File: inductive_functor_squash.v

package info (click to toggle)
coq-doc 8.16.1-1
  • links: PTS, VCS
  • area: non-free
  • in suites: bookworm
  • size: 42,788 kB
  • sloc: ml: 219,673; sh: 4,035; python: 3,372; ansic: 2,529; makefile: 728; lisp: 279; javascript: 87; xml: 24; sed: 2
file content (15 lines) | stat: -rw-r--r-- 256 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15


Module Type T.
  Parameter f : nat -> Type.
End T.

Module F(A:T).
  Inductive ind : Prop :=
    C : A.f 0 -> ind.
End F.

Module A. Definition f (x:nat) := True. End A.

Module M := F A.
(* M.ind could eliminate into Set/Type even though F.ind can't *)