1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * Copyright INRIA, CNRS and contributors *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *)
Require Import ssreflect.
Require Import ssrbool TestSuite.ssr_mini_mathcomp.
Axiom P : forall T, seq T -> Prop.
Goal (forall T (s : seq T), P _ s).
move=> T s.
elim: s => [| x /lastP [| s] IH].
Admitted.
Goal forall x : 'I_1, x = 0 :> nat.
move=> /ord1 -> /=; exact: refl_equal.
Qed.
Goal forall x : 'I_1, x = 0 :> nat.
move=> x.
move=> /ord1 -> in x |- *.
exact: refl_equal.
Qed.
|