File: ipat_dup.v

package info (click to toggle)
coq-doc 8.16.1-1
  • links: PTS, VCS
  • area: non-free
  • in suites: bookworm
  • size: 42,788 kB
  • sloc: ml: 219,673; sh: 4,035; python: 3,372; ansic: 2,529; makefile: 728; lisp: 279; javascript: 87; xml: 24; sed: 2
file content (29 lines) | stat: -rw-r--r-- 522 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
Require Import ssreflect.

Section Dup.

Section withP.

Variable P : nat -> Prop.

Lemma test_dup1 : forall n : nat, P n.
Proof. move=> /[dup] m n; suff: P n by []. Abort.

Lemma test_dup2 : let n := 1 in False.
Proof. move=> /[dup] m n; have : m = n := eq_refl. Abort.

End withP.

Lemma test_dup_plus P Q : P -> Q -> False.
Proof.
move=> + /[dup] q.
suff: P -> Q -> False by [].
Abort.

Lemma test_dup_plus2 P : P -> let x := 0 in False.
Proof.
move=> + /[dup] y.
suff: P -> let x := 0 in False by [].
Abort.

End Dup.