1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
|
.. _ImplicitArguments:
Implicit arguments
------------------
An :gdef:`implicit argument` of a function is an argument which can be
inferred from contextual knowledge. There are different kinds of
implicit arguments that can be considered implicit in different ways.
There are also various commands to control the setting or the
inference of implicit arguments.
The different kinds of implicit arguments
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Implicit arguments inferable from the knowledge of other arguments of a function
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
The first kind of implicit arguments covers the arguments that are
inferable from the knowledge of the type of other arguments of the
function, or of the type of the surrounding context of the
application. Especially, such implicit arguments correspond to
parameters dependent in the type of the function. Typical implicit
arguments are the type arguments in polymorphic functions. There are
several kinds of such implicit arguments.
**Strict Implicit Arguments**
An implicit argument can be either strict or non-strict. An implicit
argument is said to be *strict* if, whatever the other arguments of the
function are, it is still inferable from the type of some other
argument. Technically, an implicit argument is strict if it
corresponds to a parameter which is not applied to a variable which
itself is another parameter of the function (since this parameter may
erase its arguments), not in the body of a match, and not itself
applied or matched against patterns (since the original form of the
argument can be lost by reduction).
For instance, the first argument of
::
cons: forall A:Set, A -> list A -> list A
in module ``List.v`` is strict because :g:`list` is an inductive type and :g:`A`
will always be inferable from the type :g:`list A` of the third argument of
:g:`cons`. Also, the first argument of :g:`cons` is strict with respect to the second one,
since the first argument is exactly the type of the second argument.
On the contrary, the second argument of a term of type
::
forall P:nat->Prop, forall n:nat, P n -> ex nat P
is implicit but not strict, since it can only be inferred from the
type :g:`P n` of the third argument and if :g:`P` is, e.g., :g:`fun _ => True`, it
reduces to an expression where ``n`` does not occur any longer. The first
argument :g:`P` is implicit but not strict either because it can only be
inferred from :g:`P n` and :g:`P` is not canonically inferable from an arbitrary
:g:`n` and the normal form of :g:`P n`. Consider, e.g., that :g:`n` is :math:`0` and the third
argument has type :g:`True`, then any :g:`P` of the form
::
fun n => match n with 0 => True | _ => anything end
would be a solution of the inference problem.
**Contextual Implicit Arguments**
An implicit argument can be *contextual* or not. An implicit argument
is said to be *contextual* if it can be inferred only from the knowledge of
the type of the context of the current expression. For instance, the
only argument of::
nil : forall A:Set, list A
is contextual. Similarly, both arguments of a term of type::
forall P:nat->Prop, forall n:nat, P n \/ n = 0
are contextual (moreover, :g:`n` is strict and :g:`P` is not).
**Reversible-Pattern Implicit Arguments**
There is another class of implicit arguments that can be reinferred
unambiguously if all the types of the remaining arguments are known.
This is the class of implicit arguments occurring in the type of
another argument in position of reversible pattern, which means it is
at the head of an application but applied only to uninstantiated
distinct variables. Such an implicit argument is called *reversible-
pattern implicit argument*. A typical example is the argument :g:`P` of
nat_rec in
::
nat_rec : forall P : nat -> Set, P 0 ->
(forall n : nat, P n -> P (S n)) -> forall x : nat, P x
(:g:`P` is reinferable by abstracting over :g:`n` in the type :g:`P n`).
See :ref:`controlling-rev-pattern-implicit-args` for the automatic declaration of reversible-pattern
implicit arguments.
Implicit arguments inferable by resolution
++++++++++++++++++++++++++++++++++++++++++
This corresponds to a class of non-dependent implicit arguments that
are solved based on the structure of their type only.
Maximal and non-maximal insertion of implicit arguments
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When a function is partially applied and the next argument to
apply is an implicit argument, the application can be interpreted in two ways.
If the next argument is declared as *maximally inserted*, the partial
application will include that argument. Otherwise, the argument is
*non-maximally inserted* and the partial application will not include that argument.
Each implicit argument can be declared to be inserted maximally or non
maximally. In Coq, maximally inserted implicit arguments are written between curly braces
"{ }" and non-maximally inserted implicit arguments are written in square brackets "[ ]".
.. seealso:: :flag:`Maximal Implicit Insertion`
Trailing Implicit Arguments
+++++++++++++++++++++++++++
An implicit argument is considered *trailing* when all following arguments are
implicit. Trailing implicit arguments must be declared as maximally inserted;
otherwise they would never be inserted.
.. exn:: Argument @name is a trailing implicit, so it can't be declared non maximal. Please use %{ %} instead of [ ].
For instance:
.. coqtop:: all fail
Fail Definition double [n] := n + n.
Casual use of implicit arguments
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If an argument of a function application can be inferred from the type
of the other arguments, the user can force inference of the argument
by replacing it with `_`.
.. exn:: Cannot infer a term for this placeholder.
:name: Cannot infer a term for this placeholder. (Casual use of implicit arguments)
Coq was not able to deduce an instantiation of a “_”.
.. _declare-implicit-args:
Declaration of implicit arguments
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Implicit arguments can be declared when a function is declared or
afterwards, using the :cmd:`Arguments` command.
Implicit Argument Binders
+++++++++++++++++++++++++
.. insertprodn implicit_binders implicit_binders
.. prodn::
implicit_binders ::= %{ {+ @name } {? : @type } %}
| [ {+ @name } {? : @type } ]
In the context of a function definition, these forms specify that
:token:`name` is an implicit argument. The first form, with curly
braces, makes :token:`name` a maximally inserted implicit argument. The second
form, with square brackets, makes :token:`name` a non-maximally inserted implicit argument.
For example:
.. coqtop:: all
Definition id {A : Type} (x : A) : A := x.
declares the argument `A` of `id` as a maximally
inserted implicit argument. `A` may be omitted
in applications of `id` but may be specified if needed:
.. coqtop:: all
Definition compose {A B C} (g : B -> C) (f : A -> B) := fun x => g (f x).
Goal forall A, compose id id = id (A:=A).
For non-maximally inserted implicit arguments, use square brackets:
.. coqtop:: all
Fixpoint map [A B : Type] (f : A -> B) (l : list A) : list B :=
match l with
| nil => nil
| cons a t => cons (f a) (map f t)
end.
Print Implicit map.
For (co)inductive datatype
declarations, the semantics are the following: an inductive parameter
declared as an implicit argument need not be repeated in the inductive
definition and will become implicit for the inductive type and the constructors.
For example:
.. coqtop:: all
Inductive list {A : Type} : Type :=
| nil : list
| cons : A -> list -> list.
Print list.
One can always specify the parameter if it is not uniform using the
usual implicit arguments disambiguation syntax.
The syntax is also supported in internal binders. For instance, in the
following kinds of expressions, the type of each declaration present
in :n:`{* @binder }` can be bracketed to mark the declaration as
implicit:
* :n:`fun (@ident:forall {* @binder }, @type) => @term`,
* :n:`forall (@ident:forall {* @binder }, @type), @type`,
* :n:`let @ident {* @binder } := @term in @term`,
* :n:`fix @ident {* @binder } := @term in @term` and
* :n:`cofix @ident {* @binder } := @term in @term`.
Here is an example:
.. coqtop:: all
Axiom Ax :
forall (f:forall {A} (a:A), A * A),
let g {A} (x y:A) := (x,y) in
f 0 = g 0 0.
.. warn:: Ignoring implicit binder declaration in unexpected position
This is triggered when setting an argument implicit in an
expression which does not correspond to the type of an assumption
or to the :term:`body` of a definition. Here is an example:
.. coqtop:: all warn
Definition f := forall {y}, y = 0.
.. warn:: Making shadowed name of implicit argument accessible by position
This is triggered when two variables of same name are set implicit
in the same block of binders, in which case the first occurrence is
considered to be unnamed. Here is an example:
.. coqtop:: all warn
Check let g {x:nat} (H:x=x) {x} (H:x=x) := x in 0.
Mode for automatic declaration of implicit arguments
++++++++++++++++++++++++++++++++++++++++++++++++++++
.. flag:: Implicit Arguments
This :term:`flag` (off by default) allows to systematically declare implicit
the arguments detectable as such. Auto-detection of implicit arguments is
governed by flags controlling whether strict and contextual implicit
arguments have to be considered or not.
.. _controlling-strict-implicit-args:
Controlling strict implicit arguments
+++++++++++++++++++++++++++++++++++++
.. flag:: Strict Implicit
When the mode for automatic declaration of implicit arguments is on,
the default is to automatically set implicit only the strict implicit
arguments plus, for historical reasons, a small subset of the non-strict
implicit arguments. To relax this constraint and to set
implicit all non-strict implicit arguments by default, you can turn this
:term:`flag` off.
.. flag:: Strongly Strict Implicit
Use this :term:`flag` (off by default) to capture exactly the strict implicit
arguments and no more than the strict implicit arguments.
.. _controlling-contextual-implicit-args:
Controlling contextual implicit arguments
+++++++++++++++++++++++++++++++++++++++++
.. flag:: Contextual Implicit
By default, Coq does not automatically set implicit the contextual
implicit arguments. You can turn this :term:`flag` on to tell Coq to also
infer contextual implicit argument.
.. _controlling-rev-pattern-implicit-args:
Controlling reversible-pattern implicit arguments
+++++++++++++++++++++++++++++++++++++++++++++++++
.. flag:: Reversible Pattern Implicit
By default, Coq does not automatically set implicit the reversible-pattern
implicit arguments. You can turn this :term:`flag` on to tell Coq to also infer
reversible-pattern implicit argument.
.. _controlling-insertion-implicit-args:
Controlling the insertion of implicit arguments not followed by explicit arguments
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
.. flag:: Maximal Implicit Insertion
Assuming the implicit argument mode is on, this :term:`flag` (off by default)
declares implicit arguments to be automatically inserted when a
function is partially applied and the next argument of the function is
an implicit one.
Combining manual declaration and automatic declaration
++++++++++++++++++++++++++++++++++++++++++++++++++++++
When some arguments are manually specified implicit with binders in a definition
and the automatic declaration mode in on, the manual implicit arguments are added to the
automatically declared ones.
In that case, and when the flag :flag:`Maximal Implicit Insertion` is set to off,
some trailing implicit arguments can be inferred to be non-maximally inserted. In
this case, they are converted to maximally inserted ones.
.. example::
.. coqtop:: all
Set Implicit Arguments.
Axiom eq0_le0 : forall (n : nat) (x : n = 0), n <= 0.
Print Implicit eq0_le0.
Axiom eq0_le0' : forall (n : nat) {x : n = 0}, n <= 0.
Print Implicit eq0_le0'.
.. _explicit-applications:
Explicit applications
~~~~~~~~~~~~~~~~~~~~~
In presence of non-strict or contextual arguments, or in presence of
partial applications, the synthesis of implicit arguments may fail, so
one may have to explicitly give certain implicit arguments of an
application.
To instantiate a dependent implicit argument, use the :n:`(@ident := @term)` form of :token:`arg`,
where :token:`ident` is the name of the implicit argument and :token:`term`
is its corresponding explicit term.
To instantiate a non-dependent implicit argument, use the :n:`(@natural := @term)` form of :token:`arg`,
where :token:`natural` is the index of the implicit argument among all
non-dependent arguments of the function (implicit or not, and starting
from 1) and :token:`term` is its corresponding explicit term.
Alternatively, one can deactivate
the hiding of implicit arguments for a single function application using the
:n:`@@qualid_annotated {+ @term1 }` form of :token:`term_application`.
.. example:: Syntax for explicitly giving implicit arguments (continued)
.. coqtop:: all
Parameter X : Type.
Definition Relation := X -> X -> Prop.
Definition Transitivity (R:Relation) := forall x y:X, R x y -> forall z:X, R y z -> R x z.
Parameters (R : Relation) (p : Transitivity R).
Arguments p : default implicits.
Print Implicit p.
Parameters (a b c : X) (r1 : R a b) (r2 : R b c).
Check (p r1 (z:=c)).
Check (p (x:=a) (y:=b) r1 (z:=c) r2).
.. exn:: Wrong argument name
:undocumented:
.. exn:: Wrong argument position
:undocumented:
.. exn:: Argument at position @natural is mentioned more than once
:undocumented:
.. exn:: Arguments given by name or position not supported in explicit mode
:undocumented:
.. exn:: Not enough non implicit arguments to accept the argument bound to @ident
:undocumented:
.. exn:: Not enough non implicit arguments to accept the argument bound to @natural
:undocumented:
.. _displaying-implicit-args:
Displaying implicit arguments
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. cmd:: Print Implicit @reference
Displays the implicit arguments associated with an object,
identifying which arguments are applied maximally or not.
Displaying implicit arguments when pretty-printing
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. flag:: Printing Implicit
By default, the basic pretty-printing rules hide the inferable implicit
arguments of an application. Turn this :term:`flag` on to force printing all
implicit arguments.
.. flag:: Printing Implicit Defensive
By default, the basic pretty-printing rules display implicit
arguments that are not detected as strict implicit arguments. This
“defensive” mode can quickly make the display cumbersome so this can
be deactivated by turning this :term:`flag` off.
.. seealso:: :flag:`Printing All`.
Interaction with subtyping
~~~~~~~~~~~~~~~~~~~~~~~~~~
When an implicit argument can be inferred from the type of more than
one of the other arguments, then only the type of the first of these
arguments is taken into account, and not an upper type of all of them.
As a consequence, the inference of the implicit argument of “=” fails
in
.. coqtop:: all
Fail Check nat = Prop.
but succeeds in
.. coqtop:: all
Check Prop = nat.
Deactivation of implicit arguments for parsing
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. insertprodn term_explicit term_explicit
.. prodn::
term_explicit ::= @ @qualid_annotated
This syntax can be used to disable implicit arguments for a single
function.
.. example::
The function `id` has one implicit argument and one explicit
argument.
.. coqtop:: all reset
Check (id 0).
Definition id' := @id.
The function `id'` has no implicit argument.
.. coqtop:: all
Check (id' nat 0).
.. flag:: Parsing Explicit
Turning this :term:`flag` on (it is off by default) deactivates the use of implicit arguments.
In this case, all arguments of :term:`constants <constant>`, inductive types,
constructors, etc, including the arguments declared as implicit, have
to be given as if no arguments were implicit. By symmetry, this also
affects printing.
.. example::
We can reproduce the example above using the :flag:`Parsing
Explicit` flag:
.. coqtop:: all reset
Set Parsing Explicit.
Definition id' := id.
Unset Parsing Explicit.
Check (id 1).
Check (id' nat 1).
Implicit types of variables
~~~~~~~~~~~~~~~~~~~~~~~~~~~
It is possible to bind variable names to a given type (e.g. in a
development using arithmetic, it may be convenient to bind the names :g:`n`
or :g:`m` to the type :g:`nat` of natural numbers).
.. cmd:: Implicit {| Type | Types } @reserv_list
:name: Implicit Type; Implicit Types
.. insertprodn reserv_list simple_reserv
.. prodn::
reserv_list ::= {+ ( @simple_reserv ) }
| @simple_reserv
simple_reserv ::= {+ @ident } : @type
Sets the type of bound
variables starting with :token:`ident` (either :token:`ident` itself or
:token:`ident` followed by one or more single quotes, underscore or
digits) to :token:`type` (unless the bound variable is already declared
with an explicit type, in which case, that type will be used).
.. example::
.. coqtop:: all
Require Import List.
Implicit Types m n : nat.
Lemma cons_inj_nat : forall m n l, n :: l = m :: l -> n = m.
Proof. intros m n. Abort.
Lemma cons_inj_bool : forall (m n:bool) l, n :: l = m :: l -> n = m.
Abort.
.. flag:: Printing Use Implicit Types
By default, the type of bound variables is not printed when
the variable name is associated with an implicit type which matches the
actual type of the variable. This feature can be deactivated by
turning this :term:`flag` off.
.. _implicit-generalization:
Implicit generalization
~~~~~~~~~~~~~~~~~~~~~~~
.. index:: `{ }
.. index:: `[ ]
.. index:: `( )
.. index:: `{! }
.. index:: `[! ]
.. index:: `(! )
.. insertprodn generalizing_binder term_generalizing
.. prodn::
generalizing_binder ::= `( {+, @typeclass_constraint } )
| `%{ {+, @typeclass_constraint } %}
| `[ {+, @typeclass_constraint } ]
typeclass_constraint ::= {? ! } @term
| %{ @name %} : {? ! } @term
| @name : {? ! } @term
term_generalizing ::= `%{ @term %}
| `( @term )
Implicit generalization is an automatic elaboration of a statement
with free variables into a closed statement where these variables are
quantified explicitly. Use the :cmd:`Generalizable` command to designate
which variables should be generalized.
It is activated within a binder by prefixing it with \`, and for terms by
surrounding it with \`{ }, or \`[ ] or \`( ).
Terms surrounded by \`{ } introduce their free variables as maximally
inserted implicit arguments, terms surrounded by \`[ ] introduce them as
non-maximally inserted implicit arguments and terms surrounded by \`( )
introduce them as explicit arguments.
Generalizing binders always introduce their free variables as
maximally inserted implicit arguments. The binder itself introduces
its argument as usual.
In the following statement, ``A`` and ``y`` are automatically
generalized, ``A`` is implicit and ``x``, ``y`` and the anonymous
equality argument are explicit.
.. coqtop:: all reset
Generalizable All Variables.
Definition sym `(x:A) : `(x = y -> y = x) := fun _ p => eq_sym p.
Print sym.
Dually to normal binders, the name is optional but the type is required:
.. coqtop:: all
Check (forall `{x = y :> A}, y = x).
When generalizing a binder whose type is a typeclass, its own class
arguments are omitted from the syntax and are generalized using
automatic names, without instance search. Other arguments are also
generalized unless provided. This produces a fully general statement.
this behavior may be disabled by prefixing the type with a ``!`` or
by forcing the typeclass name to be an explicit application using
``@`` (however the later ignores implicit argument information).
.. coqtop:: none
Set Warnings "-deprecated-instance-without-locality".
.. coqtop:: all
Class Op (A:Type) := op : A -> A -> A.
Class Commutative (A:Type) `(Op A) := commutative : forall x y, op x y = op y x.
Instance nat_op : Op nat := plus.
Set Printing Implicit.
Check (forall `{Commutative }, True).
Check (forall `{Commutative nat}, True).
Fail Check (forall `{Commutative nat _}, True).
Fail Check (forall `{!Commutative nat}, True).
Arguments Commutative _ {_}.
Check (forall `{!Commutative nat}, True).
Check (forall `{@Commutative nat plus}, True).
Multiple binders can be merged using ``,`` as a separator:
.. coqtop:: all
Check (forall `{Commutative A, Hnat : !Commutative nat}, True).
.. cmd:: Generalizable {| {| Variable | Variables } {+ @ident } | All Variables | No Variables }
Controls the set of generalizable identifiers. By default, no variables are
generalizable.
This command supports the :attr:`global` attribute.
The :n:`{| Variable | Variables } {+ @ident }` form allows generalization of only the given :n:`@ident`\s.
Using this command multiple times adds to the allowed identifiers. The other forms clear
the list of :n:`@ident`\s.
The :n:`All Variables` form generalizes all free variables in
the context that appear under a
generalization delimiter. This may result in confusing errors in case
of typos. In such cases, the context will probably contain some
unexpected generalized variables.
The :n:`No Variables` form disables implicit generalization entirely. This is
the default behavior (before any :cmd:`Generalizable` command has been entered).
|