File: unkeyed.v

package info (click to toggle)
coq-doc 8.16.1-1
  • links: PTS, VCS
  • area: non-free
  • in suites: bookworm
  • size: 42,788 kB
  • sloc: ml: 219,673; sh: 4,035; python: 3,372; ansic: 2,529; makefile: 728; lisp: 279; javascript: 87; xml: 24; sed: 2
file content (31 lines) | stat: -rw-r--r-- 1,281 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
(************************************************************************)
(*         *   The Coq Proof Assistant / The Coq Development Team       *)
(*  v      *         Copyright INRIA, CNRS and contributors             *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)

(* (c) Copyright 2006-2016 Microsoft Corporation and Inria.                  *)

Require Import ssreflect.
Require Import ssrfun ssrbool TestSuite.ssr_mini_mathcomp.

Set Implicit Arguments.
Unset Strict Implicit.
Import Prenex Implicits.

Lemma test0 (a b : unit) f : a = f b.
Proof. by rewrite !unitE.  Qed.

Lemma phE T : all_equal_to (Phant T). Proof. by case. Qed.

Lemma test1 (a b : phant nat) f : a = f b.
Proof.  by rewrite !phE.  Qed.

Lemma eq_phE (T : eqType) : all_equal_to (Phant T). Proof. by case. Qed.

Lemma test2 (a b : phant bool) f : a = locked (f b).
Proof. by rewrite !eq_phE. Qed.