1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
|
(* A bit complex but realistic example whose last fixpoint definition
used to fail in 8.1 because of wrong environment in conversion
problems (see revision 9664) *)
Require Import List.
Require Import Arith.
Parameter predicate : Set.
Parameter function : Set.
Definition variable := nat.
Definition x0 := 0.
Definition var_eq_dec := eq_nat_dec.
Inductive term : Set :=
| App : function -> term -> term
| Var : variable -> term.
Definition atom := (predicate * term)%type.
Inductive formula : Set :=
| Atom : atom -> formula
| Imply : formula -> formula -> formula
| Forall : variable -> formula -> formula.
Notation "A --> B" := (Imply A B) (at level 40).
Definition substitution range := list (variable * range).
Fixpoint remove_assoc (A:Set)(x:variable)(rho: substitution A){struct rho}
: substitution A :=
match rho with
| nil => rho
| (y,t) :: rho => if var_eq_dec x y then remove_assoc A x rho
else (y,t) :: remove_assoc A x rho
end.
Fixpoint assoc (A:Set)(x:variable)(rho:substitution A){struct rho}
: option A :=
match rho with
| nil => None
| (y,t) :: rho => if var_eq_dec x y then Some t
else assoc A x rho
end.
Fixpoint subst_term (rho:substitution term)(t:term){struct t} : term :=
match t with
| Var x => match assoc _ x rho with
| Some a => a
| None => Var x
end
| App f t' => App f (subst_term rho t')
end.
Fixpoint subst_formula (rho:substitution term)(A:formula){struct A}:formula :=
match A with
| Atom (p,t) => Atom (p, subst_term rho t)
| A --> B => subst_formula rho A --> subst_formula rho B
| Forall y A => Forall y (subst_formula (remove_assoc _ y rho) A)
(* assume t closed *)
end.
Definition subst A x t := subst_formula ((x,t):: nil) A.
Record Kripke : Type := {
worlds: Set;
wle : worlds -> worlds -> Type;
wle_refl : forall w, wle w w ;
wle_trans : forall w w' w'', wle w w' -> wle w' w'' -> wle w w'';
domain : Set;
vars : variable -> domain;
funs : function -> domain -> domain;
atoms : worlds -> predicate * domain -> Type;
atoms_mon : forall w w', wle w w' -> forall P, atoms w P -> atoms w' P
}.
Section Sem.
Variable K : Kripke.
Fixpoint sem (rho: substitution (domain K))(t:term){struct t} : domain K :=
match t with
| Var x => match assoc _ x rho with
| Some a => a
| None => vars K x
end
| App f t' => funs K f (sem rho t')
end.
End Sem.
Notation "w <= w'" := (wle _ w w').
Set Implicit Arguments.
Reserved Notation "w ||- A" (at level 70).
Definition context := list formula.
Variable fresh : variable -> context -> Prop.
Variable fresh_out : context -> variable.
Axiom fresh_out_spec : forall Gamma, fresh (fresh_out Gamma) Gamma.
Axiom fresh_peel : forall x A Gamma, fresh x (A::Gamma) -> fresh x Gamma.
Fixpoint force (K:Kripke)(rho: substitution (domain K))(w:worlds K)(A:formula)
{struct A} : Type :=
match A with
| Atom (p,t) => atoms K w (p, sem K rho t)
| A --> B => forall w', w <= w' -> force K rho w' A -> force K rho w' B
| Forall x A => forall w', w <= w' -> forall t, force K ((x,t)::remove_assoc _ x rho) w' A
end.
Notation "w ||- A" := (force _ nil w A).
Reserved Notation "Gamma |- A" (at level 70).
Reserved Notation "Gamma ; A |- C" (at level 70, A at next level).
Inductive context_prefix (Gamma:context) : context -> Type :=
| CtxPrefixRefl : context_prefix Gamma Gamma
| CtxPrefixTrans : forall A Gamma', context_prefix Gamma Gamma' -> context_prefix Gamma (cons A Gamma').
Inductive in_context (A:formula) : list formula -> Prop :=
| InAxiom : forall Gamma, in_context A (cons A Gamma)
| OmWeak : forall Gamma B, in_context A Gamma -> in_context A (cons B Gamma).
Inductive prove : list formula -> formula -> Type :=
| ProofImplyR : forall A B Gamma, prove (cons A Gamma) B
-> prove Gamma (A --> B)
| ProofForallR : forall x A Gamma, (forall y, fresh y (A::Gamma)
-> prove Gamma (subst A x (Var y))) -> prove Gamma (Forall x A)
| ProofCont : forall A Gamma Gamma' C, context_prefix (A::Gamma) Gamma'
-> (prove_stoup Gamma' A C) -> (Gamma' |- C)
where "Gamma |- A" := (prove Gamma A)
with prove_stoup : list formula -> formula -> formula -> Type :=
| ProofAxiom Gamma C: Gamma ; C |- C
| ProofImplyL Gamma C : forall A B, (Gamma |- A)
-> (prove_stoup Gamma B C) -> (prove_stoup Gamma (A --> B) C)
| ProofForallL Gamma C : forall x t A, (prove_stoup Gamma (subst A x t) C)
-> (prove_stoup Gamma (Forall x A) C)
where " Gamma ; B |- A " := (prove_stoup Gamma B A).
Axiom context_prefix_trans :
forall Gamma Gamma' Gamma'',
context_prefix Gamma Gamma'
-> context_prefix Gamma' Gamma''
-> context_prefix Gamma Gamma''.
Axiom Weakening :
forall Gamma Gamma' A,
context_prefix Gamma Gamma' -> Gamma |- A -> Gamma' |- A.
Axiom universal_weakening :
forall Gamma Gamma', context_prefix Gamma Gamma'
-> forall P, Gamma |- Atom P -> Gamma' |- Atom P.
Canonical Structure Universal := Build_Kripke
context
context_prefix
CtxPrefixRefl
context_prefix_trans
term
Var
App
(fun Gamma P => Gamma |- Atom P)
universal_weakening.
Axiom subst_commute :
forall A rho x t,
subst_formula ((x,t)::rho) A = subst (subst_formula rho A) x t.
Axiom subst_formula_atom :
forall rho p t,
Atom (p, sem _ rho t) = subst_formula rho (Atom (p,t)).
Fixpoint universal_completeness (Gamma:context)(A:formula){struct A}
: forall rho:substitution term,
force _ rho Gamma A -> Gamma |- subst_formula rho A
:=
match A
return forall rho, force _ rho Gamma A
-> Gamma |- subst_formula rho A
with
| Atom (p,t) => fun rho H => eq_rect _ (fun A => Gamma |- A) H _ (subst_formula_atom rho p t)
| A --> B => fun rho HImplyAB =>
let A' := subst_formula rho A in
ProofImplyR (universal_completeness (A'::Gamma) B rho
(HImplyAB (A'::Gamma)(CtxPrefixTrans A' (CtxPrefixRefl Gamma))
(universal_completeness_stoup A rho (fun C Gamma' Hle p
=> ProofCont Hle p))))
| Forall x A => fun rho HForallA
=> ProofForallR x (fun y Hfresh
=> eq_rect _ _ (universal_completeness Gamma A _
(HForallA Gamma (CtxPrefixRefl Gamma)(Var y))) _ (subst_commute _ _ _ _ ))
end
with universal_completeness_stoup (Gamma:context)(A:formula){struct A}
: forall rho, (forall C Gamma', context_prefix Gamma Gamma'
-> Gamma' ; subst_formula rho A |- C -> Gamma' |- C)
-> force _ rho Gamma A
:=
match A return forall rho,
(forall C Gamma', context_prefix Gamma Gamma'
-> Gamma' ; subst_formula rho A |- C
-> Gamma' |- C)
-> force _ rho Gamma A
with
| Atom (p,t) as C => fun rho H
=> H _ Gamma (CtxPrefixRefl Gamma)(ProofAxiom _ _)
| A --> B => fun rho H => fun Gamma' Hle HA
=> universal_completeness_stoup B rho (fun C Gamma'' Hle' p
=> H C Gamma'' (context_prefix_trans Hle Hle')
(ProofImplyL (Weakening Hle' (universal_completeness Gamma' A rho HA)) p))
| Forall x A => fun rho H => fun Gamma' Hle t
=> (universal_completeness_stoup A ((x,t)::remove_assoc _ x rho)
(fun C Gamma'' Hle' p =>
H C Gamma'' (context_prefix_trans Hle Hle')
(ProofForallL x t (subst_formula (remove_assoc _ x rho) A)
(eq_rect _ (fun D => Gamma'' ; D |- C) p _ (subst_commute _ _ _ _)))))
end.
(* A simple example that raised an uncaught exception at some point *)
Fail Check fun x => @eq_refl x <: true = true.
|