1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * Copyright INRIA, CNRS and contributors *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *)
Require Import ssreflect.
Class foo (A : Type) : Type := mkFoo { val : A }.
Instance foo_pair {A B} {f1 : foo A} {f2 : foo B} : foo (A * B) | 2 :=
{| val := (@val _ f1, @val _ f2) |}.
Instance foo_nat : foo nat | 3 := {| val := 0 |}.
Definition id {A} (x : A) := x.
Axiom E : forall A {f : foo A} (a : A), id a = (@val _ f).
Lemma test (x : nat) : id true = true -> id x = 0.
Proof.
Fail move=> _; reflexivity.
Timeout 2 rewrite E => _; reflexivity.
Qed.
Definition P {A} (x : A) : Prop := x = x.
Axiom V : forall A {f : foo A} (x:A), P x -> P (id x).
Lemma test1 (x : nat) : P x -> P (id x).
Proof.
move=> px.
Timeout 2 Fail move/V: px.
Timeout 2 move/V : (px) => _.
move/(V nat) : px => H; exact H.
Qed.
|