1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * Copyright INRIA, CNRS and contributors *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *)
Require Import ssreflect.
Require Import ssrbool TestSuite.ssr_mini_mathcomp.
Set Implicit Arguments.
Unset Strict Implicit.
Import Prenex Implicits.
(* error 1 *)
Ltac subst1 H := move: H; rewrite {1} addnC; move => H.
Ltac subst2 H := rewrite addnC in H.
Goal ( forall a b: nat, b+a = 0 -> b+a=0).
Proof. move=> a b hyp. subst1 hyp. subst2 hyp. done. Qed.
|