File: congr.v

package info (click to toggle)
coq-doc 8.16.1-1
  • links: PTS, VCS
  • area: non-free
  • in suites: bookworm
  • size: 42,788 kB
  • sloc: ml: 219,673; sh: 4,035; python: 3,372; ansic: 2,529; makefile: 728; lisp: 279; javascript: 87; xml: 24; sed: 2
file content (42 lines) | stat: -rw-r--r-- 1,737 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
(************************************************************************)
(*         *   The Coq Proof Assistant / The Coq Development Team       *)
(*  v      *         Copyright INRIA, CNRS and contributors             *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)

(* (c) Copyright 2006-2016 Microsoft Corporation and Inria.                  *)

Require Import ssreflect.
Require Import ssrbool TestSuite.ssr_mini_mathcomp.

Lemma test1 : forall a b : nat, a == b -> a == 0 -> b == 0.
Proof. move=> a b Eab Eac; congr (_ == 0) : Eac; exact: eqP Eab. Qed.

Definition arrow A B := A -> B.

Lemma test2 : forall a b : nat, a == b -> arrow (a == 0) (b == 0).
Proof. move=> a b Eab; congr (_ == 0); exact: eqP Eab. Qed.

Definition equals T (A B : T) := A = B.

Lemma test3 : forall a b : nat, a = b -> equals nat (a + b) (b + b).
Proof. move=> a b E; congr (_ + _); exact E. Qed.

Variable S : eqType.
Variable f : nat -> S.
Coercion f : nat >-> Equality.sort.

Lemma test4 : forall a b : nat, b = a -> @eq S (b + b) (a + a).
Proof. move=> a b Eba; congr (_ + _); exact:  Eba. Qed.

Open Scope type_scope.

Lemma test5 : forall (P Q Q' : Type) (h : Q = Q'), P * Q = P * Q'.
Proof. move=>*; by congr (_ * _). Qed.

Lemma test6 : forall (P Q Q' : Type) (h : Q = Q'), P * Q -> P * Q'.
Proof. move=> P Q Q' h; by congr (_ * _). Qed.