1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
|
Typing rules
====================================
The underlying formal language of Coq is a
:gdef:`Calculus of Inductive Constructions` (|Cic|) whose inference rules
are presented in this
chapter. The history of this formalism as well as pointers to related
work are provided in a separate chapter; see :ref:`history`.
.. _The-terms:
The terms
-------------
The expressions of the |Cic| are *terms* and all terms have a *type*.
There are types for functions (or programs), there are atomic types
(especially datatypes)... but also types for proofs and types for the
types themselves. Especially, any object handled in the formalism must
belong to a type. For instance, universal quantification is relative
to a type and takes the form “*for all x of type* :math:`T`, :math:`P`”. The expression
“:math:`x` *of type* :math:`T`” is written “:math:`x:T`”. Informally, “:math:`x:T`” can be thought as
“:math:`x` *belongs to* :math:`T`”.
Terms are built from sorts, variables, constants, abstractions,
applications, local definitions, and products. From a syntactic point
of view, types cannot be distinguished from terms, except that they
cannot start by an abstraction or a constructor. More precisely the
language of the *Calculus of Inductive Constructions* is built from
the following rules.
#. the sorts :math:`\SProp`, :math:`\Prop`, :math:`\Set`, :math:`\Type(i)` are terms.
#. variables, hereafter ranged over by letters :math:`x`, :math:`y`, etc., are terms
#. constants, hereafter ranged over by letters :math:`c`, :math:`d`, etc., are terms.
#. if :math:`x` is a variable and :math:`T`, :math:`U` are terms then
:math:`∀ x:T,~U` (:g:`forall x:T, U` in Coq concrete syntax) is a term.
If :math:`x` occurs in :math:`U`, :math:`∀ x:T,~U` reads as
“for all :math:`x` of type :math:`T`, :math:`U`”.
As :math:`U` depends on :math:`x`, one says that :math:`∀ x:T,~U` is
a *dependent product*. If :math:`x` does not occur in :math:`U` then
:math:`∀ x:T,~U` reads as
“if :math:`T` then :math:`U`”. A *non-dependent product* can be
written: :math:`T \rightarrow U`.
#. if :math:`x` is a variable and :math:`T`, :math:`u` are terms then
:math:`λ x:T .~u` (:g:`fun x:T => u`
in Coq concrete syntax) is a term. This is a notation for the
λ-abstraction of λ-calculus :cite:`Bar81`. The term :math:`λ x:T .~u` is a function
which maps elements of :math:`T` to the expression :math:`u`.
#. if :math:`t` and :math:`u` are terms then :math:`(t~u)` is a term
(:g:`t u` in Coq concrete
syntax). The term :math:`(t~u)` reads as “:math:`t` applied to :math:`u`”.
#. if :math:`x` is a variable, and :math:`t`, :math:`T` and :math:`u` are
terms then :math:`\letin{x}{t:T}{u}` is
a term which denotes the term :math:`u` where the variable :math:`x` is locally bound
to :math:`t` of type :math:`T`. This stands for the common “let-in” construction of
functional programs such as ML or Scheme.
.. _Free-variables:
**Free variables.**
The notion of free variables is defined as usual. In the expressions
:math:`λx:T.~U` and :math:`∀ x:T,~U` the occurrences of :math:`x` in :math:`U` are bound.
.. _Substitution:
**Substitution.**
The notion of substituting a term :math:`t` to free occurrences of a variable
:math:`x` in a term :math:`u` is defined as usual. The resulting term is written
:math:`\subst{u}{x}{t}`.
.. _The-logical-vs-programming-readings:
**The logical vs programming readings.**
The constructions of the |Cic| can be used to express both logical and
programming notions, according to the Curry-Howard correspondence
between proofs and programs, and between propositions and types
:cite:`Cur58,How80,Bru72`.
For instance, let us assume that :math:`\nat` is the type of natural numbers
with zero element written :math:`0` and that :g:`True` is the always true
proposition. Then :math:`→` is used both to denote :math:`\nat→\nat` which is the type
of functions from :math:`\nat` to :math:`\nat`, to denote True→True which is an
implicative proposition, to denote :math:`\nat →\Prop` which is the type of
unary predicates over the natural numbers, etc.
Let us assume that ``mult`` is a function of type :math:`\nat→\nat→\nat` and ``eqnat`` a
predicate of type :math:`\nat→\nat→ \Prop`. The λ-abstraction can serve to build
“ordinary” functions as in :math:`λ x:\nat.~(\kw{mult}~x~x)` (i.e.
:g:`fun x:nat => mult x x`
in Coq notation) but may build also predicates over the natural
numbers. For instance :math:`λ x:\nat.~(\kw{eqnat}~x~0)`
(i.e. :g:`fun x:nat => eqnat x 0`
in Coq notation) will represent the predicate of one variable :math:`x` which
asserts the equality of :math:`x` with :math:`0`. This predicate has type
:math:`\nat → \Prop`
and it can be applied to any expression of type :math:`\nat`, say :math:`t`, to give an
object :math:`P~t` of type :math:`\Prop`, namely a proposition.
Furthermore :g:`forall x:nat, P x` will represent the type of functions
which associate with each natural number :math:`n` an object of type :math:`(P~n)` and
consequently represent the type of proofs of the formula “:math:`∀ x.~P(x)`”.
.. _Typing-rules:
Typing rules
----------------
As objects of type theory, terms are subjected to *type discipline*.
The well typing of a term depends on a local context and a global environment.
.. _Local-context:
**Local context.**
A :term:`local context` is an ordered list of declarations of *variables*.
The declaration of a variable :math:`x` is
either an *assumption*, written :math:`x:T` (where :math:`T` is a type) or a
*definition*, written :math:`x:=t:T`. Local contexts are written in brackets,
for example :math:`[x:T;~y:=u:U;~z:V]`. The variables
declared in a local context must be distinct. If :math:`Γ` is a local context
that declares :math:`x`, we
write :math:`x ∈ Γ`. Writing :math:`(x:T) ∈ Γ` means there is an assumption
or a definition giving the type :math:`T` to :math:`x` in :math:`Γ`.
If :math:`Γ` defines :math:`x:=t:T`, we also write :math:`(x:=t:T) ∈ Γ`.
For the rest of the chapter, :math:`Γ::(y:T)` denotes the local context :math:`Γ`
enriched with the local assumption :math:`y:T`. Similarly, :math:`Γ::(y:=t:T)` denotes
the local context :math:`Γ` enriched with the :term:`local definition <context-local definition>`
:math:`(y:=t:T)`. The
notation :math:`[]` denotes the empty local context. Writing :math:`Γ_1 ; Γ_2` means
concatenation of the local context :math:`Γ_1` and the local context :math:`Γ_2`.
.. _Global-environment:
**Global environment.**
A :term:`global environment` is an ordered list of *declarations*.
Global declarations are either *assumptions*, *definitions*
or declarations of inductive objects. Inductive
objects declare both constructors and inductive or
coinductive types (see Section :ref:`inductive-definitions`).
In the global environment,
*assumptions* are written as
:math:`(c:T)`, indicating that :math:`c` is of the type :math:`T`. *Definitions*
are written as :math:`c:=t:T`, indicating that :math:`c` has the value :math:`t`
and type :math:`T`. We shall call
such names :term:`constants <constant>`. For the rest of the chapter, the :math:`E;~c:T` denotes
the global environment :math:`E` enriched with the assumption :math:`c:T`.
Similarly, :math:`E;~c:=t:T` denotes the global environment :math:`E` enriched with the
definition :math:`(c:=t:T)`.
The rules for inductive definitions (see Section
:ref:`inductive-definitions`) have to be considered as assumption
rules in which the following definitions apply: if the name :math:`c`
is declared in :math:`E`, we write :math:`c ∈ E` and if :math:`c:T` or
:math:`c:=t:T` is declared in :math:`E`, we write :math:`(c : T) ∈ E`.
.. _Typing-rules2:
**Typing rules.**
In the following, we define simultaneously two judgments. The first
one :math:`\WTEG{t}{T}` means the term :math:`t` is well-typed and has type :math:`T` in the
global environment :math:`E` and local context :math:`Γ`. The second judgment :math:`\WFE{Γ}`
means that the global environment :math:`E` is well-formed and the local
context :math:`Γ` is a valid local context in this global environment.
A term :math:`t` is well typed in a global environment :math:`E` iff
there exists a local context :math:`\Gamma` and a term :math:`T` such
that the judgment :math:`\WTEG{t}{T}` can be derived from the
following rules.
.. inference:: W-Empty
---------
\WF{[]}{}
.. inference:: W-Local-Assum
\WTEG{T}{s}
s \in \Sort
x \not\in \Gamma % \cup E
-------------------------
\WFE{\Gamma::(x:T)}
.. inference:: W-Local-Def
\WTEG{t}{T}
x \not\in \Gamma % \cup E
-------------------------
\WFE{\Gamma::(x:=t:T)}
.. inference:: W-Global-Assum
\WTE{}{T}{s}
s \in \Sort
c \notin E
------------
\WF{E;~c:T}{}
.. inference:: W-Global-Def
\WTE{}{t}{T}
c \notin E
---------------
\WF{E;~c:=t:T}{}
.. inference:: Ax-SProp
\WFE{\Gamma}
----------------------
\WTEG{\SProp}{\Type(1)}
.. inference:: Ax-Prop
\WFE{\Gamma}
----------------------
\WTEG{\Prop}{\Type(1)}
.. inference:: Ax-Set
\WFE{\Gamma}
---------------------
\WTEG{\Set}{\Type(1)}
.. inference:: Ax-Type
\WFE{\Gamma}
---------------------------
\WTEG{\Type(i)}{\Type(i+1)}
.. inference:: Var
\WFE{\Gamma}
(x:T) \in \Gamma~~\mbox{or}~~(x:=t:T) \in \Gamma~\mbox{for some $t$}
--------------------------------------------------------------------
\WTEG{x}{T}
.. inference:: Const
\WFE{\Gamma}
(c:T) \in E~~\mbox{or}~~(c:=t:T) \in E~\mbox{for some $t$}
----------------------------------------------------------
\WTEG{c}{T}
.. inference:: Prod-SProp
\WTEG{T}{s}
s \in {\Sort}
\WTE{\Gamma::(x:T)}{U}{\SProp}
-----------------------------
\WTEG{\forall~x:T,U}{\SProp}
.. inference:: Prod-Prop
\WTEG{T}{s}
s \in \Sort
\WTE{\Gamma::(x:T)}{U}{\Prop}
-----------------------------
\WTEG{∀ x:T,~U}{\Prop}
.. inference:: Prod-Set
\WTEG{T}{s}
s \in \{\SProp, \Prop, \Set\}
\WTE{\Gamma::(x:T)}{U}{\Set}
----------------------------
\WTEG{∀ x:T,~U}{\Set}
.. inference:: Prod-Type
\WTEG{T}{s}
s \in \{\SProp, \Type(i)\}
\WTE{\Gamma::(x:T)}{U}{\Type(i)}
--------------------------------
\WTEG{∀ x:T,~U}{\Type(i)}
.. inference:: Lam
\WTEG{∀ x:T,~U}{s}
\WTE{\Gamma::(x:T)}{t}{U}
------------------------------------
\WTEG{λ x:T\mto t}{∀ x:T,~U}
.. _app_rule:
.. inference:: App
\WTEG{t}{∀ x:U,~T}
\WTEG{u}{U}
------------------------------
\WTEG{(t\ u)}{\subst{T}{x}{u}}
.. inference:: Let
\WTEG{t}{T}
\WTE{\Gamma::(x:=t:T)}{u}{U}
-----------------------------------------
\WTEG{\letin{x}{t:T}{u}}{\subst{U}{x}{t}}
.. note::
**Prod-Prop** and **Prod-Set** typing-rules make sense if we consider the
semantic difference between :math:`\Prop` and :math:`\Set`:
+ All values of a type that has a sort :math:`\Set` are extractable.
+ No values of a type that has a sort :math:`\Prop` are extractable.
.. note::
We may have :math:`\letin{x}{t:T}{u}` well-typed without having
:math:`((λ x:T.~u)~t)` well-typed (where :math:`T` is a type of
:math:`t`). This is because the value :math:`t` associated with
:math:`x` may be used in a conversion rule
(see Section :ref:`Conversion-rules`).
.. _subtyping-rules:
Subtyping rules
-------------------
At the moment, we did not take into account one rule between universes
which says that any term in a universe of index :math:`i` is also a term in
the universe of index :math:`i+1` (this is the *cumulativity* rule of |Cic|).
This property extends the equivalence relation of convertibility into
a *subtyping* relation inductively defined by:
#. if :math:`E[Γ] ⊢ t =_{βδιζη} u` then :math:`E[Γ] ⊢ t ≤_{βδιζη} u`,
#. if :math:`i ≤ j` then :math:`E[Γ] ⊢ \Type(i) ≤_{βδιζη} \Type(j)`,
#. for any :math:`i`, :math:`E[Γ] ⊢ \Set ≤_{βδιζη} \Type(i)`,
#. :math:`E[Γ] ⊢ \Prop ≤_{βδιζη} \Set`, hence, by transitivity,
:math:`E[Γ] ⊢ \Prop ≤_{βδιζη} \Type(i)`, for any :math:`i`
(note: :math:`\SProp` is not related by cumulativity to any other term)
#. if :math:`E[Γ] ⊢ T =_{βδιζη} U` and
:math:`E[Γ::(x:T)] ⊢ T' ≤_{βδιζη} U'` then
:math:`E[Γ] ⊢ ∀x:T,~T′ ≤_{βδιζη} ∀ x:U,~U′`.
#. if :math:`\ind{p}{Γ_I}{Γ_C}` is a universe polymorphic and cumulative
(see Chapter :ref:`polymorphicuniverses`) inductive type (see below)
and
:math:`(t : ∀Γ_P ,∀Γ_{\mathit{Arr}(t)}, S)∈Γ_I`
and
:math:`(t' : ∀Γ_P' ,∀Γ_{\mathit{Arr}(t)}', S')∈Γ_I`
are two different instances of *the same* inductive type (differing only in
universe levels) with constructors
.. math::
[c_1 : ∀Γ_P ,∀ T_{1,1} … T_{1,n_1} ,~t~v_{1,1} … v_{1,m} ;~…;~
c_k : ∀Γ_P ,∀ T_{k,1} … T_{k,n_k} ,~t~v_{k,1} … v_{k,m} ]
and
.. math::
[c_1 : ∀Γ_P' ,∀ T_{1,1}' … T_{1,n_1}' ,~t'~v_{1,1}' … v_{1,m}' ;~…;~
c_k : ∀Γ_P' ,∀ T_{k,1}' … T_{k,n_k}' ,~t'~v_{k,1}' … v_{k,m}' ]
respectively then
.. math::
E[Γ] ⊢ t~w_1 … w_m ≤_{βδιζη} t'~w_1' … w_m'
(notice that :math:`t` and :math:`t'` are both
fully applied, i.e., they have a sort as a type) if
.. math::
E[Γ] ⊢ w_i =_{βδιζη} w_i'
for :math:`1 ≤ i ≤ m` and we have
.. math::
E[Γ] ⊢ T_{i,j} ≤_{βδιζη} T_{i,j}'
and
.. math::
E[Γ] ⊢ A_i ≤_{βδιζη} A_i'
where :math:`Γ_{\mathit{Arr}(t)} = [a_1 : A_1 ;~ … ;~a_l : A_l ]` and
:math:`Γ_{\mathit{Arr}(t)}' = [a_1 : A_1';~ … ;~a_l : A_l']`.
The conversion rule up to subtyping is now exactly:
.. inference:: Conv
E[Γ] ⊢ U : s
E[Γ] ⊢ t : T
E[Γ] ⊢ T ≤_{βδιζη} U
--------------
E[Γ] ⊢ t : U
.. _Normal-form:
**Normal form**. A term which cannot be any more reduced is said to be in *normal
form*. There are several ways (or strategies) to apply the reduction
rules. Among them, we have to mention the *head reduction* which will
play an important role (see Chapter :ref:`tactics`). Any term :math:`t` can be written as
:math:`λ x_1 :T_1 .~… λ x_k :T_k .~(t_0~t_1 … t_n )` where :math:`t_0` is not an
application. We say then that :math:`t_0` is the *head of* :math:`t`. If we assume
that :math:`t_0` is :math:`λ x:T.~u_0` then one step of β-head reduction of :math:`t` is:
.. math::
λ x_1 :T_1 .~… λ x_k :T_k .~(λ x:T.~u_0~t_1 … t_n ) ~\triangleright~
λ (x_1 :T_1 )…(x_k :T_k ).~(\subst{u_0}{x}{t_1}~t_2 … t_n )
Iterating the process of head reduction until the head of the reduced
term is no more an abstraction leads to the *β-head normal form* of :math:`t`:
.. math::
t \triangleright … \triangleright λ x_1 :T_1 .~…λ x_k :T_k .~(v~u_1 … u_m )
where :math:`v` is not an abstraction (nor an application). Note that the head
normal form must not be confused with the normal form since some :math:`u_i`
can be reducible. Similar notions of head-normal forms involving δ, ι
and ζ reductions or any combination of those can also be defined.
.. _The-Calculus-of-Inductive-Construction-with-impredicative-Set:
The Calculus of Inductive Constructions with impredicative Set
-----------------------------------------------------------------
Coq can be used as a type checker for the Calculus of Inductive
Constructions with an impredicative sort :math:`\Set` by using the compiler
option ``-impredicative-set``. For example, using the ordinary `coqtop`
command, the following is rejected,
.. example::
.. coqtop:: all
Fail Definition id: Set := forall X:Set,X->X.
while it will type check, if one uses instead the `coqtop`
``-impredicative-set`` option..
The major change in the theory concerns the rule for product formation
in the sort :math:`\Set`, which is extended to a domain in any sort:
.. inference:: ProdImp
E[Γ] ⊢ T : s
s ∈ \Sort
E[Γ::(x:T)] ⊢ U : \Set
---------------------
E[Γ] ⊢ ∀ x:T,~U : \Set
This extension has consequences on the inductive definitions which are
allowed. In the impredicative system, one can build so-called *large
inductive definitions* like the example of second-order existential
quantifier (:g:`exSet`).
There should be restrictions on the eliminations which can be
performed on such definitions. The elimination rules in the
impredicative system for sort :math:`\Set` become:
.. inference:: Set1
s ∈ \{\Prop, \Set\}
-----------------
[I:\Set|I→ s]
.. inference:: Set2
I~\kw{is a small inductive definition}
s ∈ \{\Type(i)\}
----------------
[I:\Set|I→ s]
|