev-pattern-implicit-args` and also :ref:`controlling-insertion-implicit-args`).
.. example:: Default implicits
.. coqtop:: reset all
Inductive list (A:Set) : Set :=
| nil : list A
| cons : A -> list A -> list A.
Arguments cons : default implicits.
Print Implicit cons.
Arguments nil : default implicits.
Print Implicit nil.
Set Contextual Implicit.
Arguments nil : default implicits.
Print Implicit nil.
The computation of implicit arguments takes account of the unfolding
of :term:`constants <constant>`. For instance, the variable ``p`` below has type
``(Transitivity R)`` which is reducible to
``forall x,y:U, R x y -> forall z:U, R y z -> R x z``. As the variables ``x``, ``y`` and ``z``
appear strictly in the :term:`body` of the type, they are implicit.
.. coqtop:: all
Parameter X : Type.
Definition Relation := X -> X -> Prop.
Definition Transitivity (R:Relation) := forall x y:X, R x y -> forall z:X, R y z -> R x z.
Parameters (R : Relation) (p : Transitivity R).
Arguments p : default implicits.
Print p.
Print Implicit p.
Parameters (a b c : X) (r1 : R a b) (r2 : R b c).
Check (p r1 r2).
.. _renaming_implicit_arguments:
Renaming implicit arguments
~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. example:: (continued) Renaming implicit arguments
.. coqtop:: all
Arguments p [s t] _ [u] _: rename.
Check (p r1 (u:=c)).
Check (p (s:=a) (t:=b) r1 (u:=c) r2).
Fail Arguments p [s t] _ [w] _ : assert.
.. _binding_to_scope:
Binding arguments to a scope
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The following command declares that the first two arguments of :g:`plus_fct`
are in the :token:`scope` delimited by the key ``F`` (``Rfun_scope``) and the third
argument is in the scope delimited by the key ``R`` (``R_scope``).
.. coqdoc::
Arguments plus_fct (f1 f2)%F x%R.
When interpreting a term, if some of the arguments of :token:`reference` are built
from a notation, then this notation is interpreted in the scope stack
extended by the scope bound (if any) to this argument. The effect of
the scope is limited to the argument itself. It does not propagate to
subterms but the subterms that, after interpretation of the notation,
turn to be themselves arguments of a reference are interpreted
accordingly to the argument scopes bound to this reference.
.. note::
In notations, the subterms matching the identifiers of the
notations are interpreted in the scope in which the identifiers
occurred at the time of the declaration of the notation. Here is an
example:
.. coqtop:: all
Parameter g : bool -> bool.
Declare Scope mybool_scope.
Notation "@@" := true (only parsing) : bool_scope.
Notation "@@" := false (only parsing): mybool_scope.
Bind Scope bool_scope with bool.
Notation "# x #" := (g x) (at level 40).
Check # @@ #.
Arguments g _%mybool_scope.
Check # @@ #.
Delimit Scope mybool_scope with mybool.
Check # @@%mybool #.
.. _Args_effect_on_unfolding:
Effects of :cmd:`Arguments` on unfolding
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+ `simpl never` indicates that a :term:`constant` should never be unfolded by :tacn:`cbn` or
:tacn:`simpl`:
.. example::
.. coqtop:: all
Arguments minus n m : simpl never.
After that command an expression like :g:`(minus (S x) y)` is left
untouched by the tactics :tacn:`cbn` and :tacn:`simpl`.
+ A :term:`constant` can be marked to be unfolded only if it's applied to at least
the arguments appearing before the `/` in a :cmd:`Arguments` command.
.. example::
.. coqtop:: all
Definition fcomp A B C f (g : A -> B) (x : A) : C := f (g x).
Arguments fcomp {A B C} f g x /.
Notation "f \o g" := (fcomp f g) (at level 50).
After that command the expression :g:`(f \o g)` is left untouched by
:tacn:`simpl` while :g:`((f \o g) t)` is reduced to :g:`(f (g t))`.
The same mechanism can be used to make a :term:`constant` volatile, i.e.
always unfolded.
.. example::
.. coqtop:: all
Definition volatile := fun x : nat => x.
Arguments volatile / x.
+ A :term:`constant` can be marked to be unfolded only if an entire set of
arguments evaluates to a constructor. The ``!`` symbol can be used to mark
such arguments.
.. example::
.. coqtop:: all
Arguments minus !n !m.
After that command, the expression :g:`(minus (S x) y)` is left untouched
by :tacn:`simpl`, while :g:`(minus (S x) (S y))` is reduced to :g:`(minus x y)`.
+ `simpl nomatch` indicates that a :term:`constant` should not be unfolded if it would expose
a `match` construct in the head position. This affects the :tacn:`cbn`,
:tacn:`simpl` and :tacn:`hnf` tactics.
.. example::
.. coqtop:: all
Arguments minus n m : simpl nomatch.
In this case, :g:`(minus (S (S x)) (S y))` is simplified to :g:`(minus (S x) y)`
even if an extra simplification is possible.
In detail: the tactic :tacn:`simpl` first applies βι-reduction. Then, it
expands transparent :term:`constants <constant>` and tries to reduce further using βι-reduction.
But, when no ι rule is applied after unfolding then
δ-reductions are not applied. For instance trying to use :tacn:`simpl` on
:g:`(plus n O) = n` changes nothing.
.. _bidirectionality_hints:
Bidirectionality hints
~~~~~~~~~~~~~~~~~~~~~~
When type-checking an application, Coq normally does not use information from
the context to infer the types of the arguments. It only checks after the fact
that the type inferred for the application is coherent with the expected type.
Bidirectionality hints make it possible to specify that after type-checking the
first arguments of an application, typing information should be propagated from
the context to help inferring the types of the remaining arguments.
.. todo the following text is a start on better wording but not quite complete.
See https://github.com/coq/coq/pull/11718#discussion_r410219992
..
Two common methods to determine the type of a construct are:
* *type checking*, which is verifying that a construct matches a known type, and
* *type inference*, with is inferring the type of a construct by analyzing the construct.
Methods that combine these approaches are known as *bidirectional typing*.
Coq normally uses only the first approach to infer the types of arguments,
then later verifies that the inferred type is consistent with the expected type.
*Bidirectionality hints* specify to use both methods: after type checking the
first arguments of an application (appearing before the `&` in :cmd:`Arguments`),
typing information from them is propagated to the remaining arguments to help infer their types.
An :cmd:`Arguments` command containing :n:`@arg_specs__1 & @arg_specs__2`
provides bidirectionality hints.
It tells the typechecking algorithm, when type checking
applications of :n:`@qualid`, to first type check the arguments in
:n:`@arg_specs__1` and then propagate information from the typing context to
type check the remaining arguments (in :n:`@arg_specs__2`).
.. example:: Bidirectionality hints
In a context where a coercion was declared from ``bool`` to ``nat``:
.. coqtop:: in reset
Definition b2n (b : bool) := if b then 1 else 0.
Coercion b2n : bool >-> nat.
Coq cannot automatically coerce existential statements over ``bool`` to
statements over ``nat``, because the need for inserting a coercion is known
only from the expected type of a subterm:
.. coqtop:: all
Fail Check (ex_intro _ true _ : exists n : nat, n > 0).
However, a suitable bidirectionality hint makes the example work:
.. coqtop:: all
Arguments ex_intro _ _ & _ _.
Check (ex_intro _ true _ : exists n : nat, n > 0).
Coq will attempt to produce a term which uses the arguments you
provided, but in some cases involving Program mode the arguments after
the bidirectionality starts may be replaced by convertible but
syntactically different terms.
|