File: derive_inversion.v

package info (click to toggle)
coq-doc 8.16.1-1
  • links: PTS, VCS
  • area: non-free
  • in suites: bookworm
  • size: 42,788 kB
  • sloc: ml: 219,673; sh: 4,035; python: 3,372; ansic: 2,529; makefile: 728; lisp: 279; javascript: 87; xml: 24; sed: 2
file content (29 lines) | stat: -rw-r--r-- 1,140 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
(************************************************************************)
(*         *   The Coq Proof Assistant / The Coq Development Team       *)
(*  v      *         Copyright INRIA, CNRS and contributors             *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)

Require Import ssreflect ssrbool.

Set Implicit Arguments.

  Inductive wf T : bool -> option T -> Type :=
  | wf_f : wf false None
  | wf_t : forall x, wf true (Some x).

  Derive Inversion wf_inv with (forall T b (o : option T), wf b o) Sort Prop.

  Lemma Problem T b (o : option T) :
    wf b o ->
    match b with
    | true  => exists x, o = Some x
    | false => o = None
    end.
  Proof.
  by case: b; elim/wf_inv=> //; case: o=> // a *; exists a.
  Qed.