1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
|
Require Import Ltac2.Ltac2.
Axiom f: nat -> nat.
Definition g := f.
Axiom Foo1: nat -> Prop.
Axiom Foo2: nat -> Prop.
Axiom Impl: forall n: nat, Foo1 (f n) -> Foo2 (f n).
Create HintDb foo discriminated.
#[export] Hint Constants Opaque : foo.
#[export] Hint Resolve Impl : foo.
Goal forall x, Foo1 (f x) -> Foo2 (g x).
Proof.
auto with foo.
#[export] Hint Transparent g : foo.
auto with foo.
Qed.
Goal forall (x: nat), exists y, f x = g y.
Proof.
intros.
eexists.
unify f g.
lazy_match! goal with
| [ |- ?a ?b = ?rhs ] => unify ($a $b) $rhs
end.
Abort.
|