1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * Copyright INRIA, CNRS and contributors *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *)
Require Import ssreflect.
Require Import ssrfun ssrbool TestSuite.ssr_mini_mathcomp.
Set Implicit Arguments.
Unset Strict Implicit.
Import Prenex Implicits.
Lemma test0 (a b : unit) f : a = f b.
Proof. by rewrite !unitE. Qed.
Lemma phE T : all_equal_to (Phant T). Proof. by case. Qed.
Lemma test1 (a b : phant nat) f : a = f b.
Proof. by rewrite !phE. Qed.
Lemma eq_phE (T : eqType) : all_equal_to (Phant T). Proof. by case. Qed.
Lemma test2 (a b : phant bool) f : a = locked (f b).
Proof. by rewrite !eq_phE. Qed.
|