File: cic.rst

package info (click to toggle)
coq-doc 8.20.0-2
  • links: PTS, VCS
  • area: non-free
  • in suites: forky, sid, trixie
  • size: 46,708 kB
  • sloc: ml: 234,429; sh: 4,686; python: 3,359; ansic: 2,644; makefile: 842; lisp: 172; javascript: 87; xml: 24; sed: 2
file content (479 lines) | stat: -rw-r--r-- 16,796 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
Typing rules
====================================

The underlying formal language of Coq is a
:gdef:`Calculus of Inductive Constructions` (|Cic|) whose inference rules
are presented in this
chapter. The history of this formalism as well as pointers to related
work are provided in a separate chapter; see :ref:`history`.


.. _The-terms:

The terms
-------------

The expressions of the |Cic| are *terms* and all terms have a *type*.
There are types for functions (or programs), there are atomic types
(especially datatypes)... but also types for proofs and types for the
types themselves. Especially, any object handled in the formalism must
belong to a type. For instance, universal quantification is relative
to a type and takes the form “*for all x of type* :math:`T`, :math:`P`”. The expression
“:math:`x` *of type* :math:`T`” is written “:math:`x:T`”. Informally, “:math:`x:T`” can be thought as
“:math:`x` *belongs to* :math:`T`”.

Terms are built from sorts, variables, constants, abstractions,
applications, local definitions, and products. From a syntactic point
of view, types cannot be distinguished from terms, except that they
cannot start by an abstraction or a constructor. More precisely the
language of the *Calculus of Inductive Constructions* is built from
the following rules.


#. the sorts :math:`\SProp`, :math:`\Prop`, :math:`\Set`, :math:`\Type(i)` are terms.
#. variables, hereafter ranged over by letters :math:`x`, :math:`y`, etc., are terms
#. constants, hereafter ranged over by letters :math:`c`, :math:`d`, etc., are terms.
#. if :math:`x` is a variable and :math:`T`, :math:`U` are terms then
   :math:`∀ x:T,~U` (:g:`forall x:T, U`   in Coq concrete syntax) is a term.
   If :math:`x` occurs in :math:`U`, :math:`∀ x:T,~U` reads as
   “for all :math:`x` of type :math:`T`, :math:`U`”.
   As :math:`U` depends on :math:`x`, one says that :math:`∀ x:T,~U` is
   a *dependent product*. If :math:`x` does not occur in :math:`U` then
   :math:`∀ x:T,~U` reads as
   “if :math:`T` then :math:`U`”. A *non-dependent product* can be
   written: :math:`T \rightarrow U`.
#. if :math:`x` is a variable and :math:`T`, :math:`u` are terms then
   :math:`λ x:T .~u` (:g:`fun x:T => u`
   in Coq concrete syntax) is a term. This is a notation for the
   λ-abstraction of λ-calculus :cite:`Bar81`. The term :math:`λ x:T .~u` is a function
   which maps elements of :math:`T` to the expression :math:`u`.
#. if :math:`t` and :math:`u` are terms then :math:`(t~u)` is a term
   (:g:`t u` in Coq concrete
   syntax). The term :math:`(t~u)` reads as “:math:`t` applied to :math:`u`”.
#. if :math:`x` is a variable, and :math:`t`, :math:`T` and :math:`u` are
   terms then :math:`\letin{x}{t:T}{u}` is
   a term which denotes the term :math:`u` where the variable :math:`x` is locally bound
   to :math:`t` of type :math:`T`. This stands for the common “let-in” construction of
   functional programs such as ML or Scheme.



.. _Free-variables:

**Free variables.**
The notion of free variables is defined as usual. In the expressions
:math:`λx:T.~U` and :math:`∀ x:T,~U` the occurrences of :math:`x` in :math:`U` are bound.


.. _Substitution:

**Substitution.**
The notion of substituting a term :math:`t` to free occurrences of a variable
:math:`x` in a term :math:`u` is defined as usual. The resulting term is written
:math:`\subst{u}{x}{t}`.


.. _The-logical-vs-programming-readings:

**The logical vs programming readings.**
The constructions of the |Cic| can be used to express both logical and
programming notions, according to the Curry-Howard correspondence
between proofs and programs, and between propositions and types
:cite:`Cur58,How80,Bru72`.

For instance, let us assume that :math:`\nat` is the type of natural numbers
with zero element written :math:`0` and that :g:`True` is the always true
proposition. Then :math:`→` is used both to denote :math:`\nat→\nat` which is the type
of functions from :math:`\nat` to :math:`\nat`, to denote True→True which is an
implicative proposition, to denote :math:`\nat →\Prop` which is the type of
unary predicates over the natural numbers, etc.

Let us assume that ``mult`` is a function of type :math:`\nat→\nat→\nat` and ``eqnat`` a
predicate of type :math:`\nat→\nat→ \Prop`. The λ-abstraction can serve to build
“ordinary” functions as in :math:`λ x:\nat.~(\kw{mult}~x~x)` (i.e.
:g:`fun x:nat => mult x x`
in Coq notation) but may build also predicates over the natural
numbers. For instance :math:`λ x:\nat.~(\kw{eqnat}~x~0)`
(i.e. :g:`fun x:nat => eqnat x 0`
in Coq notation) will represent the predicate of one variable :math:`x` which
asserts the equality of :math:`x` with :math:`0`. This predicate has type
:math:`\nat → \Prop`
and it can be applied to any expression of type :math:`\nat`, say :math:`t`, to give an
object :math:`P~t` of type :math:`\Prop`, namely a proposition.

Furthermore :g:`forall x:nat, P x` will represent the type of functions
which associate with each natural number :math:`n` an object of type :math:`(P~n)` and
consequently represent the type of proofs of the formula “:math:`∀ x.~P(x)`”.


.. _Typing-rules:

Typing rules
----------------

As objects of type theory, terms are subjected to *type discipline*.
The well typing of a term depends on a local context and a global environment.

.. _Local-context:

**Local context.**
A :term:`local context` is an ordered list of declarations of *variables*.
The declaration of a variable :math:`x` is
either an *assumption*, written :math:`x:T` (where :math:`T` is a type) or a
*definition*, written :math:`x:=t:T`. Local contexts are written in brackets,
for example :math:`[x:T;~y:=u:U;~z:V]`. The variables
declared in a local context must be distinct. If :math:`Γ` is a local context
that declares :math:`x`, we
write :math:`x ∈ Γ`. Writing :math:`(x:T) ∈ Γ` means there is an assumption
or a definition giving the type :math:`T` to :math:`x` in :math:`Γ`.
If :math:`Γ` defines :math:`x:=t:T`, we also write :math:`(x:=t:T) ∈ Γ`.
For the rest of the chapter, :math:`Γ::(y:T)` denotes the local context :math:`Γ`
enriched with the local assumption :math:`y:T`. Similarly, :math:`Γ::(y:=t:T)` denotes
the local context :math:`Γ` enriched with the :term:`local definition <context-local definition>`
:math:`(y:=t:T)`. The
notation :math:`[]` denotes the empty local context. Writing :math:`Γ_1 ; Γ_2` means
concatenation of the local context :math:`Γ_1` and the local context :math:`Γ_2`.

.. _Global-environment:

**Global environment.**
A :term:`global environment` is an ordered list of *declarations*.
Global declarations are either *assumptions*, *definitions*
or declarations of inductive objects. Inductive
objects declare both constructors and inductive or
coinductive types (see Section :ref:`inductive-definitions`).

In the global environment,
*assumptions* are written as
:math:`(c:T)`, indicating that :math:`c` is of the type :math:`T`. *Definitions*
are written as :math:`c:=t:T`, indicating that :math:`c` has the value :math:`t`
and type :math:`T`. We shall call
such names :term:`constants <constant>`. For the rest of the chapter, the :math:`E;~c:T` denotes
the global environment :math:`E` enriched with the assumption :math:`c:T`.
Similarly, :math:`E;~c:=t:T` denotes the global environment :math:`E` enriched with the
definition :math:`(c:=t:T)`.

The rules for inductive definitions (see Section
:ref:`inductive-definitions`) have to be considered as assumption
rules in which the following definitions apply: if the name :math:`c`
is declared in :math:`E`, we write :math:`c ∈ E` and if :math:`c:T` or
:math:`c:=t:T` is declared in :math:`E`, we write :math:`(c : T) ∈ E`.


.. _Typing-rules2:

**Typing rules.**
In the following, we define simultaneously two judgments. The first
one :math:`\WTEG{t}{T}` means the term :math:`t` is well-typed and has type :math:`T` in the
global environment :math:`E` and local context :math:`Γ`. The second judgment :math:`\WFE{Γ}`
means that the global environment :math:`E` is well-formed and the local
context :math:`Γ` is a valid local context in this global environment.

A term :math:`t` is well typed in a global environment :math:`E` iff
there exists a local context :math:`\Gamma` and a term :math:`T` such
that the judgment :math:`\WTEG{t}{T}` can be derived from the
following rules.

.. inference:: W-Empty

   ---------
   \WF{[]}{}

.. inference:: W-Local-Assum

   \WTEG{T}{s}
   s \in \Sort
   x \not\in \Gamma % \cup E
   -------------------------
   \WFE{\Gamma::(x:T)}

.. inference:: W-Local-Def

   \WTEG{t}{T}
   x \not\in \Gamma % \cup E
   -------------------------
   \WFE{\Gamma::(x:=t:T)}

.. inference:: W-Global-Assum

   \WTE{}{T}{s}
   s \in \Sort
   c \notin E
   ------------
   \WF{E;~c:T}{}

.. inference:: W-Global-Def

   \WTE{}{t}{T}
   c \notin E
   ---------------
   \WF{E;~c:=t:T}{}

.. inference:: Ax-SProp

   \WFE{\Gamma}
   ----------------------
   \WTEG{\SProp}{\Type(1)}

.. inference:: Ax-Prop

   \WFE{\Gamma}
   ----------------------
   \WTEG{\Prop}{\Type(1)}

.. inference:: Ax-Set

   \WFE{\Gamma}
   ---------------------
   \WTEG{\Set}{\Type(1)}

.. inference:: Ax-Type

   \WFE{\Gamma}
   ---------------------------
   \WTEG{\Type(i)}{\Type(i+1)}

.. inference:: Var

   \WFE{\Gamma}
   (x:T) \in \Gamma~~\mbox{or}~~(x:=t:T) \in \Gamma~\mbox{for some $t$}
   --------------------------------------------------------------------
   \WTEG{x}{T}

.. inference:: Const

   \WFE{\Gamma}
   (c:T) \in E~~\mbox{or}~~(c:=t:T) \in E~\mbox{for some $t$}
   ----------------------------------------------------------
   \WTEG{c}{T}

.. inference:: Prod-SProp

   \WTEG{T}{s}
   s \in {\Sort}
   \WTE{\Gamma::(x:T)}{U}{\SProp}
   -----------------------------
   \WTEG{\forall~x:T,U}{\SProp}

.. inference:: Prod-Prop

   \WTEG{T}{s}
   s \in \Sort
   \WTE{\Gamma::(x:T)}{U}{\Prop}
   -----------------------------
   \WTEG{∀ x:T,~U}{\Prop}

.. inference:: Prod-Set

   \WTEG{T}{s}
   s \in \{\SProp, \Prop, \Set\}
   \WTE{\Gamma::(x:T)}{U}{\Set}
   ----------------------------
   \WTEG{∀ x:T,~U}{\Set}

.. inference:: Prod-Type

   \WTEG{T}{s}
   s \in \{\SProp, \Type(i)\}
   \WTE{\Gamma::(x:T)}{U}{\Type(i)}
   --------------------------------
   \WTEG{∀ x:T,~U}{\Type(i)}

.. inference:: Lam

   \WTEG{∀ x:T,~U}{s}
   \WTE{\Gamma::(x:T)}{t}{U}
   ------------------------------------
   \WTEG{λ x:T\mto t}{∀ x:T,~U}

.. _app_rule:

.. inference:: App

   \WTEG{t}{∀ x:U,~T}
   \WTEG{u}{U}
   ------------------------------
   \WTEG{(t\ u)}{\subst{T}{x}{u}}

.. inference:: Let

   \WTEG{t}{T}
   \WTE{\Gamma::(x:=t:T)}{u}{U}
   -----------------------------------------
   \WTEG{\letin{x}{t:T}{u}}{\subst{U}{x}{t}}



.. note::

   **Prod-Prop** and **Prod-Set** typing-rules make sense if we consider the
   semantic difference between :math:`\Prop` and :math:`\Set`:

   + All values of a type that has a sort :math:`\Set` are extractable.
   + No values of a type that has a sort :math:`\Prop` are extractable.



.. note::
   We may have :math:`\letin{x}{t:T}{u}` well-typed without having
   :math:`((λ x:T.~u)~t)` well-typed (where :math:`T` is a type of
   :math:`t`). This is because the value :math:`t` associated with
   :math:`x` may be used in a conversion rule
   (see Section :ref:`Conversion-rules`).

.. _subtyping-rules:

Subtyping rules
-------------------

At the moment, we did not take into account one rule between universes
which says that any term in a universe of index :math:`i` is also a term in
the universe of index :math:`i+1` (this is the *cumulativity* rule of |Cic|).
This property extends the equivalence relation of convertibility into
a *subtyping* relation inductively defined by:


#. if :math:`E[Γ] ⊢ t =_{βδιζη} u` then :math:`E[Γ] ⊢ t ≤_{βδιζη} u`,
#. if :math:`i ≤ j` then :math:`E[Γ] ⊢ \Type(i) ≤_{βδιζη} \Type(j)`,
#. for any :math:`i`, :math:`E[Γ] ⊢ \Set ≤_{βδιζη} \Type(i)`,
#. :math:`E[Γ] ⊢ \Prop ≤_{βδιζη} \Set`, hence, by transitivity,
   :math:`E[Γ] ⊢ \Prop ≤_{βδιζη} \Type(i)`, for any :math:`i`
   (note: :math:`\SProp` is not related by cumulativity to any other term)
#. if :math:`E[Γ] ⊢ T =_{βδιζη} U` and
   :math:`E[Γ::(x:T)] ⊢ T' ≤_{βδιζη} U'` then
   :math:`E[Γ] ⊢ ∀x:T,~T′ ≤_{βδιζη} ∀ x:U,~U′`.
#. if :math:`\ind{p}{Γ_I}{Γ_C}` is a universe polymorphic and cumulative
   (see Chapter :ref:`polymorphicuniverses`) inductive type (see below)
   and
   :math:`(t : ∀Γ_P ,∀Γ_{\mathit{Arr}(t)}, S)∈Γ_I`
   and
   :math:`(t' : ∀Γ_P' ,∀Γ_{\mathit{Arr}(t)}', S')∈Γ_I`
   are two different instances of *the same* inductive type (differing only in
   universe levels) with constructors

   .. math::
      [c_1 : ∀Γ_P ,∀ T_{1,1} … T_{1,n_1} ,~t~v_{1,1} … v_{1,m} ;~…;~
       c_k : ∀Γ_P ,∀ T_{k,1} … T_{k,n_k} ,~t~v_{k,1} … v_{k,m} ]

   and

   .. math::
      [c_1 : ∀Γ_P' ,∀ T_{1,1}' … T_{1,n_1}' ,~t'~v_{1,1}' … v_{1,m}' ;~…;~
       c_k : ∀Γ_P' ,∀ T_{k,1}' … T_{k,n_k}' ,~t'~v_{k,1}' … v_{k,m}' ]

   respectively then

   .. math::
      E[Γ] ⊢ t~w_1 … w_m ≤_{βδιζη} t'~w_1' … w_m'

   (notice that :math:`t` and :math:`t'` are both
   fully applied, i.e., they have a sort as a type) if

   .. math::
      E[Γ] ⊢ w_i =_{βδιζη} w_i'

   for :math:`1 ≤ i ≤ m` and we have


   .. math::
      E[Γ] ⊢ T_{i,j} ≤_{βδιζη} T_{i,j}'

   and

   .. math::
      E[Γ] ⊢ A_i ≤_{βδιζη} A_i'

   where :math:`Γ_{\mathit{Arr}(t)} = [a_1 : A_1 ;~ … ;~a_l : A_l ]` and
   :math:`Γ_{\mathit{Arr}(t)}' = [a_1 : A_1';~ … ;~a_l : A_l']`.


The conversion rule up to subtyping is now exactly:

.. inference:: Conv

   E[Γ] ⊢ U : s
   E[Γ] ⊢ t : T
   E[Γ] ⊢ T ≤_{βδιζη} U
   --------------
   E[Γ] ⊢ t : U


.. _Normal-form:

**Normal form**. A term which cannot be any more reduced is said to be in *normal
form*. There are several ways (or strategies) to apply the reduction
rules. Among them, we have to mention the *head reduction* which will
play an important role (see Chapter :ref:`tactics`). Any term :math:`t` can be written as
:math:`λ x_1 :T_1 .~… λ x_k :T_k .~(t_0~t_1 … t_n )` where :math:`t_0` is not an
application. We say then that :math:`t_0` is the *head of* :math:`t`. If we assume
that :math:`t_0` is :math:`λ x:T.~u_0` then one step of β-head reduction of :math:`t` is:

.. math::
   λ x_1 :T_1 .~… λ x_k :T_k .~(λ x:T.~u_0~t_1 … t_n ) ~\triangleright~
   λ (x_1 :T_1 )…(x_k :T_k ).~(\subst{u_0}{x}{t_1}~t_2 … t_n )

Iterating the process of head reduction until the head of the reduced
term is no more an abstraction leads to the *β-head normal form* of :math:`t`:

.. math::
   t \triangleright … \triangleright λ x_1 :T_1 .~…λ x_k :T_k .~(v~u_1 … u_m )

where :math:`v` is not an abstraction (nor an application). Note that the head
normal form must not be confused with the normal form since some :math:`u_i`
can be reducible. Similar notions of head-normal forms involving δ, ι
and ζ reductions or any combination of those can also be defined.


.. _The-Calculus-of-Inductive-Construction-with-impredicative-Set:

The Calculus of Inductive Constructions with impredicative Set
-----------------------------------------------------------------

Coq can be used as a type checker for the Calculus of Inductive
Constructions with an impredicative sort :math:`\Set` by using the compiler
option ``-impredicative-set``. For example, using the ordinary `coqtop`
command, the following is rejected,

.. example::

   .. coqtop:: all

      Fail Definition id: Set := forall X:Set,X->X.

while it will type check, if one uses instead the `coqtop`
``-impredicative-set`` option..

The major change in the theory concerns the rule for product formation
in the sort :math:`\Set`, which is extended to a domain in any sort:

.. inference:: ProdImp

   E[Γ] ⊢ T : s
   s ∈ \Sort
   E[Γ::(x:T)] ⊢ U : \Set
   ---------------------
   E[Γ] ⊢ ∀ x:T,~U : \Set

This extension has consequences on the inductive definitions which are
allowed. In the impredicative system, one can build so-called *large
inductive definitions* like the example of second-order existential
quantifier (:g:`exSet`).

There should be restrictions on the eliminations which can be
performed on such definitions. The elimination rules in the
impredicative system for sort :math:`\Set` become:



.. inference:: Set1

   s ∈ \{\Prop, \Set\}
   -----------------
   [I:\Set|I→ s]

.. inference:: Set2

   I~\kw{is a small inductive definition}
   s ∈ \{\Type(i)\}
   ----------------
   [I:\Set|I→ s]