1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * Copyright INRIA, CNRS and contributors *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
Require Import ssreflect.
Set Implicit Arguments.
Axiom P : nat -> nat -> Prop.
Axiom tr :
forall x y z, P x y -> P y z -> P x z.
Lemma test a b c : P a c -> P a b.
Proof.
intro H.
Fail have [: s1 s2] H1 : P a b := @tr _ _ _ s1 s2.
have [: w s1 s2] H1 : P a b := @tr _ w _ s1 s2.
Abort.
|